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The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered
photons have been analyzed within the framework of second-order perturbation theory and Dirac’s relativistic
equation. Special attention was paid hereby to the scattering on three different atomic targets: single atoms, a
mesoscopic (small) target, and a macroscopic (large) target, which are all centered with regard to the beam axis.
Detailed calculations of the polarization Stokes parameters were performed for C5+ ions and for twisted Bessel
beams. It is shown that the polarization of scattered photons is sensitive to the size of an atomic target and to the
helicity, the opening angle, and the projection of the total angular momentum of the incident Bessel beam. These
computations indicate more that the Stokes parameters of the (Rayleigh) scattered twisted light may significantly
differ from their behavior for an incident plane-wave radiation.
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I. INTRODUCTION

The elastic scattering of photons at the bound electrons
of atoms or ions, commonly known as Rayleigh scattering,
has been intensively explored over the past decades [1–3].
From a theoretical viewpoint, the Rayleigh scattering has
attracted much interest as one of the simplest second-order
quantum electrodynamical (QED) process [4]. From a practical
viewpoint, detailed knowledge of the properties of elastically
scattered photons has been found important for applications
in material research [5], medical imaging [6], and astro-
physics [7].

In the past, a large number of experimental and theoretical
studies have been performed in order to understand how the
electronic structure of atoms affects the polarization of the
Rayleigh-scattered photons [8–16]. In particular, the linear
polarization of the elastically scattered light has been measured
directly by Blumenhagen et al. at the PETRA III synchrotron
at DESY [17]. This experiment was performed for a gold
target with a highly linearly polarized incident plane-wave
radiation. Until the present, however, very little has been
known about the Rayleigh scattering of twisted (or vortex) light
beams. When compared to plane-wave radiation, such twisted
photons have a helical wave front and carry a well-defined
projection of the orbital angular momentum (OAM) upon
their propagation direction [18,19]. In addition, the transverse
intensity profile of the twisted beams exhibits a ringlike pattern
with a dark spot (vortex) at the center [20]. In experiments,
twisted (Bessel) beams can nowadays be readily produced by
means of spatial light modulators [21] or axicons [22–24].
During recent years a number of studies have shown that the
OAM and the intensity profile of these twisted beams may
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affect different fundamental light-matter interaction processes
such as the Compton scattering [25–27], photoexcitation
[28–33] and photoionization [34,35] of atoms, the generation
of electric currents in quantum rings [36] and molecules [37],
electromagnetically induced transparency [38], and four-wave
mixing in atomic vapors [39]. One might therefore expect that
the “twistedness” of incoming radiation will affect also the
polarization of outgoing photons in the Rayleigh scattering.

In the present work, we analyze theoretically the behavior
of the polarization Stokes parameters of scattered photons for
the elastic scattering of twisted Bessel light. Here we restrict
ourselves to the nonresonant Rayleigh scattering of light by
hydrogenlike ions in their ground state, and especially by
C5+ ions. In Sec. II, we shall consider and derive the Stokes
parameters within the framework of second-order perturbation
theory and the density-matrix approach. Three different “ex-
perimental” scenarios are considered here for the scattering of
the incident Bessel beam at (i) a single atom, (ii) a mesoscopic
(small), or (iii) a macroscopic (large) atomic target, and which
are all assumed to be centered on the beam axis. Results of our
calculations for the Bessel beams with different polarizations,
opening angles, and projections of the total angular momentum
(TAM) are presented in Sec. III and are compared with those
for incident plane-wave radiation. These results demonstrate
that the scattering of twisted light may lead to well detectable
changes in the polarization of scattered photons. Finally, a
summary and outlook are given in Sec. IV.

Atomic units (h̄ = 4πε0 = e = me = 1, c = 1/α) are
used throughout the paper unless stated otherwise.

II. THEORY

A. Vector potential of Bessel light beams

Before we consider the Rayleigh scattering of twisted
Bessel beams on atoms, let us first define and explain such
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beams of light. In general, all the properties of light can
be described by means of the vector potential. For a Bessel
beam with a well-defined helicity λ1, longitudinal momentum
kz1 , (modulus of the) transverse momentum �, photon energy
ω = ck1 = c

√
k2
z1

+ �2, as well as the projection m of the total
angular momentum (TAM) upon its propagation (z) direction,
for instance, the vector potential is given by [35]

Atw(r) =
∫

a�m(k⊥1 ) ek1λ1e
ik1 r d2k⊥1

(2π )2
, (1)

where the amplitude a�m(k⊥1 ) is of the form

a�m(k⊥1 ) = (−i)m eimφk1

√
2π

k⊥1

δ(k⊥1 − �). (2)

As seen from these expressions, such a Bessel beam can be
considered also as a superposition of circularly polarized plane
waves ek1λ1e

ik1 r with well-defined helicity λ1. Their wave
vectors k1 are uniformly distributed upon the surface of a cone
with an opening angle θk1 = arctan(�/kz1 ) and are orthogonal
to the polarization vectors, ek1λ1 · k1 = 0.

Although the integral representation (1) of the vector po-
tential Atw(r) is very convenient for atomic calculations, it is
useful to perform the integration over k⊥1 in Eq. (1) explicitly,
in particular for very small opening angles θk1 for which the

transverse momentum is much smaller than the longitudinal
one, � � kz1 . Within this (so-called) paraxial approximation,
this integration then gives rise to a vector potential (up to a
multiplicative constant) in the form [34]

Atw(r) = ελ1Jm−λ1 (�r⊥)ei(m−λ1)φeikz1 z, (3)

and where Jm−λ1 (�r⊥) denotes the Bessel function of the first
kind. Substituting the polarization vector ελ1 = ek1λ1 (θk1 =
φk1 = 0◦) into this expression, we see that the Bessel beam
with a small opening angle has well-defined projections of the
orbital m − λ1 (OAM) and spin λ1 (SAM) angular momenta
onto the z axis. However, such a decoupling of the OAM and
SAM no longer applies in the nonparaxial regime, i.e., when
the opening angle θk1 becomes larger [34].

B. Evaluation of the transition amplitude

With this brief account on the vector potential of twisted
Bessel beams, we can now discuss the Rayleigh scattering of
such beams by hydrogenlike ions. We here begin from the
Furry picture of QED, in which the electron-nucleus interac-
tion is included into the unperturbed Hamiltonian, while the
interaction with the radiation field is treated as a perturbation
[4]. In this picture, the properties of the scattered photons can
all be obtained from the second-order transition amplitude,
based on Dirac’s relativistic equation. In this framework, the
amplitude is given by [13,40]

Mλ2λ1
mf mi

(b) =
∑

nνjνmν

〈nf jf mf |α · Apl∗(r)|nνjνmν〉〈nνjνmν |α · Atw(r + b)|nijimi〉
Ei − Eν + ω

+
∑

nνjνmν

〈nf jf mf |α · Atw(r + b)|nνjνmν〉〈nνjνmν |α · Apl∗(r)|nijimi〉
Ei − Eν − ω

, (4)

where |nijimi〉 and |nf jf mf 〉 denote the states of the hydro-
genlike ion before and after the scattering, and where ji,f and
mi,f refer to the total angular momenta and their projections,
and ni,f stand for principal quantum numbers. We here restrict
ourselves to the nonresonant elastic scattering of the photons
with the energy ω on the ground state of atoms. This implies
that the total energy of the bound electron for the initial and
final states of the atom with ni = nf and ji = jf obeys the
energy conservation law Ei = Ef , and that the photon energy
ω is not close to possible excitations of any intermediate states
|nνjνmν〉 over which the summation in the matrix element (4)
is carried out, i.e., ω 	= Eν − Ei .

In the matrix element (4), the interaction of the atomic
electrons with an incident Bessel beam is described by the
transition operator α · Atw(r + b), where α denotes the vector
of the Dirac matrices and Atw is the vector potential of the
beam as given by Eq. (1). Here, the impact parameter b occurs
because the electron (coordinates) is shifted with regard to the
beam axis. Since Eq. (3) implies that the Bessel beam exhibits
an inhomogeneous intensity distribution and a ringlike pattern
in the transverse plane (cf. Fig. 1), the Rayleigh scattering
will explicitly depend on the atomic impact parameter b =
(bx,by,0).

In Eq. (4), we assumed that the scattered photons are plane
waves Apl(r) = ek2λ2e

ik2 r with k2 = k1 = ω/c measured by

FIG. 1. Geometry of the Rayleigh scattering of twisted light by a
mesoscopic atomic target of size σ . While the quantization (z) axis is
taken along the propagation direction of the incident beam, the center
of atomic target is placed on the beam axis. The emission direction
of the outgoing photons is characterized by the angle θk2 , and their
polarization vector ek2 is described by the angle χ .
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a plane-wave detector placed at asymptotic distance under
the direction k2. This is a reasonable assumption since all
presently available detectors are plane-wave detectors. From
the amplitude (4) one can easily obtain the scattering cross
section [13,16]. Within the nonrelativistic framework and
electric-dipole approximation this cross section reduces to the
known Kramers-Heisenberg formula for Rayleigh scattering if
the incident radiation is a plane wave [41]. In the low-energy
limit the cross section decreases with the energy as ω4 or
even faster depending on the size of atomic target and on the
TAM. When the photon energy is much larger than the atomic
binding energy, the results correspond to the scattering by a
free unbound electron (Thomson scattering). The scattering
of twisted light on a free electron was discussed in detail in
Ref. [26]. To further analyze the transition amplitude (4), we
can decompose the plane-wave components of the incident
and outgoing radiation in terms of the electric and magnetic
multipole fields. When the wave vectors k̂1 = (θk1 ,φk1 ) and

k̂2 = (θk2 ,φk2 ) are not both directed along the quantization z

axis, this decomposition may be written as

ekλe
ikr =

√
2π

∑
LM

∑
p=0,1

iL
√

2L + 1

× (iλ)pDL
Mλ(φk,θk,0) ap

LM (r). (5)

Here DL
Mλ is the Wigner D function, and ap

LM (r) refers to the
magnetic (p = 0) and electric (p = 1) multipole components,
respectively [42]. If we substitute the multipole expansion (5)
into Eq. (4) and make use of the vector potential (1) of Bessel
beams, we can rewrite the transition amplitude as

Mλ2λ1
mf mi

(b) =
∑
M1

∫
a�m(k⊥1 )e−iM1φk1 +ik⊥1 bT λ2λ1

mf mi
(M1)

d2k⊥1

(2π )2

(6)

with the function T λ2λ1
mf mi

(M1) of the form

T λ2λ1
mf mi

(M1) =
∑
L1p1

∑
L2M2p2

2πiL1−L2
√

(2L1 + 1)(2L2 + 1) (iλ1)p1 (−iλ2)p2eiM2φk2 d
L1
M1λ1

(θk1 )dL2
M2λ2

(θk2 )

×
∑
jν

(
〈jimi,L1M1|jνmν〉〈jνmν,L2M2|jf mf 〉√

(2jν + 1)(2jf + 1)
S

jν

L2p2,L1p1
(ω)

+〈jimi,L2M2|jνmν〉〈jνmν,L1M1|jf mf 〉√
(2jν + 1)(2jf + 1)

S
jν

L1p1,L2p2
(−ω)

)
, (7)

where we have used the Wigner small d function and the Wigner-Eckart theorem [43]. The reduced second-order matrix element
is given by

S
jν

L1p1,L2p2
(±ω) =

∑
nν

〈nf jf ‖α · ap1
L1

‖nνjν〉〈nνjν‖α · ap2
L2

‖niji〉
Ei − Eν ± ω

. (8)

To further simplify the matrix element (6), we perform the integration over k⊥1 and φk1 with the help of Eq. (2) and by making
use of the integral representation of the Bessel function [33],

1

2π

∫ 2π

0
ei(m−M1)φk1 +i�b cos(φk1 −φb)dφk1 = im−M1ei(m−M1)φb Jm−M1 (�b). (9)

With this substitution, the transition amplitude for the scattering on a single hydrogenlike ion can be written as

Mλ2λ1
mf mi

(b) =
√

�

2π

∑
M1

(−i)M1ei(m−M1)φbJm−M1 (�b)T λ2λ1
mf mi

(M1). (10)

As seen from this formula, the amplitude for the scattering of a Bessel beam depends not only on its helicity λ1, the opening
angle θk1 , and the projection m of the TAM, but also on the impact parameter b of the atom with respect to the beam axis. Below,
we shall apply this transition amplitude to calculate the polarization of scattered light.

C. Scattering on a single atom

To characterize the polarization of scattered photons, we need to introduce the photon density matrix. For the scattering of
twisted light on a single initially unpolarized atom with the impact parameter b, the density matrix of scattered photons can be
expressed in terms of the transition amplitudes as [44]

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

∑
λ1λ

′
1

∑
mimf

Mλ2λ1
mf mi

(b)Mλ′
2λ

′
1 ∗

mf mi
(b) 〈k1λ1|ρ̂γ1 |k1λ

′
1〉. (11)

Here we assume that the magnetic sublevel population of the final state |nf jf 〉 of the atom remains unobserved. The density matrix
of an incident photon is 〈k1λ1|ρ̂γ1 |k1λ

′
1〉 = δλ1λ

′
1

for a completely polarized radiation with the helicity λ1. In typical experiments,
however, the incident light is often unpolarized, i.e., the beam consists out of a mixture of photons in states of opposite helicity
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λ1 = ±1 with equal intensities whose density matrix is 〈k1λ1|ρ̂γ1 |k1λ
′
1〉 = 1/2δλ1λ

′
1
δλ1+1 + 1/2δλ1λ

′
1
δλ1−1. Using the explicit

expression of the amplitude (10), we can rewrite the density matrix of scattered photons in the form

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

�

2π

∑
λ1λ

′
1

∑
mimf

∑
M1M

′
1

iM
′
1−M1ei(M ′

1−M1)φb

× T λ2λ1
mf mi

(M1) T
λ′

2λ
′
1 ∗

mf mi
(M ′

1) Jm−M1 (�b) Jm−M ′
1
(�b)〈k1λ1|ρ̂γ1 |k1λ

′
1〉. (12)

Let us analyze the special case of atoms placed right on the beam axis (b = 0). In this scenario, the Bessel function from
Eq. (12) is just Jm−M1 (0) = δmM1 , so that the photon density matrix reads

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

�

2π

∑
λ1λ

′
1

∑
mimf

T λ2λ1
mf mi

(M1 = m)T
λ′

2λ
′
1 ∗

mf mi
(M ′

1 = m)〈k1λ1|ρ̂γ1 |k1λ
′
1〉. (13)

This expression indicates that the atom on the beam axis can just absorb a photon with the projection of the angular momentum
m [29,31]. In practice, however, it is difficult to position the atom just on the beam axis (b = 0). Therefore, in the next section we
will consider the scattering of twisted light by a mesoscopic atomic target in which atoms are localized with nanometer precision.

D. Scattering on a mesoscopic atomic target

The experiments on the interaction of twisted light beams
with the atoms or ions, which are localized in a small volume
of several tens of nanometers by means of a microstructured
Paul trap, are feasible today [29]. For the Rayleigh scattering
by such a mesoscopic atomic target centered on the beam axis,
the density matrix of scattered photons is given by [31,35]

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

∑
λ1λ

′
1

∑
mimf

〈k1λ1|ρ̂γ1 |k1λ
′
1〉

×
∫

f (b)Mλ2λ1
mf mi

(b)Mλ′
2λ

′
1 ∗

mf mi
(b) d2b, (14)

where the atomic density of this target in the transverse plane
(cf. Fig. 1) is assumed to follow the Gaussian distribution

f (b) = 1

2πσ 2
e−b2/2σ 2

. (15)

In this formula, σ is the width of the target. As was pointed
out in Ref. [45], the Gaussian distribution (15) provides a good
description of the density of ions in Paul-type traps. In fact, the
polarization of scattered light is not so sensitive to the type of
the distribution, but it strongly depends on the relative size of
the target. After making use of the transition amplitude (10)
and integrating over the azimuthal angle φb, the photon density
matrix for the mesoscopic atomic target becomes

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

�

2πσ 2

×
∑
λ1λ

′
1

∑
mimf M1

〈k1λ1|ρ̂γ1 |k1λ
′
1〉T λ2λ1

mf mi
(M1)

× T
λ′

2λ
′
1 ∗

mf mi
(M1)

∫ ∞

0
J 2

m−M1
(�b)e−b2/2σ 2

bdb.

(16)

Both density matrices (13) and (16) show that the polariza-
tion of outgoing photons depends on the TAM projection m

of an incident Bessel beam in the elastic scattering by a single
atom or by a mesoscopic atomic target. However, there is no
m dependence for a rather large macroscopic atomic target, as
we shall see below.

E. Scattering on a macroscopic atomic target

We next analyze the scattering of a Bessel beam by a
macroscopic (infinitely extended) target in which atoms are
distributed uniformly over the entire plane normal to the beam
propagation (z) direction. In the case of such a large target, the
photon density matrix is defined by [28]

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

∑
λ1λ

′
1

∑
mimf

〈k1λ1|ρ̂γ1 |k1λ
′
1〉

×
∫

Mλ2λ1
mf mi

(b)Mλ′
2λ

′
1 ∗

mf mi
(b)d2b

= 1

2ji + 1

∑
λ1λ

′
1

∑
mimf

∑
M1M

′
1

〈k1λ1|ρ̂γ1 |k1λ
′
1〉

×
∫

a�m(k⊥1 ) a∗
�m(k′

⊥1
)e−iM1φk1 +iM ′

1φk′
1
+i

(
k⊥1 −k′

⊥1

)
b

× T λ2λ1
mf mi

(M1) T
λ′

2λ
′
1 ∗

mf mi
(M ′

1)
d2k⊥1d

2k′
⊥1

d2b

(2π )4
, (17)

where we have used the transition amplitude (6). Here the
integration over the impact parameter b yields immediately
the δ function δ(k⊥1 − k′

⊥1
). Moreover, if we perform the

integration over the wave vector k′
⊥1

and over the azimuthal
angle φk1 , we simply obtain M1 = M ′

1. We can further simplify
the photon density matrix (17) by integrating over k⊥1 , so that

〈k2λ2|ρ̂γ2 |k2λ
′
2〉 = 1

2ji + 1

∑
λ1λ

′
1

∑
mimf M1

T λ2λ1
mf mi

(M1)

× T
λ′

2λ
′
1 ∗

mf mi
(M1) 〈k1λ1|ρ̂γ1 |k1λ

′
1〉. (18)

This formula shows that in the scattering on a macroscopic
target the density matrix of outgoing photons and, hence, also
their polarization are independent of the TAM projection m of
incoming twisted light, but still depend on its helicity λ1 and
opening angle θk1 .

F. Polarization parameters

With the photon density matrices obtained above, we can
now analyze the polarization of the Rayleigh scattered light. As
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FIG. 2. Stokes parameters P1 of Rayleigh scattered light on hydrogenlike C5+ ions in their ground state as a function of the emission angle
θk2 . Results for incident plane waves (black solid lines) are compared with those for Bessel beams with TAM m = +1 (red dashed lines) and
m = −1 (blue dash-dotted lines), respectively. Relativistic calculations were performed for a single atom (top row) and for mesoscopic atomic
targets of size σ = 10 nm (middle row) and σ = 20 nm (bottom row), which are centered on the beam axis. Results are shown for different
helicities λ1 of the incident light: λ1 = +1 (left column), λ1 = −1 (central column), and for the unpolarized light (right column). Both the
opening angle θk1 = 30◦ of Bessel beams and the photon energy h̄ω = 100 eV are kept fixed.

usual in atomic and optical physics, the polarization properties
of photons are characterized by the Stokes parameters [44].
In particular, the parameter P1 = (Iχ=0◦ − Iχ=90◦ )/(Iχ=0◦ +
Iχ=90◦ ) characterizes the degree of linear polarization and is
determined by the intensities Iχ of scattered light linearly
polarized at an angle χ = 0◦ or χ = 90◦. Here the angle χ

is defined with respect to the plane spanned by the direc-
tions of incident and outgoing photons (cf. Fig. 1). Another

parameter P2, given by a similar ratio but for χ = 45◦ and
χ = 135◦, is close to zero and therefore is not of interest.
On the other hand, the nonzero parameter P3 = (Iλ2=+1 −
Iλ2=−1)/(Iλ2=+1 + Iλ2=−1) characterizes the degree of circular
polarization and is determined by the intensities Iλ2 of outgoing
circularly polarized photons with the helicity λ2 = ±1. Both
these Stokes parameters can be expressed in terms of the
density matrix of photons as [44]

P1(θk2 ) = −〈k2λ2 = +1|ρ̂γ2 |k2λ
′
2 = −1〉 + 〈k2λ2 = −1|ρ̂γ2 |k2λ

′
2 = +1〉

〈k2λ2 = +1|ρ̂γ2 |k2λ
′
2 = +1〉 + 〈k2λ2 = −1|ρ̂γ2 |k2λ

′
2 = −1〉 , (19)

P3(θk2 ) = 〈k2λ2 = +1|ρ̂γ2 |k2λ
′
2 = +1〉 − 〈k2λ2 = −1|ρ̂γ2 |k2λ

′
2 = −1〉

〈k2λ2 = +1|ρ̂γ2 |k2λ
′
2 = +1〉 + 〈k2λ2 = −1|ρ̂γ2 |k2λ

′
2 = −1〉 . (20)

As seen from these expressions, the Stokes parameters depend
on the direction θk2 of scattered light. Therefore, in Sec. III we
will use Eqs. (19) and (20) to investigate the polarization of
outgoing photons for different scattering angles θk2 .

G. Computations

Before we present our results for the Stokes parameters, let
us briefly discuss some computational details. The evaluation
of the polarization of scattered photons requires the knowledge
of the reduced second-order transition amplitude (8), which

involves the summation over the complete basis of the
intermediate states |nνjν〉. In order to perform this summation,
we use two independent approaches: the finite basis-set method
and the Dirac-Coulomb Green’s function (see Ref. [16] for
further details). These two numerical methods provide
identical results, which demonstrates the high accuracy of our
calculations.

III. RESULTS AND DISCUSSION

In the previous sections we found the Stokes parameters P1

and P3 describing the polarization of scattered photons in the
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FIG. 3. Same as Fig. 2, but for the Stokes parameters P3 of elastically scattered photons.

Rayleigh scattering of twisted Bessel beams by hydrogenlike
ions. Such polarization parameters can be observed in current
experiments [17] and are expressed in terms of the photon
density matrix, as seen from Eqs. (19) and (20). We further
analyze how these Stokes parameters of scattered light depend
on its emission angle θk2 for incident Bessel beams with
different projections m of the TAM, helicities λ1, and opening
angles θk1 . In addition, we compare these parameters P1 and P3

for twisted light with those obtained for a plane-wave radiation
of the same helicity incident along the z axis. Calculations were
performed for the photon energy h̄ω = 100 eV and for three
different targets of C5+ ions: a single atom (13), a mesoscopic
target (16), and a macroscopic target (18) that are centered on
the beam axis.

A. Polarization for a single atom and mesoscopic atomic target

We start with the first Stokes parameter P1 that characterizes
the degree of linear polarization of outgoing photons. Figure 2
illustrates the parameter P1 as a function of the emission angle
θk2 for the Rayleigh scattering on a single atom (top row) as
well as on the mesoscopic targets of size σ = 10 nm (middle
row) and σ = 20 nm (bottom row). As seen from this figure, the
outgoing photons are completely P1 = −1 linearly polarized
in the χ = 90◦ direction at the scattering angle θk2 = 90◦ for
incoming plane waves (black solid lines). This is also true
if a Bessel beam collides with a single atom located on the
beam axis. However, the scattering of such a Bessel beam by
mesoscopic target with width σ = 10 nm, for example, leads to
a significant decrease of the polarization at the angle θk2 = 90◦,
namely P1 = −0.58 when m = +1 (red dashed line) or P1 =
−0.47 when m = −1 (blue dash-dotted line) for positive

helicity λ1 = +1, and vice versa for negative helicity λ1 = −1.
Thus the Stokes parameter P1 of scattered photons depends on
the TAM projection m of twisted light of a well-defined helicity
λ1 in the scattering by a mesoscopic target. On the other hand,
P1 is independent of TAM m if an incoming Bessel beam is
unpolarized (cf. Fig. 2).

Up to this point, we have discussed the linear polarization
of elastically scattered light. In order to analyze its degree
of circular polarization, the third Stokes parameter P3 as a
function of the scattering angle θk2 is presented in Fig. 3.
One sees that when the incident radiation is a plane wave
of helicity λ1, the photons scattered in the forward (θk2 = 0◦)
direction are completely circularly polarized, namely P3 = +1
if λ1 = +1 or P3 = −1 if λ1 = −1. Moreover, the Stokes
parameter P3 of outgoing photons for the scattering of a
twisted beam by a single atom on the beam axis coincides
with the plane-wave results at all emission angles θk2 if the
TAM projection of the beam is m = λ1, as shown in Fig. 3.
However, P3 corresponding to twisted light shows the opposite
behavior to P3 for the plane waves if the TAM projection is
m = −λ1. Such a difference in the polarization (or helicity) of
outgoing photons is caused by the conservation of the angular
momentum projection: the helicity λ2 of a photon emitted in the
forward (θk2 = 0◦) direction should be equal to the projection
M1 of the angular momentum of a photon absorbed by the atom
on the beam axis, which is M1 = m for a Bessel beam (13), in
contrast to M1 = λ1 for a plane wave.

Let us consider how the mesoscopic atomic target may
affect the third Stokes parameter of scattered light. Equation
(16) implies that all possible projections M1 of the angular
momentum of incoming photons are able to contribute to the
scattering of twisted light by mesoscopic target, in contrast to
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FIG. 4. Stokes parameters P1 (top row) and P3 (bottom row) of elastically scattered photons on hydrogenlike C5+ ions in their ground state
for a macroscopic target. Plane-wave results (black solid lines) are compared with those for Bessel beams with opening angles θk1 = 1◦ (red
dashed lines), θk1 = 30◦ (blue dash-dotted lines), and θk1 = 60◦ (magenta dash-dot-dotted lines). Calculations were performed for different
helicities λ1 of the incident light: λ1 = +1 (left column), λ1 = −1 (central column), and for the unpolarized light (right column), when the
photon energy h̄ω = 100 eV is fixed.

M1 = m for the scattering by a single atom. As a result, in
the case of a mesoscopic target the parameter P3 of outgoing
photons for an incident Bessel beam is slightly different from
that for a plane wave in the angular range 30◦ � θk2 � 70◦
and 110◦ � θk2 � 150◦, as can be seen from the middle and
bottom rows of Fig. 3. In addition, the Stokes parameters
P1 and P3 are quite different for the two TAM projections
m = ±1 of the beam when the mesoscopic target is rather
small (σ = 10 nm). However, Figs. 2 and 3 also show that this
difference between the Stokes parameters for various TAM m

decreases with increasing size of the target (σ = 20 nm).
Strong effects of “twistedness” in the polarization of scat-

tered light can be observed also for an incoming unpolarized
Bessel beam containing photons of both helicities λ1 = ±1
but with a fixed TAM projection m. In particular, Fig. 3
demonstrates that the Stokes parameter P3 of outgoing photons
is not always zero in the scattering of such a beam, in contrast to
P3 for incident unpolarized plane waves. For example, when
the unpolarized twisted light with TAM projection m = +1
collides with a single atom, the third Stokes parameter (red
dashed line) behaves similarly to that obtained for the incident
beam with a well-defined helicity λ1 = +1. This is because
in the scattering of twisted light by a single atom P3 does not
depend on the helicity λ1, but is only sensitive to the TAM m.
With increasing target size σ , however, the parameter P3 for the
case of unpolarized Bessel beam decreases and tends to zero
as expected for incoming unpolarized plane waves (cf. Fig. 3).

B. Polarization for a macroscopic atomic target

Finally, we consider the scattering of twisted light by a
macroscopic target as it occurs, for instance, for the scattering
at a foil of neutral atoms or at a jet of ions [17]. For such

an extended target, the polarization of outgoing photons is
independent of the TAM projection m of the twisted light,
and as pointed out already in Sec. II E. In Fig. 4 we compare
the two Stokes parameters P1 and P3 of the scattered light
for different opening angles θk1 of Bessel beams with those
for plane waves incident along the z axis. Similar to before,
results were obtained as a function of the scattering angle θk2

for different helicities of the radiation. Here one can see that the
parameters P1 and P3 for the scattering of a Bessel beam with
a very small opening angle (θk1 = 1◦) are almost identical to
those as obtained for incident plane waves. However, the Stokes
parameter P1 behaves very differently for large opening angles
(θk1 = 60◦) and may become even positive at the emission
angle θk2 = 90◦. Moreover, for large angles θk1 , the circular
polarization of the scattered photons is decreased in forward
direction, for example P3 = ±0.8 if the helicity of a Bessel
beam is λ1 = ±1. These modifications of the polarization
of scattered light follow from Eq. (18) and imply that the
scattering of a Bessel beam by macroscopic target can be
considered as a scattering of plane waves propagating at the
opening angle θk1 with respect to the quantization z axis.

IV. SUMMARY AND OUTLOOK

In summary, we explore the Rayleigh scattering of twisted
light by hydrogenlike ions within the framework of second-
order perturbation theory and Dirac’s relativistic equation.
In this analysis, we focused on the polarization of photons
scattered by a single atom, by a mesoscopic target (atoms in a
trap), or by a macroscopic target (foil). The polarization Stokes
parameters of outgoing photons were calculated especially for
hydrogenlike carbon and for incident twisted Bessel beams. We
have shown that the linear and circular polarization of scattered
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light depends generally on the helicity λ1 and the opening angle
θk1 of Bessel beams, leading to Stokes parameters that differ
quite significantly from the scattering of incident plane-wave
photons. Moreover, the polarization of the scattered photons
is very sensitive to the TAM projection m of twisted light for
mesoscopic atomic targets of a few tens of nm in size, while
it remains unaffected by the TAM m in the case of a larger
macroscopic target. Although our study was restricted to the
scattering by hydrogenlike ions in their ground 1s state, similar
polarization properties can also be observed in the scattering
of twisted light by electrons in other s shells. For example, we
expect the same scattering polarization pattern for Ca+ ions
that were used in a recent experiment on the photoexcitation
by twisted light [29]. Thus Rayleigh scattering may serve as
an accurate technique for measuring the properties of twisted

beams in a wide range of photon energies, and in particular at
rather high energies.

The interaction of twisted light with atoms may lead not
only to the scattering of photons, but also to the change
in the atomic polarizability. The knowledge of the atomic
polarizability induced by twisted radiation is very important
in laser cooling and trapping experiments, and its analysis will
be presented in a forthcoming publication.
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