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Color superfluidity of neutral ultracold fermions in the presence of color-flip and color-orbit fields
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We describe how color superfluidity is modified in the presence of color-flip and color-orbit fields in the context
of ultracold atoms and discuss connections between this problem and that of color superconductivity in quantum
chromodynamics. We study the case of s-wave contact interactions between different colors and we identify
several superfluid phases, with five being nodal and one being fully gapped. When our system is described in
a mixed-color basis, the superfluid order parameter tensor is characterized by six independent components with
explicit momentum dependence induced by color-orbit coupling. The nodal superfluid phases are topological in
nature and the low-temperature phase diagram of the color-flip field versus the interaction parameter exhibits a
pentacritical point, where all five nodal color superfluid phases converge. These results are in sharp contrast to the
case of zero color-flip and color-orbit fields, where the system has perfect U(3) symmetry and possesses a superfluid
phase that is characterized by fully gapped quasiparticle excitations with a single complex order parameter
with no momentum dependence and by inert unpaired fermions representing a nonsuperfluid component. In the
latter case, just a crossover between a Bardeen-Cooper-Schrieffer and a Bose-Einstein-condensation superfluid
occurs. Furthermore, we analyze the order parameter tensor in a total pseudospin basis, investigate its momentum
dependence in the singlet, triplet, and quintet sectors, and compare the results with the simpler case of spin-1/2
fermions in the presence of spin-flip and spin-orbit fields, where only singlet and triplet channels arise. Finally, we
analyze in detail spectroscopic properties of color superfluids in the presence of color-flip and color-orbit fields,
such as the quasiparticle excitation spectrum, momentum distribution, and density of states to help characterize all
the encountered topological quantum phases, which can be realized in fermionic isotopes of lithium, potassium,
and ytterbium atoms with three internal states trapped.
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I. INTRODUCTION

Ultracold atoms have become preferred systems to study
experimentally, because they can be used as quantum simula-
tors of various phenomena across different areas of physics.
Today it is possible to engineer Hamiltonians in the laboratory
that describe models that have been investigated in the context
of condensed-matter physics. For instance, two very suc-
cessful examples of these experimental quantum simulations
are studies of the superfluid-insulator transition [1] and the
evolution from Bardeen-Cooper-Schrieffer (BCS) to Bose-
Einstein condensation (BEC) superfluidity [2–8], which were
performed in recent years.

The success of cold atoms as quantum simulators is largely
due to the flexibility that these systems have. It is now routinely
possible to change atomic species, dimensionality, density, and
interactions in clouds of ultracold atoms, while in the case
of optical lattices, it is possible, in addition, to change the
lattice structure. For instance, recent experimental advances
lead to the trapping of three hyperfine states in Fermi gases,
such as 6Li, which have tunable interactions via an external
magnetic field, which become SU(3) symmetric in the limit of
high magnetic fields [9,10]. Even larger component systems
have now been produced in the laboratory, such as in the case
of the fermion isotope of ytterbium, 173Yb, where six internal
states exist with essentially SU(6) symmetry, which can be
reduced to SU(3) by selectively trapping only three internal

states [11]. Current temperatures that can be achieved in these
systems are approximately T = 0.3TF , where TF is the Fermi
temperature set by the total density of fermions. Additional
experiments with the goal of reducing further the temperature
are discussed in Ref. [12]. Thus, links to quantum chromody-
namics (QCD) are possible [13], where dense cold matter with
SU(3) color symmetry is created by the forces that confine
quarks inside baryons and mesons through the exchange of
SU(3) gauge bosons known as gluons. In particular, connec-
tions to color superconductivity in the absence of color-flip and
color-orbit fields were made by several authors for continuum
[14–16] and lattice [17] systems.

The relation between three-component ultracold fermions
and color superconductivity in QCD is not only of academic
interest, but also of experimental interest, as the gap between
theoretical proposals and experimental realization closes due
to technical advances. The type of color superfluidity in neutral
ultracold fermions is expected to be related but somewhat
different from the possibilities encountered in QCD, as quarks
are electrically charged, have different masses, colors, and
flavors, and thus color superconductivity of quarks is gener-
ically different [18–21]. For instance, it is quite difficult to
realize in neutral ultracold fermions analogous phases to color
flavor locking superconductivity [21–25], where three flavors
are degenerate, because the number of internal degrees of
freedom is very large. Even analogous phases to two-flavor
superconductivity [18–21], where a preferred color pairing
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channel is selected, are difficult to realize in the context of
ultracold fermions. However, analogous phases to one-flavor
superconductivity with three colors [26–28] are easier to
realize in cold-atom systems, because one has to deal with
only three internal states of the constitutive fermions.

Moreover, it has been suggested that color superconductiv-
ity of quark matter may occur naturally in compact neutron
stars [29–31]. Since the higher-temperature regions of the
QCD phase diagram are now being studied in heavy-ion
collisions, it is important to use our knowledge of neutron star
phenomena to understand if color superconductivity indeed
appears in the high-density region of the QCD phase diagram.
There have been even further suggestions that inhomogeneous
color superconductivity phases emerge in neutron stars and
are responsible for the glitches in rotational period of these
compact stars [32]. Therefore, there has been observational
interest in determining astrophysical consequences of color
superconductivity.

Experiments involving color superconductivity in quark
matter are not easy to perform, but tabletop experimental
setups involving ultracold fermions with three internal states
can serve as simulators of color superfluidity similar to color
superconductivity in QCD. In addition, experiments with
ultracold fermions with three internal states can also stand
alone to serve as pointers for new directions and new phases
of color superfluids that have no counterpart in QCD. A
recent experimental development with a fermionic isotope of
ytterbium (173Yb) demonstrated that three internal states of the
atom can be coupled to artificially created spin-orbit fields [33]
via a Raman scheme with two counterpropagating lasers used
earlier by Lin et al. in the context of a bosonic isotope of
rubidium (87Rb) with two internal states [34]. The interactions
of 87Rb cannot be adjusted, but it was possible to study the
low-temperature phase diagram of 87Rb in the presence of spin-
orbit coupling and Zeeman fields both experimentally [34] and
theoretically [35–37] for fixed interactions. Similar Raman
schemes were used successfully in a fermionic isotope of
potassium (40K), where Fano-Feshbach resonances exist and
interactions can be tuned in the presence of spin-orbit coupling
for two internal states [38,39]. These experimental efforts on
40K were developed concomitantly with various theoretical
proposals [40–47] of spin-orbit-coupled fermions with two
internal states, where interactions can be changed. Although
experiments involving fermions in the Raman scheme are
still performed at high temperatures (T ≈ 0.3EF ), methods of
reducing the temperature and of creating artificial spin-orbit
or color-orbit fields in the laboratory are sought [48] using
radio-frequency chip technology [49].

Thus, in this paper, we describe theoretically the possibility
of color superfluidity in the presence of color-orbit and color-
flip fields for trapped fermionic isotopes of lithium (6Li),
potassium (40K), or ytterbium (173Yb) with three internal
states, to which we assign the color indices red (R), green
(G), and blue (B). The remainder of the paper is organized as
follows. In Sec. II we discuss in detail the independent-particle
Hamiltonian and its spectrum, as well as the interaction terms
between fermions of different colors. We also introduce the
mixed-color representation that diagonalizes the independent-
particle Hamiltonian, which is used later in Sec. IV to clarify
the origin of various color superfluid phases. In Sec. III we

discuss the emergence of color superfluidity in the presence
of color-orbit and color-flip fields, within the saddle-point ap-
proximation at low temperatures. We solve the self-consistent
equations for the order parameter tensor and particle number
and obtain the low-temperature phase diagram in the space
of color-flip versus interaction parameters, for fixed color-
orbit coupling. Due to the presence of color-orbit coupling
and color-flip fields, a set of five color superfluid phases
emerges, with characteristic nodal structures in their excitation
spectrum. These phases have a topological structure similar
to Lifshitz transitions in metals under high pressure [50], but
arise only due to the simultaneous presence of color-orbit
coupling, color-flip fields, and interactions. Where five nodal
color superfluid phases merge, we identify a quintuple point
that is also pentacritical, given that the transition between
superfluid phases is continuous. We also show that the low-
temperature transitions between normal and color superfluid
phases are continuous when color-orbit coupling is present
and are discontinuous when color-orbit coupling is absent. In
Sec. IV we describe the Hamiltonian in the mixed-color basis
to make evident the emergence of the momentum dependence
of the order parameter tensor and to shine light on the physical
origin of the nodal structure of the quasiparticle and quasihole
excitation spectrum. Furthermore, we also write the order
parameter tensor in a total pseudospin basis to show that
pairing can occur in singlet, triplet, and quintet sectors and
to make comparisons with the case of spin-1/2 fermions,
where only the singlet and triplet channels exist. In Sec. V we
analyze the quasiparticle and quasihole excitation spectra in the
mixed-color basis and show how the nodal structure and gaps
emerge in the elementary excitation spectrum. Furthermore,
we compute the momentum distributions for different colored
fermions in various quantum phases to show how this easily
measurable quantity can be used to identify different normal
and superfluid phases. We also compute the density of states
of colored fermions and show how they change as different
normal and superfluid phases are visited in the phase diagram.
In Sec. VI we discuss the applicability and limitations of the
current work and comment on the role of Efimov states at lower
particle densities, the possible emergence of nonuniform color
superfluidity over a narrow region of the phase diagram, and
the effects of fluctuations near the critical temperature between
normal and color superfluid states. In Sec. VII we summarize
our conclusions.

II. HAMILTONIAN

In order to describe interacting three-component fermions
labeled by color states red (R), green (G), and blue (B), under
the influence of color-orbit and color-flip fields, we begin with
the most general independent-particle Hamiltonian resulting
from suitably designed radio-frequency chip or Raman beams
in the rotating frame

H0(k) =
⎛
⎝εR(k) �RG �RB

�∗
RG εG(k) �GB

�∗
GB �∗

GB εB(k)

⎞
⎠, (1)

where εc(k) = (k − kc)2/2m + ηc represents the energy of
internal state with color c = {R,G,B} after a color-dependent
net momentum transfer kc provided by the Raman beams or
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by the radio-frequency chip. Here ηc is a color-dependent
reference energy of the atom in color state c. The matrix
elements �cc′ represent a color-flip tensor (Rabi frequencies)
that couples different atomic color states c and c′. We note
in passing the use of units where Planck’s and Boltzmann’s
constants are equal to one, that is, h̄ = kB = 1.

We will be using throughout the paper the terminology
independent particle instead of single particle when referring
to Hamiltonians, energies, or other properties that describe a
collection of a large number of particles that do not interact
with each other. We follow the Feynman school of thought [51],
where the single-particle nomenclature is reserved to describe
just an individual particle rather than a collection of noninter-
acting particles.

Instead of analyzing the most general theoretical case shown
in Eq. (1), we explore the simplest nontrivial experimental
configuration, where the component �RB of the color-flip
tensor is zero, indicating that there is no coupling between
states R and B, that is, �RB = 0. In addition, we consider
that the matrix elements that couple states R to G or G to
B are real and equal, that is, �RG = �∗

RG = �GB = �∗
GB = �.

Furthermore, we choose a symmetric situation, where mo-
mentum transfers occur only to color states R and B, such
that kR = kT x̂, kG = 0, and kB = −kT x̂, where kT is the
magnitude of the momentum transferred to the atom by
photons. Finally, we can define an overall energy reference
via the sum

∑
c ηc = η, leading to internal energies ηR = −δ,

ηB = η, and ηG = +δ, where δ represents the detuning of
the photon frequencies for transitions between color states.
Thus, we discuss next the simplest experimentally relevant
independent-particle Hamiltonian for color states with color-
dependent momentum transfer and color-flip terms.

A. Independent-particle Hamiltonian

For the simplest experimental realization discussed above,
the independent-particle Hamiltonian for three color states
described in Eq. (1) becomes

HIP(k) = ε(k)1 − hx(k)Jx − hz(k)Jz + bzJ2
z , (2)

where J�, with � = {x,y,x}, are spin-1 angular momentum
matrices, ε(k) = k2/2m + η is a reference kinetic energy
which is identical for all color states, hx(k) = −√

2� plays
the role of a color-flip field (like a spin-flip Zeeman field
for spins), and hz(k) = 2kT kx/2m + δ plays the role of a
momentum-dependent Zeeman field along the z axis. Notice
that hz(k) = 2kT kx/2m + δ has two components. The first
one 2kT kx/2m represents color-orbit coupling controlled by
the momentum transfer magnitude kT and the second one
represents a color-shift field controlled by the detuning δ (like
a Zeeman shift for spins). Notice that hz(k) is transverse to
the momentum transfer direction (x axis). Finally, the term
bz = k2

T /2m − η is a quadratic color shift (quadratic Zeeman
shift) associated with the momentum transfer along the x

direction.
To make further connections to QCD, we note that the

independent-particle Hamiltonian described in Eq. (2) in gen-
eral does not commute with the Gell-Mann matrices λj , which
are the eight generators of SU(3). To see this explicitly, it is
sufficient to recall that the angular momentum matrices J�

can be written in terms of λj as Jx = (λ1 + λ6)/
√

2 along
the x direction, Jy = (λ2 + λ7)/

√
2 along the y direction, and

Jz = (λ3 + √
3λ8)/2 along the z direction and to show that the

commutator [HIP,λj ] �= 0. The Hamiltonian above becomes
SU(3) invariant only when the coefficients hx(k) = hz(k) =
bz = 0, rendering HIP(k) diagonal and proportional to the unit
matrix 1, that is, all color states become degenerate.

A very similar independent-particle Hamiltonian was cre-
ated in the laboratory for spin-1 bosonic 87Rb atoms [52],
where magnetic phases were investigated. Here, however,
the independent-particle Hamiltonian corresponds to colored
fermions, with potential candidates being 6Li, 40K, and 173Yb.
Thus, the independent-particle Hamiltonian matrix of Eq. (2)
takes the explicit matrix form

HIP(k) =
⎛
⎝ εR(k) −hx(k)/

√
2 0

−hx(k)/
√

2 εG(k) −hx(k)/
√

2
0 −hx(k)/

√
2 εB(k)

⎞
⎠,

(3)

where the function εR(k) = ε(k) − hz(k) + bz represents the
diagonal matrix element for the red (R) fermion, the function
εG(k) = ε(k) represents the diagonal matrix element for the
green (G) fermion, and the function εB(k) = ε(k) + hz(k) +
bz represents the diagonal matrix element for the blue (B)
fermion,

In second-quantized notation, the independent-particle
Hamiltonian is

ĤIP =
∑

k

F†(k)HIP(k)F(k), (4)

where the spinor operator is F†(k) = [f †
R(k),f †

G(k),f †
B(k)],

with f
†
c (k) creating a fermion with momentum k − kc in inter-

nal color state c = {R,G,B}. In order to bring the independent-
particle Hamiltonian matrix into a diagonal form, we introduce
next a mixed-color representation.

B. Mixed-color representation

The Hamiltonian matrix HIP(k) is diagonalized via the
rotation �(k) = R(k)F(k), where the rotation matrix R(k)
satisfies the unitarity condition R†(k)R(k) = 1. The spinor
�(k) represents the basis of independent-particle eigenstates,
whose elements are expressed as linear combinations of the
elements of spinor F(k) in the original color basis via the
rotation matrix

R(k) =
⎛
⎝R⇑R(k) R⇑G(k) R⇑B(k)

R0R(k) R0G(k) R0B(k)
R⇓R(k) R⇓G(k) R⇓B(k)

⎞
⎠, (5)

where the normalization condition
∑

c |Rαc(k)|2 = 1 for each
row guarantees the unitarity of R(k).

In this case, the independent-particle Hamiltonian becomes

ĤIP =
∑

k

�†(k)HM (k)�(k), (6)

where the spinor representing the diagonal basis is �†(k) =
[φ†

⇑(k),φ†
0(k),φ†

⇓(k)], with φ†
α(k) being the creation operator

of a fermion with eigenenergy Eα(k) and mixed-color label
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α = {⇑,0,⇓}. The Hamiltonian matrix in diagonal form is

HM (k) = R(k)HIP(k)R†(k) (7)

with matrix elements [HM ]αβ(k) = Eα(k)δαβ , where Eα(k) are
the eigenvalues of the matrix HIP(k) shown in Eqs. (2) and (3).
Finally, the independent-particle Hamiltonian in the mixed-
color basis is simply written as

ĤIP =
∑

k

Eα(k)φ†
α(k)φα(k), (8)

where the mixed-color operator φα(k) is written as a linear
combination of the color operators fc(k) via the matrix el-
ements Rαc(k), that is, φα(k) = ∑

c Rαc(k)fc(k). This is the
general structure of eigenenergies and eigenstates of a system
of independent colored particles in the presence of color-flip
and color-orbit fields. Next we discuss a couple of simple limits
and a specific example of this eigensystem.

C. Independent-particle spectrum

We discuss first the independent-particle eigenenergies in
the limit where the quadratic color-shift term is zero, that is,
bz = 0 or η = k2

T /2m, but the Rabi coupling � �= 0 and the
detuning δ �= 0. In this situation, the eigenvalues of ĤIP have
the simple form

Eα(k) = ε(k) − mα|heff (k)|, (9)

where the effective magnetic-field magnitude is |heff (k)| =√
h2

x(k) + h2
z(k) and m⇑ = +1,m0 = 0, and m⇓ = −1. In

this case, the independent-particle Hamiltonian ĤIP describes
simply a pseudospin-1 system in the presence of the effective
external field heff (k) = [hx(k),0,hz(k)].

A second simple limit of the more general color problem
with bz �= 0, η �= 0, � �= 0, and δ �= 0 discussed in Sec. II A
corresponds to the case where bz = k2

T /2m, η = 0, � = 0, and
δ = 0. In this situation the kinetic energies of the red, green,
and blue states are, respectively, εR(k) = ε(k − kT ), εG(k) =
ε(k), and εB(k) = ε(k + kT ), indicating that the blue states are
shifted towards negative momenta along the x direction, while
the red states are shifted towards positive momenta along the
x direction, since kT = kT x̂. In the limit where there is no
color-orbit coupling, that is, kT = 0, it is clear that the three
kinetic energies are identical εR(k) = εG(k) = εB(k) = ε(k).
These two situations are illustrated in Fig. 1.

From now on, in addition to setting η = 0 with bz = k2
T /2m,

we will also set the detuning δ to zero, leading to hz(k) =
2kT kx/2m, but we keep the color-flip term hx(k) = −√

2�

with zero or nonzero Rabi frequencies �. This case is chosen
to simplify the number of parameters involved, given that the
problem of color superfluidity in the presence of color-orbit
coupling and color-flip fields is sufficiently different, and thus
there is no need to make matters more complex than they need
to be. In passing, we mention that the case of finite detuning
(δ �= 0) is also very rich given that parity is not conserved, thus
affecting the normal state and superfluid phases that emerge,
as well as their topological properties.

Throughout the paper, the energy scale that we use is
the Fermi energy EF = k2

F /2m, where kF = (2π2n)1/3 is
the Fermi momentum defined from total density of fermions
n = 3k3

F /6π2, where the factor of 3 reflects the three colors

FIG. 1. Energy dispersions εc(k) for red (R), green (G), and blue
(B) states versus momentum along the kx direction, for the parameters
bz = k2

T /2m (η = 0) and δ = 0. The momentum transfer is (a) kT =
0.35kF and (b) kT = 0. The dashed red curve describes the R states,
the solid green curve describes the G states, and the dotted blue curve
describes the B states. Notice that the red dispersion is shifted to the
right, the green dispersion has no shift, and the blue dispersion is
shifted to the left when kT �= 0, but that all dispersions are identical
when kT = 0.

{R,G,B}. The same kinetic energies ε(k) = k2/2m are used
here for all internal color states, since our momentum (kF ) and
energy (EF ) units are fixed by setting the parameters η, kT , �,
and δ equal to zero.

In Fig. 2 we show plots of eigenvalues Eα(k) versus
momentum (kx,ky) with kz = 0, for fixed momentum transfer
kT = 0.35kF , zero detuning δ = 0, and quadratic color-shift
bz = k2

T /2m (η = 0). In Fig. 2(a) we show the case where the
color-flip term is small (� = 0.01EF ) where single, double,
and triple minima are shown in the upper, middle, and lower
eigenenergies, respectively. In Fig. 2(b) we show the case
where the Rabi frequency (color-flip term) is sufficiently large
� = 0.2EF such that the upper, middle, and lower eigenener-
gies have only a single minimum. The presence of color-orbit
(kT �= 0) and color-flip (� �= 0) fields lifts the degeneracy of
the color states {R,G,B}, which are assumed to have the same
dispersion ε(k) = k2/2m when kT = 0, � = 0, and η = 0. For
a fixed color-orbit coupling kT = γ kF , we can estimate when
the three minima in the lower mixed-color band disappear by
comparing the energy of the crossing point between the red
and green or green and blue energy dispersions. The crossing
points occur at momenta kx = ±kT /2 = ±(γ /2)kF , so when
� ∼ (kT /2)2/2m = (γ 2/4)EF , the three minima of the lowest
mixed-color band coalesce into one. The two minima in the

FIG. 2. Three-dimensional plots of the mixed-color eigenvalues
Eα(k) versus (kx,ky) with kz = 0, when the quadratic color shift is
bz = k2

T /2m (η = 0) and the color-orbit coupling momentum transfer
is kT = 0.35kF . (a) The color-flip field is � = 0.01EF , where the
lower band (magenta) has three minima, the middle band (yellow) has
two minima, and the upped band (cyan) has one minimum. (b) The
color-flip field is � = 0.2EF , where all three bands (lower, middle,
upper) have a single minimum.
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middle mixed-color band become a single one, when the color-
flip field � is of the order of the energy difference between
the crossing points between red-blue bands and red-green or
green-blue bands, that is, when � ∼ k2

T /2m − (kT /2)2/2m =
(3γ 2/4)EF . For the specific case of kT = 0.35kF , the three
minima of the lowest mixed-color band disappear when � ∼
0.03EF and the two minima of the middle mixed-color band
disappear when � ∼ 0.09EF ; therefore, in Fig. 2(b), where
� = 0.2EF , each one of the three mixed-color bands has a
single minimum.

Now that we have analyzed the independent-particle Hamil-
tonian for three-color fermions in the presence of color-orbit
and color-flip fields, we are ready to discuss next the effects of
interactions.

D. Interaction Hamiltonian

We begin our discussion of the effects of interactions
between different color states in cold atoms by recalling that
gluons are the mediators of quark-quark interactions in the
color superconductivity problem encountered in QCD. There-
fore, due to their dynamical nature, the interactions between
quarks have a finite-range contribution and cannot be assumed
to be of zero range. However, the situation encountered in cold
atoms is simpler than in QCD, because the atomic fermions
interact essentially via zero-range forces.

The interactions between different color states of
cold fermions are essentially zero range and attractive
−gcc′δ(r − r′) of strength gcc′ > 0, between internal states with
different colors only, that is, c �= c′. The use of contact (zero-
range) interactions really means that the interaction range Rcc′

is much smaller than the interparticle distance k−1
F , which is

indeed the situation encountered experimentally in ultracold
fermions, since these atoms are neutral.

Experimentally, interactions between atoms in different
color (internal) states occur predominantly in the s-wave chan-
nel at low temperatures. Thus, we consider only interactions
between the red-green (gRG), red-blue (gRB), and green-blue
(gGB) states to be nonzero, while all the red-red, green-green,
and blue-blue interactions are negligible, that is, gRR = gGG =
gBB = 0. However, within the set of s-wave interactions,
we could still have different interaction parameters, that is,
gRG �= gRB �= gGB . The zero-range nature of the interactions
between colored fermions allows us to describe our system
in terms of s-wave scattering lengths as,cc′ between different
colors, as we will see later.

In momentum coordinates, the interaction part of the Hamil-
tonian has the structure

Ĥint = − 1

V

∑
Q,{c �=c′}

gcc′a
†
cc′ (Q)acc′ (Q), (10)

where the volume of space is V and the paired-color creation
operators area

†
cc′ (Q) = ∑

k f
†
c (k + Q/2)f †

c′ (−k − Q/2), with
their center-of-mass momentum being Q. Here the opera-
tors f

†
c (K) represent the creation of a fermion with color

c = {R,G,B} and momentum K. As we will see soon, the
expectation values of the operator a

†
cc′ (Q) in a superfluid state

describe the emergence of Cooper pairs in the BCS regime
and of tightly bound pairs in BEC limit at low temperatures.

We note in passing that gcc′ has dimensions of energy times
volume.

Having analyzed the interactions between different colored
fermions, we will discuss next the full Hamiltonian, including
the addition of the chemical potential to describe thermody-
namic states with a fixed average number of particles.

E. Full Hamiltonian

The full Hamiltonian for a color superfluid with color-orbit
coupling, color-flip fields, and contact interactions is

Ĥ = ĤIP + Ĥint − μN̂, (11)

with N̂ = ∑
c,k f

†
c (k)fc(k) representing the total number of

colored fermions.
Having written the full Hamiltonian for the colored fermion

problem with attractive interactions, we will discuss next
the emergence of various color superfluid ground states, the
nodal structure of their quasiparticle excitations, and the low-
temperature phase diagram in the color-flip versus interaction
parameter space for fixed color-orbit coupling.

III. SADDLE-POINT APPROXIMATION

In order to study the emergence of color superfluidity in
the presence of color-flip and color-orbit fields, we focus here
on superfluid phases of paired states with with zero center-
of-mass momentum, that is, Q = 0. Thus, the only relevant
pairing operator is a

†
cc′ (0) = ∑

k f
†
c (k)f †

c′ (−k). This implies
that the emerging superfluid states are uniform throughout the
sample volume, as it is discussed next, when we introduce the
saddle-point approximation. This approximation is known to
give excellent results at low temperatures as it captures both
the emergence of large Cooper pairs in the BCS region and the
emergence of tightly bound pairs (two-body bound states) in
the BEC regime [53].

A. Order parameter and reduced Hamiltonian

Considering only pairing with zero center-of-mass momen-
tum (Q = 0), the order parameter for color superfluidity is
defined by the tensor 
cc′ = −gcc′ 〈acc′ (0)〉/V , with color in-
dices c �= c′ describing paired states RG, RB, and GB. Using
a mean-field (saddle-point) approximation for the interaction
term in Eq. (10) leads to the reduced Hamiltonian

Ĥ0 = 1

2

∑
k

f†N (k)H0(k)fN (k) + V
∑
c �=c′

|
cc′ |2
gcc′

+ C(μ), (12)

where the six-dimensional field operator f†N (k) =
[f †

R(k),f †
G(k),f †

B(k),fR(−k),fG(−k),fB(−k)] represents
a colored Nambu spinor, while the term C(μ) = 1

2

∑
kc ξc(−k)

contains the kinetic energy of colored fermions ξc(k) =
εc(k) − μ, which contributes to the ground-state energy.

The saddle-point Hamiltonian matrix is

H0(k) =
(

HIP(k) �

�† −H
∗
IP(−k)

)
, (13)

where the 3×3 diagonal block matrix HIP(k) = HIP(k) − μ1
represents the independent-particle Hamiltonian with respect
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to the chemical potential μ and the 3×3 off-diagonal block
matrix

� =
⎛
⎝ 0 
RG 
RB

−
RG 0 
GB

−
RB −
GB 0

⎞
⎠ (14)

represents the order parameter tensor 
cc′ , which is clearly
antisymmetric since its transpose is equal to its negative

T = −
 and thus traceless: Tr[
] = 0.

The quasiparticle and quasihole excitation spectrum can
be found by diagonalizing the matrix shown in Eq. (13) or
via the determinant P (ω) = det[ω1 − H0(k)]. The character-
istic polynomial P (ω) = ∏

j [ω − Ej (k)] is of sixth degree;
however, in the limit of zero detuning, where the color-shift
field δ = 0, we can use both quasiparticle-quasihole and parity
symmetries to reduce P (ω) to the bicubic polynomial P (ω) =
[ω2 − E2

1 (k)][ω2 − E2
2 (k)][ω2 − E2

3 (k)], which can be solved
analytically using Cardano’s method [54]. We show explicit
solutions for Ej (k) in Sec. V, but we warn the reader that the
analytic solutions are not particularly illuminating.

In general, the six energy eigenvalues can be ordered as
E1(k) > E2(k) > E3(k) > E4(k) > E5(k) > E6(k) and ex-
hibit quasiparticle-quasihole symmetry in momentum space
for any chosen value of the color-flip field (Rabi frequency)
� or color-shift field (detuning) δ. In this case, we can
choose quasiparticle-quasihole partners as follows: E6(k) =
−E1(−k), E5(k) = −E2(−k), and E4(k) = −E3(−k). How-
ever, each eigenenergy Ej (k) has well-defined parity only
when the color-shift field (detuning) is zero, that is, δ =
0, in which case Ej (k) = Ej (−k) is an even function of
momentum k.

Since the excitation spectrum Ej (k) depends explicitly on
the order parameter tensor 
cc′ and the chemical potential μ,
we establish next self-consistency relations for both quantities
at fixed total density of colored fermions.

B. Self-consistency equations

The excitation spectrum Ej (k) is determined by solving for
the values of the order parameter amplitudes 
RG, 
RB , and

GB and the chemical potential μ self-consistently. Starting
from the thermodynamic potentialQ0 = −T lnZ, whereZ =∫

�cD[f †
c (k),fc(k)] exp[−S] is the grand-canonical partition

function and S is the action, we obtain the saddle-point action
to be

T S0 = −1

2

∑
n,k

f†N (k)G−1fN (k) + V
∑
c �=c′

|
cc′ |2
gcc′

+ C(μ),

where G−1(iωn,k) = [iωn1 − H0(k)] is the inverse of the
resolvent (Green’s) matrix G(iωn,k). Here ωn = (2n + 1)πT

is the fermionic Matsubara frequency and T is the temperature.
Integration over the fermionic fields gives the saddle-point
thermodynamic potential Q0 = A0 + C(μ), with

A0 = −T

2

∑
k

3∑
j=1

ln

{
2 + 2 cosh

[
Ej (k)

T

]}
+ V

∑
c �=c′

|
cc′ |2
gcc′

,

(15)

where the sum over the index j is over quasiparticles only, that
is, j = {1,2,3}, given that we used the quasiparticle-quasihole
symmetry described above.

Minimizing Q0 with respect to 
∗
cc′ via the condition

δQ0/δ

∗
cc′ = 0 leads to three order parameter equations

V

gcc′

cc′ = 1

2

∑
k

3∑
j=1

tanh

(
βEj (k)

2

)
∂Ej (k)

∂
∗
cc′

(16)

for the available choices of 
cc′ = {
RG,
RB,
GB} since c �=
c′. The total number of particles is fixed via the thermodynamic
relation N = −∂Q0/∂μ|T ,V , leading to the number equation

N = 1

2

∑
k

⎡
⎣ 3∑

j=1

tanh

(
βEj (k)

2

)
∂Ej (k)

∂μ
+ 3

⎤
⎦. (17)

In the current problem, we can only fix the total number of col-
ored fermions, because for an arbitrarily small color-flip field
� the number operator N̂c = ∑

k f
†
c (k)fc(k) for a given color

c does not commute with the full Hamiltonian Ĥ described in
Eq. (11). For instance, the commutator of the independent-
particle Hamiltonian ĤIP and the color number operator
N̂m for color m is [ĤIP,N̂m] = ∑

k,c{[HIP]mcf
†
c (k)fm(k) −

[HIP]cmf
†
m(k)fc(k)}, which only vanishes if the matrix HIP

is diagonal, that is, when the color-flip field that causes
transitions between different color states is zero: hx(k) = 0
(or � = 0).

Before solving the self-consistency equations derived
above, we use the generalized Lippmann-Schwinger relation
V/gcc′ = −mV/4πas,cc′ + ∑

k[εc(k) + εc′ (k)]−1 to express
the bare coupling constant gcc′ in terms of the scattering length
as,cc′ in the absence of the color-orbit and color-flip fields,
where we assume that the masses and the energy dispersions
of all colored fermions are the same, that is, in this expression
we take explicitly εc(k) = εc′ (k) = k2/2m.

A more general case in the context of ultracold atoms
corresponds to the situation where the interactions between
different colors are not the same, that is, gRG �= gRB �= gGB ,
which leads to different scattering lengths aRG �= aRB �=
aGB . This is indeed a more general situation, however, in
fermionic isotopes of ytterbium [11,33], it is possible to
select three internal atomic states such that the interactions
are the same, that is, gRG = gRB = gGB = g, which leads to
aRG = aRB = aGB = as , and to tune the scattering lengths via
optical Feshbach resonances [55,56]. Such techniques may
allow explorations of deep connections to SU(3) symmetric
interactions in the context of color superconductivity of quark
matter. Furthermore, when color-flip and color-orbit fields are
considered in systems consisting of three internal states of
fermionic isotopes of lithium, potassium, or ytterbium [57,58],
even the simple limits of (a) single-channel interactions gRG =
gGB = 0 and gRB �= 0 (aRG = aGB = 0 and aRB �= 0) can
lead to color superfluidity [57] or (b) no interactions at all
gRG = gGB = gRB = 0 (aRG = aGB = aRB = 0) can lead to
nontrivial spinor physics [58].

In this work, we consider the case where s-wave interac-
tions between different colors are exactly the same, that is,
gRG = gGB = gRB = g, but with gRR = gGG = gBB = 0. In
the absence of color-orbit (kT = 0), color-flip (� = 0), and
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color-shift (δ = 0) fields the three independent-particle bands
corresponding to RGB states are identical; this implies that
the pairing amplitudes between fermions of different colors
are also identical, that is, 
RG = 
GB = 
RB = 
, while

RR = 
GG = 
BB = 0. In this case, the order parameter
tensor 
cc′ is fully antisymmetric, but characterized by a single
complex scalar 
, which is independent of momentum k. In
such a situation, self-consistency is achieved via a single order
parameter equation.

However, when color-orbit fields are present (kT �= 0), with
zero color flip (� = 0) and no color shift (δ = 0), the three
independent-particle bands are no longer identical (see Fig. 1),
but under momentum inversion k → −k the red and blue bands
are converted into each other, that is, εR(±k) = εB(∓k), since
εR(k) = ε(k − kT ) and εB(k) = ε(k + kT ), with ε(k) being
an even function of momentum k. In this case, it is possible
to have different uniform pairing amplitudes 
RG, 
GB , and

RB , with the symmetry constraint that 
RG = 
GB = 
2

and 
RB = 
1, while all the other pairing amplitudes continue
to be zero, that is, 
RR = 
GG = 
BB = 0. However, it is not
required by symmetry that the order parameter amplitudes 
1

and 
2 are exactly the same. Similar considerations also apply
to the independent-particle Hamiltonian shown in Eqs. (3)
and (4) when color flip is present (� �= 0) with zero color
shift (δ = 0). In these cases, symmetry allows for different
order parameter amplitudes 
1 and 
2 and two distinct order
parameter equations (16).

The situation is even more complex when the color-shift
field is not zero (δ �= 0). For instance, in the case where color
orbit is present (kT �= 0) and color flip is absent (� = 0), all
three color bands are different, the energy dispersion for red
fermions is εR(k) = ε(k − kT ) − δ, for green fermions it is
εG(k) = ε(k), and for blue fermions it is εB(k) = ε(k + kT ) +
δ. In this case, the pairing amplitudes 
RG, 
GB , and 
RB can
all be distinct and determined by the self-consistent relations
of Eq. (16).

In general, interactions can also be different gRG �= gGB �=
gRB (gRR = gGG = gBB = 0), leading automatically to non-
identical order parameter components 
RG �= 
GB �= 
RB

(with 
RR = 
GG = 
BB = 0) even in the case of identical
bands with zero color-orbit (kT = 0), color-flip � = 0, and
color-shift (δ = 0) parameters. Therefore, the three distinct
order parameter equations described in Eq. (16) may be
necessary.

The order parameter amplitudes 
RG, 
GB , and 
RB can
be regarded as variational parameters used to describe color
superfluidity. In the case of identical s-wave interactions, the
simplest variational (saddle-point) state that can be considered
to describe color superfluidity of fermions with and without
color-orbit and color-flip fields is that where 
RG = 
GB =

RB = 
 and 
RR = 
GG = 
BB = 0. This saddle-point
state captures substantial nontrivial effects, while reducing
dramatically the complexity of the numerical problem. Since
we are interested in gaining insight into color superfluidity of
fermions in the presence of color-orbit and color-flip fields,
we discuss the simplest possible variational state allowed by
symmetry and leave the more complex cases mentioned above
for future detailed work.

Therefore, in the remainder of this paper, we consider
fermions with identical s-wave interactions with or without

color-orbit and color-flip fields and discuss the simplest vari-
ational state corresponding to a color order parameter tensor

cc′ that is characterized by a single complex component 
 in
all s-wave pairing channels of colors {c,c′} = {R,G,B}. How-
ever, even in the simplest scenario, as we will see in Sec. IV,
the order parameter becomes a momentum-dependent tensor

αβ(k) with unequal components in all mixed-color channels
{α,β}, reflecting the different interactions and momentum de-
pendences that are induced by color-flip and color-orbit fields
into the mixed-color representation of the Hamiltonian. This
leads to the emergence of momentum dependences reflecting
induced p-wave and f -wave components as well as singlet,
triplet, and quintuplet sectors in the total pseudospin basis of
the mixed-color description.

Before we present the phase diagram of colored fermions in
the presence of color-orbit and color-flip fields, it is important
to look first at the limit where both terms are zero, that is,
hz(k) = 0 (kT = 0 and δ = 0) as well as hx(k) = 0 (� = 0).
This limit serves as a reference and is discussed next.

C. Zero color-flip and color-orbit coupling

In the limit where color-orbit and color-flip fields vanish the
evolution of a color superfluid from the BCS to the BEC regime
is relatively simple. The independent-particle Hamiltonian
matrix HIP(k) defined in Eq. (3) simplifies dramatically, since
hz(k) = 0 (kT = 0 and δ = 0) and hx(k) = 0 (� = 0), making
HIP(k) diagonal and proportional to the unit matrix 1, that
is, HIP(k) = ε(k)1, with ε(k) = k2/2m. This simplification
makes the full Hamiltonian Ĥ defined in Eq. (11) invariant
under global U(3) rotations of the color states. This means that
Ĥ commutes with the nine generators of U(3). Furthermore,
it is possible to perform simultaneous global U(3) rotations
in the independent-particle HIP(k) = HIP(k) − μ1 and pairing
� sectors of the saddle-point Hamiltonian matrix (13) such
that the U(3)-rotated order parameter matrix �U(3) can be
represented by a single complex scalar 
U(3) = 


√
3, with

only two nonvanishing matrix entries, namely, [�U(3)]13 =



√
3 and [�U(3)]31 = −


√
3.

In this limiting case, the quasiparticle spectrum is E1(k) =
E2(k) =

√
ξ 2(k) + 3|
|2 and E3(k) = ξ (k), where ξ (k) =

k2/2m − μ, corresponding to a fully gapped superfluid with
two degenerate quasiparticle states and a third quasiparticle
state which is passive, that is, it represents free noninteracting
fermions. This occurs because of the underlying global U(3)
symmetry, which allows rotations into a mixed-color state,
where only two mixed colors are active in pairing, while
the third one is passive. In this case, a standard BCS-BEC
crossover occurs [16] similar to the standard case of two
internal states [59], but with the added feature that the third
passive band provides a Fermi surface when the chemical
potential lies above its minimum and no Fermi surface when
the chemical potential is below its minimum. This reference
case is illustrated in the phase diagram shown in Fig. 3(b) when
�/EF = 0.

However, when color-orbit and color-flip fields are present
the explicit global U(3) symmetry of the full Hamiltonian
Ĥ in Eq. (11) is broken and all colors are involved in
pairing, producing a complex excitation spectrum that allows
also for exotic gapless quantum phases and phase transitions
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FIG. 3. Phase diagrams of the color-flip field �/EF versus the
scattering parameter 1/kF as for a nonzero quadratic color shift bz =
k2

T /2m (η = 0) and two values of the color-orbit coupling controlled
by momentum transfer kT . The temperature is T/EF = 0.01. In (a)
kT = 0.35kF and the superfluid phases are labeled according to the
nodal structure of the quasiparticle excitation spectrum that the color-
orbit coupling induces when the Rabi field �/EF is nonzero. The
normal phases N1, N2, and N3 are labeled according to the number
of Fermi surfaces they possess. The superfluid phases are labeled
according to the number of nodal rings they possess (R1, R2, R3,
R4, and R5). Phase transitions between various superfluid phases
and between superfluid phases and normal states are continuous. In (b)
kT = 0 and the superfluid phases have either a fully nodal surface (S1)
or a fully gapped (FG) phase. The fully nodal phase is reminiscent of
the passive band when � = 0, where only a crossover exist. The phase
transition from the S1 phase to the normal phases is discontinuous.

between them, instead of a smooth crossover. These aspects
are discussed next.

D. Low-temperature phase diagrams

When color-orbit and color-flip fields are present, the global
U(3) symmetry is explicitly broken and there is no longer an
inert mixed-color band. This means that all mixed-color bands
participate in pairing and that the order parameter tensor in
the mixed-color representation no longer has a single entry
above the diagonal and a single entry below the diagonal. A
detail analysis of the order parameter tensor in the mixed-color
representation is performed in Sec. IV.

In order to obtain the phase diagram and classify the emer-
gent superfluid and normal phases it is sufficient to analyze the
quasiparticle-quasihole excitation spectrum Ej (k), since all
phases seen from the {R,G,B} color basis have the same order
parameter tensor 
c,c′ and share the same color-symmetry
controlled by a single complex component 
. However, as the
amplitude of 
 and chemical potential μ vary as a function
of the color-flip field �/EF and interactions 1/kF as for fixed
color-orbit fields, the nodal structure of the spectrum Ej (k)
suffers dramatic changes in momentum space and Lifshitz-like
transitions occur in the superfluid states.

In Fig. 3 we show the phase diagrams of color superfluids
in the color-flip field �/EF versus the interaction parameter
1/kF as plane. We consider only s-wave interactions between
different colors and set the color-shift field to zero, that is,
the detuning is set to zero δ = 0 such that parity is preserved
in the excitation spectrum. For Fig. 3(a) the parameters are
kT = 0.35kF and bz = k2

T /2m (η = 0) and for Fig. 3(b) the
parameters are kT = 0 and bz = k2

T /2m (η = 0). The contrast

between the two figures is remarkable, indicating that the
presence of color-orbit and color-flip couplings induce novel
superfluids states as interactions are changed. The phases N1,
N2, and N3 correspond to the normal phases with one, two,
and three Fermi surfaces associated with the eigenvalues of
HIP(k) and characterize the regime where the colored Fermi
gas is degenerate. The lines separating these normal phases
correspond to simple Lifshitz transitions [50].

The superfluid phases in Fig. 3(a) are labeled according to
their nodal structure, which in the present case corresponds
to rings of zero-energy quasiparticles representing the resid-
ual Fermi surface of the starting degenerate colored Fermi
gas. In the presence of color-orbit and color-flip fields, the
quasiparticle excitation energies E1(k), E2(k), and E3(k) have
more complex momentum dependence, but only E3(k) can
have zeros. The zeros of E3(k) define the loci (points, lines, or
surfaces) in momentum space, where there is no energy cost to
create quasiparticle excitations. The connectivity of these loci
of zero energy can be used to classify the topologically distinct
superfluid phases of colored fermions.

To analyze the phase diagram, we make use of the mixed-
color bands Eα(k) with α = {⇑,0,⇓}, as discussed in Sec. II B.
For definiteness, we fix first the color-flip coupling to �/EF =
0.29, in which case there are three mixed-color bands partici-
pating in pairing. As the scattering parameter 1/kF as increases
a nodal phase R5 with five rings, three in the outer ⇑, one
the middle 0, and one in the inner ⇓ band, gives way to a
nodal phase R3 with three rings in the outer ⇑ band, where the
two internal rings annihilate at finite momenta in the (0,ky,kz)
plane. This leads to the opening of a gap at theR5-R3 boundary,
but residual node lines persist. An additional increase of the
scattering parameter leads to the one ring R1 phase in the
outer ⇑ band, where the two other rings shrink to points at
finite momenta along the (kx,0,0) direction when the phase
boundary R3-R1 is reached. Finally, a further increase in
the scattering parameter transforms the R1 phase into a fully
gapped (FG) phase with no nodal regions. A similar analysis
can be done for different fixed values of �/EF and varying
scattering parameter. An important observation is the existence
of a quintuple point, where the five superfluid phases R1,
R2, R3, R4, and R5 merge. The transitions between these
topologically distinct superfluid phases are all continuous,
therefore this quintuple point is also pentacritical. In Fig. 4
we plot the nodal structure of the N3, R5, R3, and R1 phases
illustrated in the phase diagram of Fig. 3(a), for fixed value of
�/EF = 0.29 and varying scattering parameter 1/kF as .

The richness of the phase diagram in Fig. 3(a) should be
contrasted with simplicity of that in Fig. 3(b), where the color-
orbit coupling parameter is set to zero, that is, kT = 0. Indeed,
in the case of Fig. 3(b) the phase diagram is much simpler.
When the color-orbit and color-flip couplings are zero, that is,
kT = 0 and � = 0, pairing occurs only between two mixed
colors which produce a fully gapped superfluid, but the third
mixed color is completely inert [16] and thus possesses the
original Fermi surface for noninteracting fermions when the
chemical potential lies above the minimum of the band. This
situation corresponds to the line of �/EF = 0 in Fig. 3(b)
and describes standard BCS-BEC crossover physics, where
the superfluid is always gapped as a function the interaction
parameter 1/kF as .
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FIG. 4. Nodal structure of the quasiparticle excitation spectrum
for phases N3, R5, R3, and R1 with the parameters � = 0.29EF ,
kT = 0.35kF , and bz = k2

T /2m (η = 0): (a) normal phase N3 with
three Fermi surfaces, where 1/kF as = −1.31, μ/EF = 0.97, and
|
| = 0; (b) five-ringed superfluid phaseR5, where 1/kF as = −1.03,
μ/EF = 0.97, and |
|/EF = 0.0056; (c) three-ringed superfluid
phase R3, where 1/kF as = −0.069, μ/EF = 0.81, and |
|/EF =
0.31; and (d) one-ringed superfluid phase R1, where 1/kF as = 0.62,
μ/EF = 0.19, and |
|/EF = 0.73.

However, when kT is still zero, but the color-flip field �

is nonzero, extra mixing of colors occur and the inert band
becomes active. Nevertheless, a single nodal surface continues
to exist, as illustrated in the blue (S1) region. For �/EF �= 0,
the quasiparticle dispersion E3(k) is no longer identical to
the independent-particle energy ξ (k) and the nodal structure
of E3(k) is completely isotropic in momentum space. Thus,
for finite �/EF , there is a phase transition between a gapless
superfluid with surface nodes (S1) to a FG superfluid phase.
For fixed �/EF , the line separating the S1 and FG phases ap-
pears when the degeneracy between the lowest-energy mixed-
color band ξ⇑(k) = E⇑(k) − μ and its counterpart −ξ⇑(k) at
ξ⇑(k) = 0 is lifted by nonzero color-flip fields (� �= 0). This
occurs when the chemical potential μ falls below the minimum
value mink{E⇑(k)}, when a full gap in the excitation spectrum
E3(k) emerges, leading to the yellow (FG) region in Fig. 3(b).
The quasiparticle bands E1(k) and E2(k) are always gapped
in the present case.

In addition, when color-orbit coupling is zero (kT = 0), the
transition from superfluid to normal phases is discontinuous
(first order) at the low temperatures indicated in Fig. 3(b) and
the phase boundary corresponds to the balancing of the color-
flip (magnetic) energy hxχxxhx/2, where χxx is the color-flip
(magnetic) susceptibility and the condensation energy of the
superfluid γ |
|2. This leads to � = |
|γ /χxx at the phase
boundary, where the order parameter amplitude |
| jumps
discontinuously to zero. Such a relation for color superfluids

is a generalization of Clogston’s result for Fermi superfluids
paired with zero center-of-mass momentum in the singlet
s-wave state of two spin-1/2 fermions [60].

Another important difference between phase diagrams il-
lustrated in Figs. 3(a) and 3(b) concerns the limit when the
color-flip field vanishes, that is, when � → 0. In Fig. 3(a) the
color-orbit coupling is nonzero, that is, kT �= 0, meaning that
the red-color (R) band is shifted to the left, the green-color (G)
band remains in the same place, and the blue-color (B) band
is shifted to the right, as shown in Fig. 1. Given that s-wave
interactions only lead to RG, RB, and GB pairs, this implies
that pairing with zero center-of-mass momentum for RB pairs
can occur without energy cost, but pairing with zero center-
of-mass momentum for RG and GB pairs costs energy of an
amount k2

T /2m ± kxkT /m. Therefore, even for zero color-flip
fields (� = 0), a uniform zero center-of-mass superfluid phase
is not favored until a critical value of the interaction parameter
1/kF as is reached. This is in sharp contrast with the case of
two internal states, where the spin-orbit coupling shifts one
band to the right and the other to the left and does not affect
zero center-of-mass momentum pairing. This occurs because
of the existence of a spin-gauge symmetry, which can be used
to gauge away the momentum transfer kT from the problem
when � = 0. The corresponding color-gauge symmetry for
the color superfluid problem is broken and thus a color-gauge
symmetry does not exist even when � = 0. This means that the
cases of� = 0 with kT = 0 and with kT �= 0 are not equivalent.
Furthermore, while in the two-state case uniform superfluidity
is always present at zero temperature for any values of � �= 0
and kT �= 0 [46], in the color problem at hand this is not the
case, because of the energy cost associated with pairing in the
RG and GB channels, and thus normal states phases may be
present at zero temperature.

Having discussed some general aspects of the phase di-
agram of color superfluids in the presence of color-orbit
coupling and color-flip fields, we discuss next a few thermo-
dynamic consequences involving the thermodynamic potential
and the equation of state for the chemical potential.

E. Thermodynamic potential

In the vicinity of the phase transition between the normal
and superfluid phases, the thermodynamic potential in the
superfluid phase Q0[
,
∗] can be expanded about the normal
state value QN as

Q0 = QN + a|
|2 + b

2
|
|4 + c

3
|
|6. (18)

The coefficients a, b, c, and QN depend on the microscopic
parameters of the theory such as the color-flip field �, the
color-orbit momentum transfer kT , and the scattering length
as , as well as on thermodynamic parameters such as chemical
potential μ and temperature T . The coefficient c is found to
be always positive in the range of parameters investigated and
that guarantees the stability of the Ginzburg-Landau expansion
shown in Eq. (18).

In Fig. 5 all plots correspond to fixed temperature T/EF =
0.01 and color-flip field �/EF = 0.29. In Figs. 5(a) and 5(b)
we show the thermodynamic potential difference δQ = Q0 −
QN for two values of scattering parameter 1/kF as slightly
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(a)

(c)

(b)

(d)

FIG. 5. (a) and (b) Difference δQ between thermodynamic poten-
tials of the superfluid Q0 and normal state QN at T/EF = 0.01 and
�/EF = 0.29. In (a) δQ is shown for kT /kF = 0.35 and the dashed
line exhibits a global minimum at |
| = 0 and describes the normal
phase for the parameter values 1/kF as = −1.17 and μ/EF = 0.97.
The solid line shows a global minimum at |
|/EF = 0.015 and
describes a superfluid phase for the parameter values 1/kF as =
−0.97 and μ/EF = 0.97. The transition from the superfluid to the
normal state is continuous (second order). In (b) δQ is shown
for kT /kF = 0 and the dashed line shows a global minimum at
|
| = 0 and describes the normal phase for the parameter values
1/kF as = −0.62 and μ/EF = 0.97. The solid line shows a global
minimum at |
|/EF = 0.18 and describes a superfluid phase for
the parameter values 1/kF as = −0.48 and μ/EF = 0.91. In (c) and
(d) the curves with blue circles describe the case of zero color-orbit
coupling (kT = 0) and the curves with red crosses describe the case
with kT �= 0. (c) Order parameter amplitude |
|/EF versus scattering
parameter 1/kF as for T/EF = 0.01 and �/EF = 0.29. (d) Chemical
potential μ/EF versus scattering parameter 1/kF as for T/EF = 0.01
and �/EF = 0.29. Notice the discontinuous jumps in |
|/EF and
μ/EF for the curves with blue circles at the transition from the
superfluid to the normal state.

before and after the transition from the normal to the superfluid
state. The difference δQ is shown in units of NEF , where
N is the total particle number. In Fig. 5(a) [Fig. 5(b)] the
color-orbit coupling momentum transfer is kT /kF = 0.35
(kT /kF = 0) and the transition from the normal phase to the
superfluid phase is continuous (discontinuous), according to
Landau’s classification, as can be seen from the plot of δQ
versus |
|/EF . For the range of parameters investigated at
temperature T/EF = 0.01, the phase transition between the
normal and superfluid phase is always discontinuous for the
case of kT = 0 and is always continuous for the case of
kT /kF = 0.35. The order parameter amplitude |
|/EF versus
scattering parameter 1/kF as is shown in Fig. 5(c) for kT = 0
and kT /kF = 0.35 and a clear discontinuity in |
|/EF occurs
at the normal-superfluid phase boundary when kT = 0, while
|
|/EF reaches zero continuously when kT /kF = 0.35. In
Fig. 5(d) we show the chemical potential μ/EF for kT /kF = 0
and for kT /kF = 0.35. While for kT /kF = 0.35 the chemical
potential μ/EF evolves smoothly with scattering parameter
1/kF as , by contrast, there is a discontinuous jump in μ/EF

in the case of kT /kF = 0, as the phase boundary between the
normal and superfluid states is crossed.

(a)

(c)

(b)

(d)

FIG. 6. Unitarity limit 1/kF as = 0 at temperature T/EF = 0.01.
(a) and (b) Difference δQ between thermodynamic potentials of the
superfluid Q0 and normal state QN . In (a) the color-orbit coupling is
kT = 0.35kF , the solid line corresponds to the parameters �/EF =
0.64 and μ/EF = 0.81, and the dashed line corresponds to �/EF =
0.67 and μ/EF = 0.79. In (b) the color-orbit coupling is kT = 0, the
solid line corresponds to the parameters �/EF = 0.47 and μ/EF =
0.77, and the dashed line corresponds to �/EF = 0.53 and μ/EF =
0.77. In (c) and (d) the blue circles (red crosses) correspond to
kT /kF = 0 (kT /kF = 0.35). (c) Order parameter amplitude |
|/EF

versus �/EF . (d) Chemical potential μ/EF versus �/EF . The
vertical blue solid lines indicate the locations of the discontinuous
transitions and the end points of the lines of blue circles show the
hysteretic behavior in |
|/EF and μ/EF due to the existence of a
metastable minimum in the thermodynamic potential shown in (b).

In order to investigate the existence of the Clogston
limit, we analyze our system at the unitarity limit where
the scattering parameter 1/kF as = 0 and describe changes
in the thermodynamic potential, order parameter amplitude
|
|/EF , and chemical potential μ/EF versus the color-flip
parameter �/EF . In Fig. 6 we show the difference δQ between
thermodynamic potentials of the superfluid Q0 and normal
state QN .

The plots shown in Fig. 6 refer to the unitarity limit
1/kF as = 0 at temperatures T/EF = 0.01. In Fig. 6(a) the
thermodynamic potential difference δQ is plotted for color-
orbit coupling kT = 0.35kF : The solid line corresponds to
the parameters �/EF = 0.64 and μ/EF = 0.81, while the
dashed line corresponds to �/EF = 0.67 and μ/EF = 0.79.
In Fig. 6(b) δQ is plotted for color-orbit coupling kT = 0: The
solid line corresponds to the parameters �/EF = 0.47 and
μ/EF = 0.77, while the dashed line corresponds to �/EF =
0.53 and μ/EF = 0.77. In Figs. 6(c) and 6(d) the blue circles
(red crosses) correspond to kT /kF = 0 (kT /kF = 0.35). In
Fig. 6(c) the order parameter amplitude |
|/EF versus �/EF

is shown and in Fig. 6(d) the chemical potential μ/EF versus
�/EF is shown. Notice the hysteretic behavior characteristic
of discontinuous (first-order) phase transitions when the color-
orbit coupling is kT /kF = 0.

Two important effects are illustrated in the panels of
Fig. 6. First, there is a well-defined Clogston limit when
the color-orbit coupling kT /kF = 0, leading to a discontin-
uous (first-order) transition from superfluid to normal phases.
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Second, when the color-orbit parameter kT /kF �= 0, the stan-
dard Clogston limit is exceeded and the transition to the normal
state becomes continuous (second order). The discontinuous
phase transition from superfluid to normal phases for zero
color-orbit coupling (kT /kF = 0) and finite color-flip field
� �= 0 becomes continuous for arbitrarily small kT /kF � 1
and � �= 0, provided a uniform superfluid is the stable ground
state. The discontinuity in the order parameter |
|/EF at the
phase boundary ceases to exist for arbitrarily small color-orbit
coupling, suggesting that kT /kF is a microscopic parameter
that controls the nonuniform convergence of |
|/EF versus the
scattering parameter 1/kF as or versus the color-flip parameter
�/EF .

The nonuniform convergence of |
|/EF is similar mathe-
matically to the nonuniform convergence of the Fermi function,
where only at zero temperature it develops a discontinuity as
a function of momentum. In the present case, the physical
origin of the nonuniform convergence is quite different. In our
current problem, attractive interactions are assumed to occur
only between different colors, such that pairing can only exist
in the s-wave channel. Thus, in the strict case where color-orbit
coupling is zero (kT /kF = 0) there is a cost in color-flip energy
associated with pairing and thus there is a Clogston limit even
in the color problem at low temperatures. However, when a
uniform superfluid solution is the ground state for kT /kF �= 0,
then higher-order angular momentum pairing is induced by
the color-orbit coupling as suggested by the nodal structures
shown in Fig. 4. Thus, pairing in the mixed-color states may
occur not only in the singlet channel, but also in the triplet or
quintet channels. This allows the color superfluid to respond
to a color-flip field by simply rotating the triplet or quintet
mixed-color state without breaking pairs and thus beating the
standard Clogston limit. An analysis of the order parameter
in the mixed-color basis is therefore important for a deeper
understanding of the phase diagram obtained in Fig. 3.

Now that we have analyzed a few thermodynamic properties
of color superfluids and characterized the transitions between
the normal and superfluid states, we are ready to investigate in
detail the structure of the order parameter in each one of the
superfluid phases found.

IV. HAMILTONIAN IN A MIXED-COLOR BASIS

In order to understand in more detail the different superfluid
phases that emerge, it is important to analyze the microscopic
Hamiltonian in a mixed-color basis that diagonalizes the
independent-particle Hamiltonian discussed in Sec. II A.

The excitation spectrum and the momentum space topology
of colored quasiparticles and quasiholes can be understood by
writing the saddle-point Hamiltonian H0(k) defined in Eq. (13)
as

H̃0(k) =
(

HM(k) �M

�
†
M −H∗

M (−k)

)
(19)

in the mixed-color basis. The matrix elements of HM (k)
represent the mixed-color energy bands and are given by
HM,αβ(k) = ξα(k)δαβ with energies ξα(k) = Eα(k) − μ mea-
sured with respect to the chemical potential μ, while the

(a)

(c)

(b)

(d)

FIG. 7. Plots of the components of the order parameter tensors
(a) and (b) 
αβ (k) and (c) and (d) 
̃Sms

(k) versus momentum
(kx,0,0). We show plots for the R3 phase with the scattering parameter
1/kF as = −0.07 (μ/EF = 0.81 and |
|/EF = 0.31) corresponding
to the vertical scale on the left. We also show plots for the R1
phase with the scattering parameter 1/kF as = 0.62 (μ/EF = 0.19
and |
|/EF = 0.73) corresponding to the vertical scale on the right.
In (a) the solid blue curve describes 
⇑⇑(k), the dashed red curve
describes 
00(k), and the dash-dotted green curve describes 
⇓⇓(k).
In (b) the solid brown line represents 
⇑0(k), the dashed magenta
line represents 
⇓0(k), and the dash-dotted orange line represents

⇑⇓(k). In (c) the solid yellow curve corresponds to 
̃22(k), the
dashed cyan curve corresponds to 
̃21(k), and the dash-dotted purple
curve corresponds to 
̃20(k). In (d) the solid light blue line indicates

̃21̄(k), the dashed red line indicates 
̃22̄(k), and the dash-dotted black
line indicates 
̃00(k).

matrix elements of �M are 
M,αβ(k) = 
αβ(k), representing
the order parameter tensor in the mixed-color basis labeled by
indices {α,β} = {⇑,0,⇓}. The elements 
αβ(k) are strongly
momentum dependent, in sharp contrast to the elements

cc′ (k) of the original matrix �, defined in Eq. (14), which
are independent of momentum. In order to elucidate the
symmetry properties of fermion pairs, we analyze next the
order parameter tensor in the mixed-color basis.

A. Order parameter in a mixed-color basis

The order parameter tensor in the mixed-color basis can be
written as


αβ(k) = Rαc(k)
cc′Rc′β(−k), (20)

where Einstein’s summation convention of repeated indices
is understood and the Rαc(k) are matrix elements of the
color-mixing matrix R(k) in Eq. (5), where the α-row elements
Rα(k) = [RαR(k),RαG(k),RαB(k)] are the eigenvectors of the
independent-particle Hamiltonian matrix HIP(k). The order
parameter matrix in the mixed-color basis has the property

αβ(k) = −
βα(−k) due to Fermi statistics. Such a condition
ensures that the diagonal elements 
αα(k) have odd parity, as
required by the Pauli exclusion principle. However, in general,
this is not sufficient to force the off-diagonal elements to have
well-defined parity.

In Fig. 7 we describe in detail the momentum depen-
dence of the order parameter tensor along (kx,0,0) in the
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mixed-color basis [Figs. 7(a) and 7(b)] and in the total pseu-
dospin basis [Figs. 7(c) and 7(d)] for the parameters �/EF =
0.29, kT /kF = 0.35, and bz = k2

T /2m (η = 0). The order
parameter tensor on either basis depends on momentum only
along the kx direction and is independent of momentum along
ky and kz, due to the one-dimensional nature of the color-orbit
coupling. In Figs. 7(a)–7(d) we show only two cases. The first
one corresponds to the R3 phase with the scattering parameter
1/kF as = −0.07 (μ/EF = 0.81 and |
|/EF = 0.31) and the
plots correspond to the vertical scale on the left. The second
case corresponds to the R1 phase with the scattering parameter
1/kF as = 0.62 (μ/EF = 0.19 and |
|/EF = 0.73) and the
plots correspond to the vertical scale on the right.

In Fig. 7(a) we show the momentum dependence of the
diagonal components 
αα(k) of the order parameter tensor
in two cases. From these plots it is evident that the nodal
structure of the order parameter tensor components 
αα(k) is
exactly the same for the R3 and R1 phases. The only difference
between the two cases is the overall magnitude of the amplitude
|
| reflected in the two different scales. This implies that the
nodal structure of the lowest quasiparticle band E3(k) does not
coincide with the nodal structure of the order parameter matrix
elements 
αα(k). The solid blue curve describes 
⇑⇑(k),
which has an f -wave character (three nodes); the dashed red
curve describes 
00(k), which has a p-wave character (one
node); the dash-dotted green curve describes 
⇓⇓(k), which
also has a p-wave character (one node).

In Fig. 7(b) we show the momentum dependence of the
off-diagonal components 
αβ (k) of the order parameter tensor,
with α �= β, in two cases. From these plots it is also evident that
the nodal structure of the order parameter tensor components

αβ(k) is exactly the same for theR3 andR1 phases. Again, the
only difference between the two cases is the overall magnitude
of the amplitude |
|. As in the case of diagonal components,
this implies that the nodal structure of the lowest quasiparticle
band E3(k) does not coincide with the nodal structure of the
off-diagonal matrix elements 
αβ(k). The solid brown curve
describes 
⇑0(k), which has an f -wave character (two nodes
and a discontinuous sign change); the dashed magenta curve
describes 
⇓0(k), which has an f -wave character (two nodes
and a discontinuous sign change); the dash-dotted orange curve
describes 
⇑⇓(k), which has a p-wave character (one node).

A very important property that emerges from Figs. 7(a)
and 7(b) is that the order parameter tensor 
αβ(k) for color
superfluids (with three colors) is always an odd function of
momentum k when the one-dimensional color-orbit coupling
hz(k) = 2kT kx/2m is present with zero color shift (detuning
δ = 0), meaning that the condition 
αβ(k) = −
αβ(−k) is
satisfied. The odd-parity condition combined with the Fermi
statistics property 
αβ(k) = −
βα(−k) leads to a symmet-
ric order parameter tensor 
αβ(k) = 
βα(k) under mixed-
color exchange α ↔ β, when kT �= 0. Furthermore, the or-
der parameter tensor is odd under reflection along the kx

direction, but even under reflections along the ky and kz

directions.
As can be seen in Fig. 4(c), the nodal structure of quasiparti-

cle excitations in the R3 phase is similar to that of the excitation
spectrum of a fully spin-polarized triplet f -wave superfluid
of spin-1/2 fermions with energy band ξk = k2/2m − μ and
order parameter amplitude |
k| = |af k3

x − apkx |, with af and

ap being positive. In this case, the quasiparticle excitation

spectrum is simply E(k) =
√

ξ 2
k + |
k|2 and the nodes Ek

occur at the intersection of the surfaces ξk = 0 and |
k| = 0.
Since the zeros of the order parameter are located at kx = 0
and kx = ±√

ap/af , and the zeros of ξk are located at (k2
y +

k2
z )/2m = μ − k2

x/2m, the loci of zero quasiparticle energy
have a three-ring structure. Additionally, the nodal structure
of quasiparticle excitations in the superfluid state R1, shown
in Fig. 4(d), is similar to that of a triplet p-wave superfluid of
fully spin-polarized spin-1/2 fermions with order parameter
amplitude |
k| = |apkx |. In this case, the nodes in E(k) occur
at the intersection of the surfaces kx = 0 and (k2

y + k2
z )/2m =

μ − k2
x/2m, thus leading to a single-ring nodal structure

for the loci of zero quasiparticle energy. It is important to
emphasize, though, that in the color problem the location of
zeros of the quasiparticle band E3(k) does not coincide with the
simultaneous zeros of the order parameter tensor components

αβ(k) = 0 and band dispersions ξα(k) − μ.

It is also important to compare the momentum dependence
of the order parameter tensor 
αβ(k) for the color problem
with color-orbit and color-flip fields and the corresponding
spin-1/2 problem with spin-orbit and Zeeman fields [46]. As
shown in Figs. 7(a) and 7(b), the momentum dependence
of 
αβ(k) shows higher angular momentum pairing in the
color indices. It does so in a similar but more complicated
fashion in comparison to the spin-1/2 case [46], where the
2×2 order parameter tensor 
αβ(k) in the generalized helicity
basis {⇑,⇓} acquires also a triplet component with dominant
p-wave character. A particularly notable difference between
the color case and the spin-1/2 case is that the order parameter
tensor 
αβ(k) is a symmetric tensor when both color-orbit
and color-flip fields are nonzero, that is, 
αβ(k) = 
βα(k),
while in the spin-1/2 the corresponding order parameter tensor

αβ(k) is neither antisymmetric nor symmetric, that is, the
off-diagonal elements 
⇑⇓(k) and 
⇓⇑(k) are neither equal
nor opposite in sign. Therefore, the order parameter tensor
has symmetric components 
⇑⇑(k), [
⇑⇓(k) + 
⇓⇑(k)]/2,
and 
⇓⇓(k), corresponding to the triplet sector, and an anti-
symmetric component [
⇑⇓(k) − 
⇓⇑(k)]/2, corresponding
to the singlet sector.

In the color problem discussed here, the tensor 
αβ(k)
is only antisymmetric when the color-orbit field hz(k) =
2kT kx/2m is zero, that is, the color-dependent momentum
transfer kT = 0. This jump from an antisymmetric tensor
for zero color-orbit fields to a symmetric tensor for nonzero
color-orbit fields arises due to the absence of color-gauge
symmetry associated with the three-color states even when the
color-flip field is zero. This singular perturbation caused by the
color-orbit field hz(k) introduces only odd-parity momentum
dependences in the mixed-color representation of the order
parameter tensor, provided the color-shift field δ = 0, as it is
the case throughout this paper.

To highlight further the structure of the order parameter
tensor in the color problem with color-flip and color-orbit
fields, we discuss next its structure in the total pseudospin
basis, where singlet, triplet, and quintet sectors emerge in a
similar fashion to the singlet and triplet sectors that arise for
the order parameter tensor of spin-1/2 Fermi superfluids with
spin-orbit coupling and Zeeman fields.
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B. Order parameter in the total pseudospin basis

In order to understand further the order parameter structure
in the color problem, we also analyze it in the total pseudospin
basis |S,ms〉 built from the mixed-color states {|⇑〉,|0〉,|⇓〉} ⊗
{|⇑〉,|0〉,|⇓〉}. The order parameter tensor in the total pseu-
dospin basis 
̃Sms

(k) can be separated into singlet, triplet, and
quintet sectors and can be written as 
̃Sms

(k) = M
Sms

αβ 
αβ(k),

where M
Sms

αβ is a tensor whose elements represent generalized
Clebsch-Gordon coefficients. The singlet sector is described by
fermion pairs in the state |Sms〉 = |00〉 with order parameter
elements


̃00(k) = 1√
3

⇑⇓(k) − 1√

3

00(k) + 1√

3

⇓⇑(k),

while the triplet sector is characterized by fermions pairs in
the states {|Sms〉} = {|11〉,|10〉,|11̄〉}, with order parameter
elements


̃11(k) = 1√
2

⇑0(k) − 1√

2

0⇑(k),


̃10(k) = 1√
2

⇑⇓(k) − 1√

2

⇓⇑(k),


̃11̄(k) = 1√
2

0⇓(k) − 1√

2

⇓0(k),

where we used the notation 1̄ = −1. Finally, the quintet
sector is described by fermion pairs in states {|Sms〉} =
{|22〉,|21〉,|20〉,|21̄〉,|22̄〉}, with order parameter elements


̃22(k) = 
⇑⇑(k),


̃21(k) = 1√
2

⇑0(k) + 1√

2

0⇑(k),


̃20(k) = 1√
6

⇑⇓(k) +

√
2

3

00(k) + 1√

6

⇓⇑(k),


̃21̄(k) = 1√
2

0⇓(k) + 1√

2

⇓0(k),


̃22̄(k) = 
⇓⇓(k),

where we used the notation m̄s = −ms .
From the linear combinations given above, we can see that

the order parameter components in the singlet and quintet
sectors are symmetric with respect to mixed-color exchange,
while those in the triplet sector are antisymmetric with respect
to mixed-color exchange. However, for nonzero color-orbit
coupling and color-flip field, but a zero color shift (δ = 0),
the tensor 
αβ(k) is symmetric in mixed-color indices and
thus the only nonvanishing components of 
̃Sms

(k) occur in
the singlet or quintet sectors, while all the components in the
triplet sector vanish identically. In Figs. 7(c) and 7(d) we show
the nonvanishing components of 
̃Sms

(k).
In Figs. 7(c) and 7(d) the momentum dependences of the

order parameter tensor 
̃Sms
(k) are the same for the R3 and

R1 superfluid phases for fixed �/EF and varying 1/kF as ,
but the overall magnitude is different. Again, this shows that
the nodes in the quasiparticle band E3(k) are not trivially
related to the nodes of the order parameter tensor 
̃Sms

(k).
In Fig. 7(c) the solid yellow curve corresponds to 
̃22(k), the
dashed cyan curve indicates 
̃21(k), and the dash-dotted purple

curve describes 
̃20(k). Notice that 
̃22(k) has an f -wave
character (three nodes), 
̃21(k) has also an f -wave character
(two nodes and one discontinuous sign change), and 
̃20(k) has
a p-wave character (one node). In Fig. 7(d) the solid light blue
line indicates 
̃21̄(k), the dashed red line shows 
̃22̄(k), and
the dash-dotted black line describes 
̃00(k). Notice that 
̃21̄(k)
has an f -wave character (two nodes and a discontinuous sign
change), 
̃22̄(k) has a p-wave character (one node), and 
̃00(k)
also has a p-wave character (one node). Finally, since the
mixed-color order parameter tensor 
αβ(k) is symmetric in
α ↔ β, the triplet sector tensor components 
̃1,1(k), 
̃1,0(k),
and 
̃1,1̄(k) all vanish identically and thus these components
are not shown in Fig. 7.

In order to understand better color pairing phenomena and
color superfluid phases, we discuss next spectroscopic prop-
erties, such as the quasiparticle excitation spectrum obtained
via pairing in the mixed-color basis, as well as momentum
distributions and the density of states of fermions in their
original colors {R,G,B}.

V. SPECTROSCOPIC PROPERTIES

In this section we discuss several spectroscopic properties
of color superfluids in the presence of color-orbit coupling
and color-flip fields. These spectroscopic properties can help
characterize the different topological phases that emerge for
fixed color-orbit coupling but changing color-flip fields �/EF

and interactions 1/kF as . We begin our discussion by analyzing
the quasiparticle and quasihole excitation spectrum.

A. Quasiparticle energy spectrum

To investigate in detail the quasiparticle and quasihole
excitation spectrum, it is easier to start from the Hamiltonian
written in the mixed-color basis {⇑,0,⇓} as described in
Eq. (19). In this case, the matrix HM (k) has only diagonal
elements {ξ⇑(k),ξ0(k),ξ⇓(k)} corresponding to mixed-color
particle energies. Furthermore, the matrix −H∗

M (−k) also
has only diagonal elements {−ξ⇑(−k),−ξ0(−k),−ξ⇓(−k)}
corresponding to mixed-color hole energies. The matrices 
M

and 

†
M are characterized by the elements [
M ]αβ = 
αβ(k)

and [
†
M ]αβ = 
∗

βα(k), which couple mixed-color bands with
indices {α,β} = {⇑,0,⇓} and thus tend to lift degeneracies
between particle ξα(k) and hole −ξβ(−k) mixed-color bands.

The quasiparticle and quasihole excitation spectrum can
be found analytically from the secular equation det[ω1 −
H̃0(k)] = 0. Notice that P (ω) = det[ω1 − H̃0(k)] = ∏

j [ω −
Ej (k)] is in general a polynomial of order 6 and admits
six eigenvalues Ej (k), three of them with positive energy
corresponding to quasiparticles and three with negative energy
corresponding to quasiholes. Since the eigenvalues of the
Hamiltonian matrix are independent of the basis representation
that is used, we recover the same eigenvalues as those from the
direct diagonalization of the Hamiltonian matrix in the original
color basis {c,c′} = {R,G,B}.

Recall that the Hamiltonian H̃0(k) is particle-hole sym-
metric, implying that its eigenvalues Ej (k) satisfy the
quasiparticle-quasihole symmetry Ej (k) = −E7−j (−k), and
in the case of zero color-shift field δ = 0, where parity is a good
quantum number, the eigenvalues are parity even, satisfying
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the relation Ej (k) = Ej (−k). In this case, the characteristic
polynomial becomes P (ω) = a0(k) + a2(k)ω2 + a4(k)ω4 +
ω6. The nodal structure can be found by setting ω = 0 and
coincides with the results for the original Hamiltonian matrix,
that is, a0(k) = 0 leads to the same nodal structure previously
obtained. At this point it is illustrative to compare the present
situation in color Fermi superfluids with that of spin-1/2 Fermi
superfluids, where the nodal structure in the quasiparticle
energies is directly related to the nodal structure of the 2×2
order parameter tensor 
αβ(k) or more precisely related to the
nodal structure of 
Sms

(k) in the singlet and triplet sectors [46].
The situation for color Fermi superfluids is very different, given
that the coefficient a0(k) depends in a nontrivial way not only
on the components of the 
αβ(k), but also on the eigenenergies
ξα(k) of the mixed-color states {⇑,0,⇓}.

Given that the Hamiltonian matrix H̃0(k) is Hermitian, its
eigenvalues are guaranteed to be real, so the discriminant D of
the cubic equation obtained with the substitution z = ω2 is al-
ways nonpositive, that is, D � 0. The cubic equation obtained
can be written asP3(z) = c + bz + az2 + z3, where c = a0(k),
b = a2(k), and a = a4(k), and can be solved exactly using the
Cardano method [54]. The discriminant can be obtained from
the auxiliary functions Q = (3b − a2)/9 and R = (9ab −
27c − 2a3)/54 asD = Q3 + R2. IfD � 0, it is clear thatQ3 =
D − R2 is also negative and thus both −Q3 and −Q are posi-
tive. If we let cos(θ ) = R/

√
−Q3, then the three real roots of

P3(z) are z1 = 2
√−Q cos(θ/3) − a/3, z2 = 2

√−Q cos[(θ +
2π )/3] − a/3, and z3 = 2

√−Q cos[(θ + 4π )/3)] − a/3. The
three roots of the cubic polynomial P3(z) correspond
to the squares of the excitations energies E2

j (k) and thus
lead to the six solutions Ej (k) that we are seeking. The
positive-energy solutions E1(k), E2(k), and E3(k) correspond
to quasiparticle excitations and the negative-energy solutions
E4(k), E5(k), and E6(k) correspond to quasihole excitations.
The analytic solutions forEj (k) agree with the direct numerical
diagonalization of either H0(k) in the color basis {R,G,B}
defined in Eq. (13) or H̃0(k) in the mixed-color basis {⇑,0,⇓}
defined in Eq. (19). However, the reader must agree that these
analytic solutions are not particularly illuminating.

In order to understand the excitation spectrum obtained
on physical grounds, it is more convenient to work in the
mixed-color basis {⇑,0,⇓}. The excitation spectra shown in
Fig. 8 can be generically understood as resulting from the
coupling of mixed-color particle states with energies Eα(k)
and mixed-color hole states with energies −Eβ(−k) via the
order parameter 
αβ(k). Thus, wherever the energies Eα(k)
and −Eβ(−k) cross in momentum space, the order parameter
matrix elements 
αβ(k) can lift the degeneracies between
the bands labeled by α and β at the crossing loci (points,
lines, and surfaces) and impound additional momentum
dependence.

In Fig. 8 we show representative quasiparticle and quasihole
energies Ej (k) versus momentum k in superfluid phases R3
and R1 for fixed parameters �/EF = 0.29, kT = 0.35kF ,
T/EF = 0.01, and bz = k2

T /2m. The spectrum is sorted out
such that E1(k) is the highest energy and E6(k) is the lowest
energy for fixed k. The solid blue curves correspond to E1(k),
the dashed red plots describe E2(k), the dotted green lines
show E3(k), the dash-dotted cyan curves correspond to E4(k),
the dash–double-dotted brown plots describe E5(k), and the

(a)

(c)

(b)

(d)

FIG. 8. Quasiparticle and quasihole excitation spectra Ej (k) in
superfluid phases R3 and R1 for fixed parameters �/EF = 0.29,
kT = 0.35kF , T/EF = 0.01, and bz = k2

T /2m. The style and color
code for energies Ej (k) is E1(k), solid blue; E2(k), dashed red; E3(k),
dotted green; E4(k), dash-dotted cyan; E5(k), dash–double-dotted
brown; and E6(k), double-dash–dotted magenta. We show Ej (k)
versus (a) (kx,0,0) and (b) (0,0,kz) for the R3 phase with the pa-
rameters 1/kF as = −0.069, μ/EF = 0.81, and |
|/EF = 0.31 and
Ej (k) versus (c) (kx,0,0) and (d) (kx = 0,0,kz) for the R1 phase with
the parameters 1/kF as = 0.62, μ/EF = 0.19, and |
|/EF = 0.73.

double-dash–dotted magenta lines show E6(k). The excitation
spectrum Ej (k) has cylindrical symmetry around the kx axis
and thus its momentum dependence (kx,ky,kz) is characterized

only by the coordinates (kx,k⊥), where k⊥ =
√

k2
y + k2

z is the
magnitude of momentum in the (ky,kz) plane.

In Figs. 8(a) and 8(b) we show Ej (k) versus (kx,0,0) and
(0,0,kz), respectively, for the R3 phase with the parameter
1/kF as = −0.069 (μ/EF = 0.81 and |
|/EF = 0.31). No-
tice that only one ring of nodes is illustrated in Fig. 8(b) where
kx = 0, since the nodal points in kz correspond to a ring of
nodes in the (ky,kz) plane due to cylindrical symmetry. The
other two rings of nodes for the R3 phase occur at characteristic
values kx = ±k∗

x �= 0 and k⊥ = k∗
⊥ �= 0 as found in Fig. 4(c).

The additional rings of the R3 phase are not seen in the
spectrum shown in Fig. 8, because in Fig. 8(a) the magnitude
of the momentum in the (ky,kz) plane is k⊥ = 0 and in Fig. 8(b)
the momentum along the kx direction is kx = 0.

In Figs. 8(c) and 8(d) we show Ej (k) versus (kx,0,0) and
(0,0,kz), respectively, for the R1 phase with the parameter
1/kF as = 0.62 (μ/EF = 0.19 and |
|/EF = 0.73). The R1
phase has only one ring of nodes [see Fig. 4(d)] and this ring
is illustrated in the spectrum shown in Fig. 8(d), where kx = 0
and the nodal points in kz correspond to a ring of nodes in the
(ky,kz) plane.

We would like to point out that photoemission spectroscopy
has been already used to probe directly the elementary excita-
tions and energy dispersion in a strongly interacting Fermi gas
of 40K atoms with two internal states throughout the evolution
from the BCS to the BEC limits [61], but without spin-orbit
coupling or Zeeman fields. The use of the same technique for
the color problem with 6Li, 40K, or 173Yb should reveal the rich
nodal structure of the excitation spectrum when color-orbit and
color-flip fields are present and thus provide direct evidence of
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the various topological superfluid phases shown in the phase
diagram of Fig. 3(a).

In addition to measuring the quasiparticle dispersions, there
are other auxiliary experiments than can help characterize the
quantum phases found in the color problem. Therefore, we
analyze next the momentum distribution nc(k) for color states
c = {R,G,B} as color-flip fields and interactions are changed
for fixed color-orbit coupling.

B. Momentum distribution

The measurement of momentum distributions is an easy
experiment to do in systems of cold atoms and it is routinely
realized in atomic fermions and bosons. More recently these
types of measurements have also been performed in ultracold
fermions such as 40K with two internal states and spin-orbit
coupling [38], as well as 173Yb with three or more internal
states and spin-orbit coupling [33].

Therefore, in this section we describe how the momentum
distribution nc(k) for different color states c = {R,G,B} can
be obtained directly from the resolvent operator

Ĝ(z) = [zÎ − Ĥ]−1, (21)

where z is a complex energy, Î is the identity operator, and
Ĥ is the full Hamiltonian of the system. In the present case,
the resolvent operator can be written in energy and momentum
space as the 6×6 matrix

Gνν ′ (z,k) = [zI − H0(k)]−1
νν ′ , (22)

where H0(k) is the Hamiltonian matrix defined in Eq. (13)
describing the color superfluid phases at low temperatures
and {ν,ν ′} are Nambu color indices representing the states
created by the six-dimensional colored Nambu spinor f†N (k) =
[f †

R(k),f †
G(k),f †

B(k),fR(−k),fG(−k),fB(−k)], which was
defined in Sec. III A.

Writing the eigenstates of the Hamiltonian matrix H0(k) as
|j,k〉 = Mjν(k)|ν,k〉 in terms of the Nambu color states |ν,k〉
and using the corresponding eigenvalues Ej (k) leads to the
Green’s function matrix

Gνν ′(z,k) =
∑

j

Mjν(k)M∗
ν ′j (k)

z − Ej (k)
. (23)

The momentum distribution for color state c can be written
as nc(k) = −T

∑
iωn

Gcc(iωn,k), where Gcc(iωn,k) are the
first three diagonal elements of Gνν ′ (z = iωn,k), T is the
temperature, and ωn = (2n + 1)π/T are the fermionic Mat-
subara frequencies. Performing the Matsubara sums leads to
the momentum distribution

nc(k) =
∑

j

|Mjc(k)|2F [Ej (k)], (24)

where the matrix element Mjc(k) represents the probability
amplitude of finding the color state |c,k〉 as part of the eigen-
state |j,k〉 and |Mjc(k)|2 = Mjc(k)M∗

cj (k). Here F [Ej (k)] is
the Fermi function associated with eigenenergy Ej (k) and the
summation over j includes both quasiparticle and quasihole
states, that is, j runs from 1 to 6.

In Figs. 9(a)–9(d) we show momentum distributions
nc(k) for � = 0.29EF , kT = 0.35kF , bz = k2

T /2m, and
T = 0.01EF that describe the normal phase N3 in Fig. 9(a)

(a)

(c)

(b)

(d)

FIG. 9. Momentum distributions nc(k) for � = 0.29EF , kT =
0.35kF , bz = k2

T /2m, and T = 0.01EF along direction (kx,0,0) for
different color indices c = {R,G,B}. The solid blue lines correspond
to blue states, the long-dashed green lines to green states, and the
short-dashed red lines to red states. Plots are shown for (a) the normal
phase N3 with the scattering parameter 1/kF as = −1.8 (μ/EF =
0.97 and |
|/EF = 0.0), (b) the three-rings superfluid phase R3
with the scattering parameter 1/kF as = −0.069 (μ/EF = 0.81 and
|
|/EF = 0.31), (c) the one-ring superfluid phase R1 with the
scattering parameter 1/kF as = 0.62 (μ/EF = 0.19 and |
|/EF =
0.73), and (d) the fully gapped superfluid phase FG with the scattering
parameter 1/kF as = 1.8 (μ/EF = −2.88 and |
|/EF = 1.25).

with the scattering parameter 1/kF as = −1.8 (μ/EF = 0.97
and |
|/EF = 0.0); the three-ring superfluid phase R3 in
Fig. 9(b) with the scattering parameter 1/kF as = −0.069
(μ/EF = 0.81 and 
/EF = 0.31), the one-ring superfluid
phase R1 in Fig. 9(c) with the scattering parameter 1/kF as =
0.62 (μ/EF = 0.19 and |
|/EF = 0.73), and the fully gapped
superfluid phase FG in Fig. 9(d) with the scattering parameter
1/kF as = 1.8 (μ/EF = −2.88 and |
|/EF = 1.25).

A general key feature of the momentum distributions
shown in Fig. 9 is that the distributions of red fermions are
shifted to the right (towards positive kx) and that of the blue
fermions are shifted to the left (towards negative kx), while
the distribution of green fermions remain centered at zero
momentum. A second general feature revealed by Fig. 9 is
that the momentum distributions get smeared and broadened
along kx by the emergence of the order parameter of the
superfluid state and by increasing scattering parameter. This
leads to an overall reduction of the maximum values of the
momentum distributions, making the fermionic system less
degenerate, similarly to the case of two internal states, that is,
the spin-1/2 case. Another important observation about Fig. 9
is that the momentum distributions nR(k) of the red (R) states
and nB(k) of the blue (B) states satisfy the relation nR(k) =
nB(−k), because the quasiparticle and quasihole energies are
even functions of momentum Ej (−k) = Ej (k) and the matrix
elements MjR(k) = MjB(−k). The latter symmetry relation
follows from the fact that the R and B states experience
momentum shifts kT in opposite directions.

In Fig. 10 we show the momentum distributions nc(k)
for zero color-orbit coupling kT = 0, zero quadratic color
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(a)

(c)

(b)

(d)

FIG. 10. Momentum distributions nc(k) for kT = 0 and bz =
k2

T /2m = 0 at T = 0.01EF along direction (kx,0,0) for different
color indices c = {R,G,B}. The solid blue lines correspond to the
blue states, the long-dashed green lines to the green states, and
the short-dashed red lines to the red states. Plots are shown for
(a) the normal phase N3 with the scattering parameter 1/kF as =
−1.8 (μ/EF = 0.97 and |
|/EF = 0.0), (b) the superfluid phase
S1 with the scattering parameter 1/kF as = −0.069 (μ/EF = 0.78
and |
|/EF = 0.33), (c) the superfluid phase S1 with the scattering
parameter 1/kF as = 0.62 (μ/EF = 0.17 and |
|/EF = 0.73), and
(d) the fully gapped superfluid phase FG with the scattering parameter
1/kF as = 1.8 (μ/EF = −2.88 and |
|/EF = 1.25).

shift bz = k2
T /2m = 0, and finite color-flip field �/EF = 0.29

at T = 0.01EF . The distributions are shown along direction
(kx,0,0) for different color indices c = {R,G,B} and can
be contrasted with those of Fig. 9, where the color-orbit
coupling is kT = 0.35kF . To facilitate comparison between
Figs. 9 and 10, we use the same scattering parameters for
corresponding panels. In Fig. 10(a) we show plots for the
normal phase N3 with the scattering parameter 1/kF as =
−1.8 (μ/EF = 0.97 and |
|/EF = 0.0). In Fig. 10(b) we
show plots for the superfluid phase S1 with scattering param-
eter 1/kF as = −0.069 (μ/EF = 0.78 and |
|/EF = 0.33).
In Fig. 10(c) we show plots for the superfluid phase S1 with
the scattering parameter 1/kF as = 0.62 (μ/EF = 0.17 and
|
|/EF = 0.73). In Fig. 10(d) we show plots for the fully
gapped superfluid phase FG with the scattering parameter
1/kF as = 1.8 (μ/EF = −2.88 and |
|/EF = 1.25). Notice
that the interaction parameters and color-flip fields are exactly
the same as those of the corresponding panels in Fig. 9 and were
chosen as such in order to illustrate the effect of the color-orbit
coupling kT .

Momentum distributions are relatively easy to measure ex-
perimentally in the case of two internal states and there should
be no additional difficulties in measuring them for the case of
color states. However, it is important to emphasize that only
measurements of the quasiparticle and quasihole excitation
spectrum can identify fully each of the topological superfluid
phases and their nodal structure, as discussed in Sec. V A.

A general feature of the momentum distributions shown
in Fig. 10 is that the distributions of red and blue fermions
are not shifted with respect to that of the green fermions,

because there is no color-orbit coupling (kT = 0) and thus no
color-dependent momentum transfer. A second general feature
revealed by the panels of Fig. 10 is that the momentum distri-
butions get smeared and broadened along kx by the emergence
of the order parameter of the superfluid and by the increasing
scattering parameter. This leads to an overall reduction of the
maximum values of the momentum distributions, making the
fermionic system less degenerate, similarly to the case of Fig. 9,
where the color-orbit coupling is nonzero (kT �= 0). Another
important observation about Fig. 10 is that the momentum
distributions nR(k) of the red (R) states and nB(k) of the
blue (B) states are identical, that is, nR(k) = nB(k), because
the matrix elements MjR(k) and MjB(k) in Eq. (24) satisfy
the relation |MjR(k)|2 = |MjB(k)|2. This implies that the R

and B states can no longer be distinguished by measurements
of their momentum distribution since they do not experience
momentum shifts in opposite directions, that is, kT = 0.

In order to sharpen our understanding of spectroscopic
properties of color superfluids in the presence of color-orbit
coupling and color-flip fields, we will discuss next the density
of states for each color.

C. Color density of states

The density of states ρc(ω) for each color c = {R,G,B} can
be obtained from the Green’s function defined in Eq. (23) as

ρc(ω) = − 1

π

∑
k

lim
δ→0

I[Gcc(z = ω + iδ,k)], (25)

where I denotes the imaginary part. Taking the limit of δ → 0
leads to the simplified expression

ρc(ω) =
∑
k,j

|Mjc(k)|2δ[ω − Ej (k)], (26)

where the sum over j = {1, . . . ,6} spans over all quasiparticle
and quasihole states.

In Fig. 11 we show plots of frequency ω/EF versus the
density of the states ρc(ω/EF ) and the corresponding excita-
tion spectrum Ej (k) along the kx direction, for the parameters
� = 0.29EF , kT = 0.35kF , and bz = k2

T /2m at temperature
T = 0.01EF . Figures 11(a) and 11(b) correspond to the nor-
mal phase N3 with the parameter 1/kF as = −1.8 (μ/EF =
0.97 and |
|/EF = 0). Figures 11(c) and 11(d) correspond
to the superfluid phase R3 with the parameter 1/kF as =
−0.069 (μ/EF = 0.81 and |
|/EF = 0.31). Figures 11(e)
and 11(f) correspond to the superfluid phase R1 with the pa-
rameter 1/kF as = 0.62 (μ/EF = 0.19 and |
|/EF = 0.73).
Figures 11(g) and 11(h) correspond to the superfluid phase
FG with the parameter 1/kF as = 1.1 (μ/EF = −0.73 and
|
|/EF = 0.99). A general feature of all the panels in Fig. 11
is that the density of states of the blue and red colors is
identical, that is, ρB(ω/EF ) = ρR(ω/EF ). This symmetry is
ultimately connected to the shifts in the color dispersions
εR(k) = ε(k − kT) to positive momenta and εB(k) = ε(k +
kT) to negative momenta, which together with the evenness of
ε(k) leads to the relationship εR(∓k) = εB(±k). This color-
parity symmetry leads to identical density of states for the red
and blue colored fermions, since it is no longer possible to
distinguish between red and blue fermions after integration
over momentum states. This last observation is an explicit
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(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)

FIG. 11. Frequency ω/EF versus color density of states
ρc(ω/EF ) in the original c = {R,G,B} basis and the corresponding
excitation spectrum Ej (k) along the kx direction. The parameters
used are � = 0.29EF , kT = 0.35kF , bz = k2

T /2m at temperature T =
0.01EF , and various interactions. In (a), (c), (e), and (g) the red dotted
line represents the red fermions, the dashed green line represents the
green fermions, and the blue solid line represents the blue fermions. In
(b), (d), (f), and (h) the style and color code for energiesEj (k) isE1(k),
solid blue; E2(k), dashed red; E3(k), dotted green; E4(k), dash-dotted
cyan; E5(k), dash–double-dotted brown; and E6(k), double-dash–
dotted magenta. (a) and (b) Normal phase N3 with 1/kF as = −1.8
(μ/EF = 0.97 and |
|/EF = 0). (c) and (d) Superfluid phase R3
with 1/kF as = −0.069 (μ/EF = 0.81 and |
|/EF = 0.31). (e) and
(f) Superfluid phase R1 with 1/kF as = 0.62 (μ/EF = 0.19 and
|
|/EF = 0.73). (g) and (h) Superfluid phase FG with 1/kF as = 1.1
(μ/EF = −0.73 and |
|/EF = 0.99).

consequence of the symmetry relations for the matrix element
Mj,R(±k) = Mj,B(∓k) and for the quasiparticle and quasihole
energies Ej (k) = Ej (−k), which follow from the fact that the
red (R) and blue (B) states get momentum kicks kT in opposite
directions. Another overall feature of the plots is that cusps and
peaks in the density of states ρc(ω/EF ) are associated with
maxima, minima, and flat regions in the energy dispersions
Ej (k).

In Fig. 11(a) the color density of states ρc(ω/EF ) of
the normal phase N3 with nonzero �/EF and kT /kF has
similar features to those of the normal state when �/EF

and kT /kF are zero and the red, green, and blue color states
are degenerate. However, nonzero �/EF and kT /kF mix the

original R, G, and B states and lift degeneracies, making the
density of states of the green fermions different from that
of the red and blue fermions; the density of states of red
and blue fermions, though, remains the same because of the
color-parity symmetry εR(∓k) = εB(±k). The corresponding
quasiparticle-quasihole spectrum is shown in Fig. 11(b).

In Fig. 11(c) the color density of states for the R3 superfluid
phase is illustrated. At low frequencies |ω|/EF � |
|/EF

the density of states grows linearly with frequency ω, that
is, ρc(ω/EF ) = γcω/EF , because of the three nodal lines
(rings) in the excitation spectrum. The coefficient γc depends
on color. In the present case γR = γB �= γG. Peaks in the
color density of states appear at maxima and minima of the
quasiparticle-quasihole excitation spectrum, as can be seen
from the plots in Figs. 11(c) and 11(d).

In Fig. 11(e) the color density of states for the R1 su-
perfluid phase is shown. Again, the color density of states is
ρc(ω/EF ) = γcω/EF for low frequencies, because there is a
nodal line (ring) in the excitation energies Ej (k). In the R1
phase, the coefficient γc is color dependent with γR = γB �= γG

similarly to the R3 phase. Again, peaks in ρc(ω/EF ) appear at
maxima and minima of the quasiparticle-quasihole excitation
spectrum, as can be seen in Figs. 11(e) and 11(f).

In Fig. 11(g) the color density of states for the FG superfluid
phase is shown. There is now a clear gap Eg in the color density
of states ρc(ω/EF ), as can be seen in the excitation spectrum
Ej (k) shown in Fig. 11(h). Deep in this phase, where the
scattering parameter 1/kF as is large, the quasihole energies
carry essentially no spectral weight. The physical reason for
the very small quasihole spectral weight is that interactions
are sufficiently strong 1/kF as ∼ O(1) and colored fermions
are sufficiently nondegenerate (μ/EF � −1) that two-body
bound states (colored pairs) are well established. Therefore, the
creation of elementary (single-fermion) excitations requires
the breaking of two-body bound states and thus only positive-
energy states are accessible.

It is important to mention that the color density of states
can also be measured using the photoemission spectroscopy
technique developed for cold atoms, which was used to probe
the density of states of strongly interacting Fermi gas of 40K
atoms with two internal states throughout the evolution from
the BCS to the BEC limits [61]. Now that we have finalized
our discussion of spectroscopic quantities, we would like make
some final remarks, before we summarize our conclusions.

VI. FINAL REMARKS

We would like to make some final remarks on a few
important issues that we have not discussed so far, such as
Efimov states, nonuniform superfluidity, the critical temper-
ature of color superfluids, and trap effects. It is important to
understand how these topics are affected by color-orbit and
color-flip fields. However, this analysis lies beyond the regions
of applicability of our current work, but can be included in
refined generalizations as discussed below.

We begin our discussion by pointing out that Efimov trimers
in ultracold fermions with three internal states {c = R,G,B}
can be formed in an extremely dilute cloud of atoms. The
densities for which these RGB triatomic molecules may
form and remain stable is typically less than 1012 atoms
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per cubic centimeter, based on an extensive description of
Efimov states in a variety of systems [62]. Below the upper
bound density for 1012 cm−3 it may be sufficient to regard the
trimers as isolated; however, with increasing atom densities
in the range of 1012–1014 cm−3 the surrounding medium
largely limits the formation of stable triatomic molecules. In
the particular case of fermions, the Pauli exclusion principle
plays an important role as the density increases, eventually
preventing the formation of Efimov trimers. If we were to
consider that the binding energy of an Efimov RGB trimer
was slightly lower than that of dimers RG, GB, and RB

and assumed that the lifetime of trimers and dimers were
infinitely long, then at low temperatures, a trimer liquid would
be expected at lower densities and a dimer superfluid would be
expected at higher densities [17,63] in the limit of zero color
orbit (kT = 0), color flip (� = 0), and color shifts (δ = 0).
This situation is similar to what happens in QCD, where at
lower densities baryons (RGB trimers of quarks) exist, but at
higher densities color superfluids (RG, GB, and RB dimers
of quarks) emerge [13,64].

A conjectured zero-temperature phase diagram describing
Efimov trimers and color dimers with infinite lifetimes has
been sketched for a three-component (color) Fermi mixture in
the regime of narrow Feshbach resonances [63], but without
color-orbit, color-flip, or color-shift fields. The phase-space
parameters used were the resonance strength parameter kF R∗
and the interaction parameter 1/kF as , where kF is the Fermi
momentum for the three-component system, R∗ is the scatter-
ing strength length, and as is the s-wave scattering length.
Indeed, at lower densities Efimov trimers are present, but
they dissociate and disappear as density is increased [62,63].
In the broad resonance regime that we are considering, the
three-body parameter κ

(0)
∗ plays the same role as the inverse of

the length associated with the strength of the resonance [62],
that is, (R∗)−1. Therefore, a similar qualitative phase diagram
of kF /κ

(0)
∗ versus 1/kF as is expected in the absence of color-

orbit and color-flip fields [62,65]. However, the inclusion of
color-flip fields creates internal population imbalances, which
exacerbate the effects of the Pauli exclusion principle, thus
making the formation of Efimov states more difficult. A
quantitative analysis of Efimov states for colored fermions with
three internal states in the presence of color-orbit and color-flip
fields is the subject of another work [65] meant to describe the
low-density regime n � 1012 cm−3 of the present problem.

However, in the context of cold atoms, the formation of
dimers and trimers occurs mostly in excited states and not in
their ground states. This means that such excited state dimers
and trimers have lifetimes and can decay into lower-energy
states spontaneously or dissociate via collisional processes.
For instance, the existence of Efimov trimers in 6Li has been
observed experimentally via an increase in the particle loss rate
mediated by triatomic molecules [9,10] and via atom-dimer
loss rates [66,67]. Although, for three-component fermions, we
are not aware of experiments that measure directly the lifetimes
of excited state dimers and trimers at different scattering
lengths, a recent experiment involving 85Rb has shown that
excited trimers 85Rb3

∗ have a much shorter lifetime than
dimers 85Rb2

∗ with slightly smaller binding energy [68] at
various fixed scattering lengths and for densities in the range

of 1011–1013 atoms/cm3. For example, in this density interval,
lifetimes for trimers range from 125 to 97 μs, while the
lifetime of dimers range from 2 to 1 ms at s-wave scattering
length as = 700a0, where a0 is the Bohr radius. This indicates
that excited dimers can exist about ten times longer than
excited trimers with comparable binding energy. If for three-
component fermions a similar scenario applies, that is, if at
low densities the lifetime of trimers is much shorter than that
of dimers with comparable binding energy, then there is a
time regime which is sufficiently long for trimers to decay, but
sufficiently short for dimers not to decay. In this experimental
time regime, we can consider just the quantum phases that
emerge due to the existence of atoms and excited dimers, that
is, normal state and color-superfluid phases, as discussed in
this work. On the other hand, if the lifetimes of dimers and
trimers are comparable, it is clear that one must also include
possible phases of trimers in the putative phase diagram of
three-component fermions.

Another important point to mention is that nonuniform
color superfluidity may exist over a narrow area in the BCS
regime of the phase diagram shown in Fig. 3, that is, in
the range of parameters �/EF � 0.2 and 1/kF as � −1. For
continuum problems in three spatial dimensions, nonuniform
superfluids occur only in the BCS regime and at very low
temperatures T/TF � 10−3, as its formation requires a large
degree of particle-particle nesting which parabolic bands do
not provide [69,70]. Therefore, in three-dimensional contin-
uum systems, nonuniform superfluid states of the Larkin-
Ovchinikov [69] or Fulde-Ferrel [70] type may exist only in
a very limited region of phase space, which is confined to the
BCS regime and very low temperatures. The situation is similar
for color superfluids with color-flip and color-orbit fields.

In addition, we would like to comment on the effects of
fluctuations and on its importance in obtaining the critical
temperature of the system away from the BCS regime. In
the case of zero color-orbit and color-flip fields, the critical
temperature of color superfluids has been investigated as a
function of the interaction parameter 1/kF as using the T -
matrix approach [16] and leads to results qualitatively similar
to those of spin-1/2 Fermi superfluids [59]. Without color-orbit
and color-flip fields the normal state of the system evolves
from a color (RGB) Fermi liquid to a color Bose liquid with
RG, GB, and RB molecules (dimers) of masses MD equal
to twice the mass m of their constituent fermions. The critical
temperature in the Bose-Einstein condensation regime is that of
noninteracting bosons (dimers) of mass MD = 2m and density
nD = n/6, where n is the density of fermions. Therefore,
TBEC = (2π/MD)[nD/ζ (3/2)]2/3 = 0.137EF is proportional
to Fermi energy.

The critical temperature of spin-1/2 ultracold fermions
was recently investigated in the presence of Zeeman fields
and of the experimentally relevant equal Rashba-Dresselhaus
spin-orbit coupling [71]. That analysis revealed that spin-orbit
coupling and Zeeman fields modify the masses of the Bose
molecules and lead to an enhancement of the critical temper-
ature in the BEC regime. Furthermore, in the BCS region, the
critical temperature lies always below that of a system without
Zeeman fields and spin-orbit coupling. A detailed analysis of
the fluctuation effects and the critical temperature of color
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superfluids in the presence of color-orbit and color-flip fields is
an important issue and is left to be carried out later following the
works on spin-1/2 fermions [71] and on color superfluids [16].

Finally, we would like to comment on the effects of trapping
potentials. Historically, harmonic confining potentials have
been consistently used to trap atomic Fermi gases and the
local-density approximation (LDA) has been widely used to
describe the resulting inhomogeneous states. For harmonic
traps Vtrap(r), the chemical potential μ of our system is mapped
onto a local chemical potential μ̃(r) = μ − Vtrap(r) within
the LDA. Thus, several of the phases described in our phase
diagram, shown in Fig. 3(a), may coexist in a harmonic trap. For
example, at unitarity, the single-ring and the three-ring color
superfluid phases can coexist in harmonic traps and the detailed
inhomogeneous spatial structure of color superfluids needs to
be mapped for fixed color-orbit and color-flip fields. However,
the current trend in experimental work is to create different
types of trapping potentials including that of a box-type variety
using digital micromirror devices [72], which can produce
homogeneous states. This trend to study experimentally ho-
mogeneous systems is reflected in recent work covering both
Bose [73] and Fermi [74] atomic superfluids. Thus, we expect
that homogeneous color superfluids with and without color-
orbit and color-flip fields will be studied using box potentials,
such that a direct comparison to our work can be made.

VII. CONCLUSION

We studied the quantum phases of interacting colored
fermions in the presence of color-orbit coupling and color-flip
fields. Experimental candidates for the observation of such
phases include 6Li, 40K, and 173Yb, which possess at least
three internal states, which can be labeled red (R), green (G),
and blue (B), and therefore can be used to simulate exotic
phases related to quantum chromodynamic systems in tabletop
experiments.

Among many possibilities of analogous exotic quantum
chromodynamic phases, we focused on the emergence of
color superfluidity, where the presence of color-orbit coupling
and color-flip fields induce Lifshitz-type topological phase
transitions. In such transitions, the symmetry of the order
parameter tensor does not change, but the structures of the
ground-state wave functions and of the energy spectrum of
elementary excitations (quasiparticles and quasiholes) do.

We constructed the low-temperature phase diagram of
color-flip field versus scattering parameter (interactions) and
classified the emerging color superfluid phases in terms of
the loci of zeros of the quasiparticle excitation spectrum in
momentum space. For fixed color-orbit coupling and quadratic

color-shift field, we identified five gapless phases with one,
two, three, four, or five rings of nodes in the excitation spectrum
and one fully gapped phase. In addition, we found that a very
rare quintuple point exists where five gapless superfluid phases
with line nodes converge. Given that the phase transitions from
one nodal superfluid to another is continuous (second order),
the quintuple point is also pentacritical. Furthermore, in the
limit of zero color-flip fields but finite color-orbit coupling,
phase transitions from the normal state to a nodal superfluid
and from a nodal to fully gapped superfluids occur.

We contrasted the phase diagram of nonzero color-orbit
coupling with the simpler case of zero color-orbit coupling,
where the color-flip field versus scattering parameter phase
diagram has only one gapless and one fully gapped superfluid
phase. In the limit of zero color-flip field, the gapless phase
is described by an inert degenerate mixed-color fermion band
and two fully gapped bands of quasiparticle excitations, while
the fully gapped phase is described by an inert nondegenerate
mixed-color fermion band and two fully gapped bands of
quasiparticle excitations. In this case, only a crossover between
BCS and BEC superfluids occurs.

We used the connectivity of the nodal regions in momentum
space to classify the topology of the superfluid phases and
analyzed the order parameter tensor structure in a mixed-
color representation as well as in a pseudospin representation
exploring the singlet, triplet, and quintet sectors. We found
that the nodal structure of the order parameter tensor does
not coincide with the nodes in the quasiparticle-quasihole
excitation spectrum, which is the case for the more familiar
example of spin-1/2 fermions.

In addition to topological aspects, we investigated in detail
spectroscopic properties of colored fermions in their normal
and superfluid phases. We analyzed the quasiparticle-quasihole
excitation spectrum as well as the momentum distribution and
density of states of colored fermions and concluded that these
properties can be used to help distinguish between different
topological nodal phases of color superfluids and can be
measured using current experimental techniques.
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