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High-accuracy energy formulas for the attractive two-site Bose-Hubbard model
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The attractive two-site Bose-Hubbard model is studied within the framework of the analytical solution obtained
by the application of the quantum inverse scattering method. The structure of the ground and excited states is
analyzed in terms of solutions of Bethe equations, and an approximate solution for the Bethe roots is given. This
yields approximate formulas for the ground-state energy and for the first excited-state energy. The obtained
formulas work with remarkable precision for a wide range of parameters of the model, and are confirmed
numerically. An expansion of the Bethe state vectors into a Fock space is also provided for evaluation of expectation
values, although this does not have accuracy similar to that of the energies.
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I. INTRODUCTION

Interacting indistinguishable bosonic systems capture a
wide variety of physical systems, from cold atoms [1], photons
[2], and elementary excitations in solid state systems [3] such
as excitons, magnons, polaritons, and phonons, to elementary
particles such as gluons [4]. The ability to produce and control
identical bosons has improved vastly over the last few decades.
Bose-Einstein condensation [5,6] allows the preparation of
interacting bosonic systems in traps of highly flexible geom-
etry. For example, to produce large arrays of trapped bosons,
cold atoms can be placed in optical lattices [7], and exciton
polaritons can be etched or patterned [8] for the purposes
of quantum simulation [9]. Although not strictly bosonic,
superconductors also have exquisite engineering capability
that realized a quantum phase transition to a Mott insulating
phase early on [10]. The achievement of the Bose-Einstein
condensation of photons [11] and magnons [12,13] may also
make it possible for similar engineering to be performed in
other systems.

One of the most simple and experimentally relevant con-
figurations in this context is a system of a large number of
interacting two-species bosons. This could be realized, for
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example, by a Bose-Einstein condensate (BEC) in a double-
well trap [14] (Fig. 1), or bosons with two internal states
[15]. Despite its simplicity, many interesting phenomena have
been investigated in the past using this basic configuration,
such as a single bosonic Josephson junction [16] and matter-
wave interferometry [17]. By taking advantage of the natural
interaction between the bosons, squeezing of quantum states
can be performed for use in quantum metrology [18–20]. Many
theoretical studies has also been carried out within this concept
and beyond; for example, the Einstein-Podolsky-Rosen (EPR)
paradox has been considered [21,22], as well as different
quantum dynamics such as the revivals and decoherence
[23–25]. Investigations toward using such system as the basis
of quantum computing have also been performed [26,27].

Due to the wide applicability of the model, solutions for
the ground- and excited-state energies and wave functions
are of direct interest to compare to experiment. The problem
mathematically can be described by two-site Bose-Hubbard
model in the two-mode approximation [28]. One of the most
common approaches to the model is a straightforward numer-
ical investigation; see, for example, [22]. Some good approxi-
mations to the tunneling frequency have also been obtained by
means of a Bohr-Sommerfeld quantization approach [29]. The
model was solved exactly by the application of the quantum
inverse scattering method (QIM) [30], see also Ref. [31] for
a review. The QIM [32,33] allows us to define some special
class of exactly solvable or integrable models. The property of
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FIG. 1. Two-site Bose-Hubbard model realized by an asymmetric
double-well trap. The energy difference between the two wells is 2ε,
the tunneling occurs with amplitude J , the on-site interaction between
the atoms in the same well is U , and the interwell interaction is V .
We consider the attractive regime where U < V .

integrability allows one to obtain exact, nonperturbative results
for eigenenergies and time-dependent correlation functions.
Originally the QIM was mainly developed in Refs. [34–36]; for
an extensive review, see Refs. [37–39]. The QIM is one of the
most powerful tools for analyzing one-dimensional strongly
correlated systems, for example, in spin chains [38,40–42]
or for one-dimensional BECs [43,44]. Furthermore the QIM
can be applied to problems in areas such as quantum optics
[45], string theory [46], and random walks [47]. For the
two-site Bose-Hubbard model, the determinant representation
for time-dependent correlation functions has been developed
[48], and the expansion of the eigenfunctions of the model into
Fock space was been performed in Ref. [49].

Despite the fact that the mathematical solutions of the two-
site Bose-Hubbard model are well developed, the cornerstone
of practical implementation of QIM are the Bethe equations,
which are a set of coupled nonlinear algebraic equations.
The explicit form of Bethe equations depend crucially on the
model under consideration. For some special cases it can be
solved analytically [33], whereas for most cases it requires
significant computational power. For other models several
different techniques of solving Bethe equations have been
developed [50–53]. For the two-site Bose-Hubbard model,
no effective technique of solving Bethe equations has been
developed so far. This has made the evaluation of the exact
solutions using QIM rather cumbersome and has hindered their
practical use as a tool to analyze the model.

In this paper, we analyze the structure of the Bethe equations
for the attractive two-site Bose-Hubbard model. We describe
the ground state and the elementary excitations of the model
in terms of solutions of the Bethe equations. Approximate
solutions of the Bethe equations are given, which in turn can
be used to obtain approximate formulas for the ground-state
energy and for the first excited-state energy. We find that due
to the power of the QIM method, the approximate solutions
give extremely precise expressions for the energy which can be
evaluated relatively straightforwardly. These are numerically
confirmed and we analyze the level of accuracy attained. These
solutions can in principle be used to evaluate expectation values
as well, although the accuracy is not as high as for energies.

The paper is organized as follows. In Sec. II we give an
overview of the two-site Bose-Hubbard model, the traditional
approach to the eigenvalue problem, and general properties of
the spectrum. We introduce an auxiliary Hamiltonian which is

more convenient from the standpoint of the QIM. In Sec. III we
provide a short review of the results obtained by application of
the QIM to the model under consideration. For our purposes
we need only Bethe equations and the expression for spectrum
of the model. In Sec. IV A we analyze the structure of
elementary excitations of the model in terms of solutions of
Bethe equations. We provide a numerical analysis of Bethe
equations and also propose and motivate several statements
about general structure of solutions of Bethe equations. In
Sec. IV B we introduce the equidistant approximation for
the solutions of Bethe equations and using it we obtain the
approximate formulas for the ground state of the model.
In Sec. IV C by applying the equidistant approximation we
derive the approximated formulas for the first excited state
of the model. We also discuss the behavior of solutions of
Bethe equations under some certain transformations and find
a singular point in the solution. In Sec. V we discuss the
application of the equidistant approximation to the evaluation
of expectation values. Finally, in Sec. VI we summarize and
discuss the primary results of the paper.

II. TWO-SITE BOSE-HUBBARD MODEL

The system considered in this paper is the two-site Bose-
Hubbard model, which is described by the Hamiltonian

Ĥ = ε(a†a − b†b) − J (a†b + ab†)

+ U

2
(a†a†aa + b†b†bb) + V a†ab†b, (1)

where a,a† and b,b† are bosonic creation and annihilation oper-
ators, respectively, in each site satisfying [a,a†] = [b,b†] = 1,
and operators on different sites commute. The total number
operator of particles N̂ = a†a + b†b is conserved: [Ĥ,N̂ ] = 0.
Here, ε is the bias potential, J is the tunneling between
the wells, U is the on-site interaction energy, and V is the
intersite interaction energy. We define U − V > 0 to be a
repulsive regime, where the interaction energy is minimized by
distributing the atoms evenly between the wells. Conversely,
for U − V < 0 the atoms are in an attractive regime, where
the interaction energy is minimized by having all atoms in the
same well.

The above model can be realized in various different ways.
In Fig. 1 we show one possible realization of the two-site Bose-
Hubbard model, where N bosons are placed in an asymmetric
double-well trap, and the two-mode approximation is made
[28]. The symmetric double-well trap corresponds to setting
ε = 0. For cold neutral atoms in mean-field approximation,
the interaction can be expressed U = 4πh̄2a

m
, where a is the

s-wave scattering length [54], and can be tuned using Feshbach
resonances [55]. For the intersite interaction energyV , this may
arise from a long-range interaction in the BEC, for example,
by a spin-orbit-coupling [56] or dipole-dipole interaction [57].
The bias ε may be positive or negative, depending on the energy
detuning between the two modes. Another way that the two-site
Bose-Hubbard model could be realized is where the two modes
are defined by two hyperfine spin states. In this case U and V are
determined by the interactions between the same and different
spin species. Similar Hamiltonians have been examined to
study miscible-immiscible transitions controlled by the ratio of
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U and V [58]. For the details of the experimental realization of
the Hamiltonian (1), the reader can see, for example, Ref. [14].
Typical range for parameters ε, J, U, and V can be found, for
example, in Refs. [5,56].

Consider the eigenvalue problem for the above Hamiltonian

Ĥ
∣∣�σ

N

〉 = Eσ
N

∣∣�σ
N

〉
, (2)

where σ labels the eigenstates σ = 0, . . . ,N . Since the Hamil-
tonian conserves total particle number N , the wave function
can be expanded as

∣∣�σ
N

〉 =
N∑

n=0

AN,σ
n |N − n〉a|n〉b, (3)

where |m〉q = (m!)−1/2(q†)m|0〉q , (q = a,b) are the number of
particles in a and b traps, respectively. The states (3) form a
complete orthogonal set. Amplitudes AN,σ

n satisfy the matrix
equation

Eσ
NAN,σ

n

=
[
ε(N − 2n) + (U − V )n(n − N ) + U

2
N (N − 1)

]
AN,σ

n

− J
√

(n + 1)(N − n)AN,σ
n+1 − J

√
n(N − n + 1)AN,σ

n−1,

(4)

where the rank of this equation is N + 1. The spectrum
Eσ

N (ε,J,U,V ) of Hamiltonian (1) possesses the following
properties:

Eσ
N (ε,J,U,V ) = Eσ

N (−ε,J,U,V ) = Eσ
N (ε, − J,U,V ),

Eσ
N (ε,J,U,V ) = −EN−σ

N (ε,J, − U, − V ). (5)

In the limit of zero interaction U = V = 0, one can simply
diagonalize Hamiltonian (1) by a linear transformation of the
boson operators to obtain the spectrum

Eσ
N (ε,J,0,0) =

√
ε2 + J 2(2σ − N ). (6)

For the application of the QIM it is convenient to introduce
another Hamiltonian. The conservation of the total number
operator allows us to define an equivalent Hamiltonian with an
energy offset and rescaling [48]:

Ĥ = − 1

J

(
Ĥ − U

2
N̂ (N̂ − 1) − εN̂

)
, (7)

which satisfies [Ĥ ,Ĥ] = 0. This can be explicitly written as

Ĥ = a†b + ab† + �b†b + c2a†ab†b, (8)

where

c2 = U − V

J
, � = 2ε

J
(9)

are the rescaled interaction strength and detuning, respectively.
The introduced parameters c2 and � are dimensionless, so the
eigenenergies of Hamiltonian (8) are dimensionless as well.
Henceforth we can consider Ĥ and give its exact solution, but
the same results can immediately be extended to the model
with Hamiltonian (1) through the mapping given above.

The eigenvalue problem for Hamiltonian (8),

Ĥ
∣∣�σ

N

〉 = Eσ
N

∣∣�σ
N

〉
, (10)

can equally be solved by applying the expansion (3) for |�σ
N 〉.

Denoting the amplitudes of the expansion in this parametriza-
tion by AN,σ

n , the matrix equation is

Eσ
NAN,σ

n = [�n + c2n(N − n)]AN,σ
n +

√
n(N − n + 1)AN,σ

n−1

+
√

(n + 1)(N − n)AN,σ
n+1. (11)

From the energy eigenvalue Eσ
N of Hamiltonian (8), we can

find the energy Eσ
N of Hamiltonian (1) using the mapping (7)

Eσ
N = − JEσ

N + U

2
N (N − 1) + εN. (12)

In this paper we consider only the attractive case U − V <

0. For simplicity we suppose that ε and J are always negative,
so the constants c2 and � are always positive. From the symme-
tries in Eq. (5), this can be assumed without loss of generality.
From the relation (5) we observe that the ground state of the
attractive case is the highest energy excitation for the repulsive
case and vice versa. Hence, our results for the attractive case
can be mapped to the repulsive case in this sense. However,
since we assume that the ground and low energy states are
most important in practice, our results will be mostly relevant
to the attractive case. We note that for attractive BECs there
is typically a limit to the maximum number of atoms due to
the development of vibrational instabilities [59]. Although an
unconfined attractive BEC is always unstable, this can be over-
come by setting a suitably tight confining trap. In this sense,
for a particular physical implementation, there may be inac-
cessible parameter ranges. In writing Eq. (1) we have assumed
that the system is suitably prepared such that the BEC is stable.

III. QUANTUM INVERSE METHOD

The model described by Hamiltonian (1) is exactly solvable.
It was first solved by the application of the QIM in Ref. [30].
The QIM allows the construction of a complete orthogonal set
of eigenfunctions and finds its corresponding energy spectrum.
In this context it is more convenient to consider Hamiltonian
(8), in terms of the parameters c and �. In this section we
summarize the main results of the solution obtained by the
QIM; for a detailed explanation of the application of the QIM
to Hamiltonian (8) see Ref. [48].

The energy spectrum Eσ
N of Hamiltonian (8) is given by

[48]

Eσ
N = − 1

c2
+ 1

c2

N∏
j=1

(
1 + c

λσ
j

)
, (13)

where the roots λσ
j are defined as the solutions of N Bethe

equations

cλσ
n

(
cλσ

n + �
) =

N∏
j=1,j �=n

λσ
n − λσ

j − c

λσ
n − λσ

j + c
. (14)

We denote the solution of the Bethe equations (14) as �σ
N =

{λσ
1 ,λσ

2 , . . . ,λσ
N }, where σ = 0,1, . . . ,N is a label for the

energy levels of the system. The QIM demands that all roots
λσ

i in one solution be different ∀ λσ
i,j ∈ �σ

N ⇒ λσ
i �= λσ

j , such
that the solution describes a physical state [33]. There are
N + 1 solutions �σ

N which satisfy this condition, and each
of them corresponds to a certain energy level Eσ

N .
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FIG. 2. Solutions �σ
15 of the Bethe equations (14) on the complex plane. The parameters are c = 0.3, � = 0.5, and N = 15. The vertical

solid line is equal to −�

c
.

The complex conjugation of each root (λσ
i )∗ belongs to the

same solution ∀ λσ
i ∈ �σ

N ⇒ (λσ
i )∗ ∈ �σ

N [60]. This ensures
that the energy in Eq. (13) is always real. It is evident that if N is
even we have an even number of purely real roots in the solution
�σ

N whereas if N is odd we have an odd number of purely real
roots. A typical root distribution is depicted in Fig. 2; a more
detailed explanation of this picture will be provided in the
next section. It is also straightforward to verify that Eq. (14)
possesses the following symmetry: shifting the solution of
the Bethe equations for parameters (c,�) by λσ

n → λσ
n − �/c

results in another solution for the parameters (c, − �). It is
also straightforward to check that there are no other constant
shifts which can generate more solutions.

In general, the set of solutions {�σ
N }Nσ=0 of the Bethe

equations (14) contains complete information not only about
eigenenergies of Hamiltonian (8) but about its eigenfunctions
as well. Therefore, any observable can be expressed in terms of
the roots. Eigenfunctions being expressed via roots are usually
called Bethe vectors. In Ref. [30] such Bethe vectors were
constructed for the two-site Bose-Hubbard model. Reference
[48] gives the Bethe vectors for Hamiltonian (8).

IV. APPROXIMATE SOLUTIONS
OF THE BETHE EQUATIONS

To extract physical observables from the QIM, one is faced
with the task of solving the Bethe equations. Equations (14)
are a set of N coupled algebraic nonlinear equations. Solving
the system of equations (14), even numerically, is a nontrivial
task for realistic systems where the total number of particles N

is large. Considering that the original matrix equations (11) are
also an eigenvalue problem in N + 1 equations, it may appear
that solving the original set of equations is a simpler and more
straightforward approach. However, we show here that it is not
always necessary to know the exact solution �σ

N of the Bethe
equations to extract information about observables. In this
section we demonstrate how we can obtain some information
about energy levels of the system without solving the Bethe
equations explicitly.

A. Structure of the Bethe solutions

To start, let us first make a guess of a suitable distribution of
roots �0

N = {λ0
1,λ

0
2, . . . ,λ

0
N }, which can potentially satisfy the
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Bethe equations (14), and which can also minimize the energy
(13). To minimize energy E0

N let us suppose that for the ground
state, all the roots λ0

i are real and negative. Using the data
obtained from various numerical solutions of Bethe equations
we can make another assumption that cλ0

1(cλ0
1 + �) → 0, so

λ0
1 can be either close to zero λ0

1 → 0 or be equal to λ0
1 = −�

c
.

For λ0
1 → 0 the energy E0

N will be increased significantly and
may be positive, so we suppose that λ0

1 = −�
c

. This assumption
can also be justified by the fact that for large c the ground-state
energy goes to zero; it will become clear below that this would
be impossible without this assumption. The right-hand side of
the first Bethe equation should then be zero:

N∏
j=2

λ0
1 − λ0

j − c

λ0
1 − λ0

j + c
= 0. (15)

One obvious way to satisfy Eq. (15) is to pick λ0
2 = −�

c
−

c. Now if we demand the remaining λ0
i to be less than λ0

2,
the energy E0

N will always be negative. To minimize E0
N , the

remaining λ0
i should be as small as possible and negative, while

still satisfying the Bethe equations. The Bethe equations (14)
require all the roots λi to be separated by some finite range.
The least possible range between two different roots is equal to
c. Indeed, if we have �0

N : ∀ λ0
i �= λ0

j ∈ �0
N ⇒ |λ0

i − λ0
j | > c,

the right side of the Bethe equations will always be positive,
as it should be, because ∀ λ0

n ⇒ cλ0
n(cλ0

n + �) > 0.
The exact numerical solution of the Bethe equations for

typical parameters and a relatively small particle number N =
15 is shown in Fig. 2. Although the numerical values of the
solutions depend on the particular parameters chosen, from
Fig. 2, where σ = 0, it can be seen that the basic structure for
ground state is always the same. That is, the roots always have
zero imaginary parts and are negative, they are also always
separated from zero by a gap whose value is −�

c
, and the

distance between two different roots is always bigger than c.
An M-hole type excitation can be generated by removing M

particles from the N -particle ground state, as shown in Fig. 2.
Such a picture is analogous to the ground state of fermions,
where we create an excitation by removing the particle under
the Fermi sphere. In the QIM, however, the roots themselves do
not directly relate to a physical observable, although in some
cases the root can be associated with the quasimomentum of
the particle, for example, in the Lieb-Liniger model [43].

B. Ground state

1. Approximate energy formula

From the general expression for the energy in Eq. (13), it is
easy to see that large values of λσ

n only give a small correction
to the energy. In view of this, it is more important to obtain a
good estimate for the small values of λσ

n . Using the assumptions
made above about distribution of the roots for the ground state,
we propose the following equidistant approximation:

λ0
n ≈ −�

c
− c(n − 1), (16)

where n = 1, . . . ,N . This formula predicts a first few roots
extremely well and the level of approximation becomes worse
as n increases. Notice that despite the fact that Eq. (16) predicts
several first roots with great precision, the approximated
roots can never exactly coincide with the roots from actual
solutions. The direct substitution of Eq. (16) into Eq. (14)
will eventually lead to the contradiction. Actual solutions of
the Bethe equations (14) are always slightly different from
those ones predicted by Eq. (16), the numerical discrepancy
can be negligible but it always exists. Substituting Eq. (16)
into Eq. (13) we obtain an approximate expression for the
ground-state energy:

E0
N ≈ − N + 1

c2(N − 1) + �
. (17)

Using the formulas (12) and (17) we can find the ground-state
approximation for Hamiltonian (1)

E0
N ≈ J 2(N + 1)

(U − V )(N − 1) + 2ε
+ U

2
N (N − 1) + εN. (18)

2. Error analysis

In Figs. 3–5 we plot the relative error

ξ (X) =
∣∣∣∣Xapprox − Xexact

Xexact

∣∣∣∣, (19)

where Xexact and Xapprox are the exact and approximate values.
In Figs. 3 and 4 we analyze the relative error of Eqs. (17)
and (18) compared to numerically obtained values using exact
diagonalization. Formula (17) works with high precision for
a wide range of parameters except for small dimensionless
interactions c2 < 0.01 for the particle numbers in the range
N > 100. The fact that the approximation breaks down for
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1

0.1 0.2 0.3 0.4
-1

0

1

(b)

0

(с)(a)
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FIG. 3. Relative error for the approximated formula (17) vs c for different values of � = 0.01,0.5,1, for (a) N = 100 and (b) N = 1000.
(c) Relative error for the approximated formula (18) vs U/J for marked values of ε/J , and for V = 0 and N = 100.
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FIG. 4. The relative error ξ for all the approximate formulas in
this paper versus the dimensionless interaction c. The chosen physical
parameters are ε/J = 0.25,V = 0,N = 500, which correspond to
� = 0.5 in (8). The dashed vertical line corresponds to the special
point U = 2ε, whereas the dotted one corresponds to the value of
c = √

� = √
0.5.

small c is not surprising because the point c = 0 is singular for
the Bethe equations (14). The Bethe solution has the property
that it works better when the interactions are strong. In this
way it is complementary to perturbative techniques expanding
around the limit of zero interaction. It can be seen from Fig. 3
that Eq. (17) improves in accuracy as N is increased, and has
a fairly small dependence on �. Since the range c2 = (U −
V )/J < 0.01 corresponds to physically a rather small value,
the results suggest that our formulas give a powerful way of
evaluating the energies. In Fig. 5 the dependence of the relative
error of the formulas on N is shown for typical values. The
straight line on the log-log plot suggests a effective power-law
dependence of the error

ξ ∼ N−α. (20)

102 103
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FIG. 5. Relative error ξ for all the approximation formulas of
the paper, for different N ∈ [100,1000]. Here the parameters are
ε = −0.25, J = −1.0, U = −0.4, and V = 0.0, and correspond-
ingly � = 0.5 and c = √

0.4; and for Eqs. (27) and (28), c = −U =
1.0.

We estimate from Fig. 5 that Eq. (17) has a scaling as α � 1.0,
and Eq. (18) α � 2.9.

C. First excited state

The procedure described above can be applied to finding
the energy of the first excited state. We consider two parameter
ranges c2 < � and c2 > � which must be handled differently
due to reasons we explain below.

1. Approximate energy formula for c2 < �

According to Sec. IV A, the first excited state λ ∈ �1
N can

be found by removing the smallest root λ0
N from the ground

state �0
N , and moving it to a positive value λ1

1 ≡ λ > 0, yet to
be determined. The remaining roots are left unchanged with
respect to the ground state such that

λ1
n = −�

c
− c(n − 2), (21)

for n = 2, . . . ,N . From the first equation of Eq. (14), λ should
satisfy

cλ(cλ + �) =
N∏

j=2,j �=n

λ − λ1
j − c

λ − λ1
j + c

. (22)

Substituting Eq. (21) into Eq. (22) we obtain
N∏

j=2,j �=n

λ − λ1
j − c

λ − λ1
j + c

=
(
λ + �

c
− c

)(
λ + �

c

)
[
λ + �

c
+ c(N − 2)

][
λ + �

c
+ c(N − 1)

] . (23)

Simplifying this expression we obtain

c2λ = λ + �
c

− c[
λ + �

c
+ c(N − 2)

][
λ + �

c
+ c(N − 1)

] , (24)

which has three solutions. Assuming that λ is positive and
small, we discard terms which are proportional to λ2 and λ3,
yielding

λ = � − c2

[c2(N − 2) + �][c2(N − 1) + �]c − c
. (25)

We assume that N is large so the denominator of Eq. (24) is al-
ways positive, whereas the numerator becomes negative when
c2 > �. This fact places us a restriction on our approximation,
because λ should be positive. Nevertheless, the approximate
formula for the first excited state still can be found for the case
c2 > �, which we discuss in the next section. Substituting
Eqs. (21) and (25) into Eq. (13) we obtain the following
approximate formula for the first excited-state energy:

E1
N ≈ c2(N − 1) − N

c2(N − 2) + �
+ �, (26)

which is valid for c2 < �. In terms of the physical variables,
using Eqs. (12) and (26) we can equally write this as

E1
N ≈ ε(N − 2) − (U − V )(N − 1) + U

2
N (N − 1)

+ J 2N

(U − V )(N − 2) + 2ε
, (27)

which is valid for U − V < 2ε.
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Energy

FIG. 6. First excited-state energy vs c. Parameters used are � =
1.0 and N = 100. Solid line shows the exact solution, dashed line is
the approximated energy of Eq. (26), horizontal dotted line is N�.

2. Approximate energy formula for c2 > �

Due to the restrictions described above, Eqs. (26) and (27)
are not valid for c2 > �. In Fig. 6 we compare the exact and
approximate energies as derived above. Evidently the behavior
of the first excited-state energy E1

N dramatically changes at the
point c2 = �. To understand the origin of this, let us examine
the Hamiltonian

ĤZ = �b†b + c2a†ab†b, (28)

which corresponds to Eq. (8) with the tunneling terms turned
off. Since the above Hamiltonian does not possess any off-
diagonal terms, the eigenstates of Eq. (28) are simply number
states |n,N − n〉 with energy

En
ZN = (N − n)(� + c2n), (29)

where n = 0, . . . ,N . For attractive interactions U − V < 0
and a large number of particles, the energy is minimized by
having all the bosons in the same mode a or b. Thus there are
two states |N,0〉 and |0,N〉 which are split by the presence of
the bias field �. The spectrum of Hamiltonian (28) is presented
in Fig. 8. As can be seen, if c2 > � the first excited state is the
state |0,N〉, whereas if c2 < � the state is |N − 1,1〉. Thus the
nature of the first excited state changes dramatically depending
upon what regime the parameters are in.

This phenomenon can also be seen by analyzing the so-
lutions �1

N (c,�) of Bethe equations (14). Solving Eqs. (14)
numerically, we find that under the transformation c → c′, the
solutions smoothly transition from �1

N (c,�) → �1
N (c′,�) as

long as c does not cross the point c2 = �. Once c crosses
this point, the solution �1

N (c,�) changes abruptly, which
in turn affects the energy E1

N . In contrast, the ground-state
energy E0

N is a smooth function of c, and the solution �0
N has

the same structure for all c2 > 0. The structure of solutions
�1

N (c <
√

�,�) and �1
N (c >

√
�,�) are shown in Fig. 7.

Note that λ1 never actually reaches zero, and λ2 never reaches
exactly −�

c
. From Fig. 7 it can be seen that the structure of the

solution �1
N (c,�) changes dramatically once c2 crosses �.

Using this knowledge of the structure of the states we can
deduce the first excited-state energy for the case c2 > �. As we
discuss above, this state and its excitations has essentially the
same structure as the ground state as described in Sec. IV B
except that it has a overall energy shift of �N compared to
the ground state. We can therefore use the same expression as

<

>

(a)

(b)

FIG. 7. Structure of the first excited-state solution �1
N (c,�) of

the Bethe equations (14) for (a) c2 < � and (b) c2 > �.

Eq. (17), but shifted by the energy offset

E1
N ≈ �N − N + 1

c2(N − 1) + �
, (30)

which is valid for c2 > �. By substituting Eq. (30) into
Eq. (12), this can equivalently be written

E1
N ≈ J 2(N + 1)

(U − V )(N − 1) + 2ε
+ U

2
N (N − 1) − εN, (31)

which is valid for U − V > 2ε.

3. Error analysis

In this section we compare the results which have been
obtained by the application of our approximate method with
the results which have been obtained numerically by exact
diagonalization of the matrices (4) and (11), and also by
numerical solution of the Bethe equations (14). We also would
like to notice that the numerical results obtained by exact
diagonalization and by application of the formulas (14) and
(13) coincide completely, which ensures that the formalism
described in Sec. III is correct.

In Fig. 4 the relative errors are shown for Eqs. (26) and (27),
which are valid in the regime c2 < �. As expected, Eq. (26)
fails for large c, where it is beyond its region of validity. From
Fig. 5 it is evident that the precision of the formulas (26) and
(27) increases with N . For Eq. (26) we find that α � 2.0, and
α � 2.9 for Eq. (27). The divergent behavior of Eq. (26) is
caused by E1

N crossing zero, which causes the relative error
to take large values. This is really an artifact of our choice of
the zero point of the energy, and is not related to any physical
effects occurring in the system.

. .
 .

Energy

FIG. 8. Spectrum of the zero-tunneling Hamiltonian (28) for
c2 > �.
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Figure 6 shows Eq. (30), which is valid in the regime c2 >

�. The energy of the first excited state agrees well with the
exact expression for the parameters chosen. The relative errors
of Eqs. (30) and (31) are shown in Fig. 4. The accuracy increase
again follows a power law as seen in Fig. 5. We obtain α � 3.0
for Eq. (30) and α � 4.0 for Eq. (31).

V. EXPECTATION VALUES

We have seen that the equidistant approximation (16) works
extremely well for estimating energies, because it perfectly
predicts the first few roots which make the biggest contribution
to Eq. (13). In this section we see whether other physical
quantities can be estimated using the same approximation.
To evaluate expectation values we express the eigenvectors of
Hamiltonians (1) and (8) via solutions of Bethe equations, and
discuss possible generalizations of the equidistant approxima-
tion. The expansion of Bethe vectors [30,31] into Fock space
was performed in Ref. [49]. Since in the present paper we work
mostly with the auxiliary Hamiltonian (8), it is slightly more
convenient to use another representation of the Bethe vectors,
which is given in Ref. [48], and give its expansion into a Fock
space.

The Bethe state vectors for Hamiltonian (8) according to
Ref. [48] are

|�N (�)〉 =
N∑

m=0

em(b†)mXN−m|0〉a ⊗ |0〉b,

〈�N (�)| = 〈0|b ⊗ 〈0|a
N∑

m=0

emamYN−m, (32)

where em is the elementary symmetric function [61]:

em =
∑

i1<i2<···<im

λi1λi2 · · · λim, (33)

and operators X,Y are defined as

X = c−1�b† + ca†ab† + c−1a†,

Y = c−1b + cab†b. (34)

Despite the fact that vectors (32) are not normalized and not
Hermitian conjugates of each other, they form a complete
orthogonal set, with which one can evaluate any observable
[33]. Specifically, to evaluate the expectation value of an
observable A one must calculate

〈A〉 = 〈�N (�)|Â|�N (�)〉
〈�N (�)|�N (�)〉 . (35)

To evaluate Eq. (35), it is convenient to expand the states (32)
into Fock space. Using standard commutation relations one
may obtain the relation

(αna + a†)M |0〉 =
M∑

k=0

D(M,k)αM−k(a†)k|0〉, (36)

where D(M,k) are coefficients defined by the following recur-
rence relation:

D(M,k) = kD(M − 1,k) + D(M − 1,k − 1) (37)

with the conditions D(1,1) = 1 and D(M,k) = 0 if k > M .
This coefficient possesses the obvious property: D(M,1) =
D(n,n) = 1. The general expression for D(M,k) is given by

D(M,k) =
M−k∑
n1=0

M−k−n1∑
n2=0

M−k−n1−n2∑
n3=0

· · ·

×
M−k−n1−···−nk−1∑

nk−1=0

kn1 (k − 1)n2 · · · 2nk−1 . (38)

By applying the binomial expansion for commuting operators
in Eq. (34) and applying Eq. (36), we can expand the operators
in Eq. (32) to yield the expressions

|�N ({λ})〉 =
N∑

m=0

N−m∑
l=0

l∑
k=0

√
k!

√
(N − k)!D(l,k)

×
(

N − m

l

)
�lmk|k〉a ⊗ |N − k〉a,

〈�N ({λ})| =
N∑

m=0

N−m∑
k=0

〈N − k|a ⊗ 〈k|b
√

k!

×
√

(N − k)!c−2k−m+ND(N − m,k)em, (39)

where the coefficient �lmk is defined as

�lmk = �N−m−lc−N+m+2l−2kem. (40)

To test the above formalism, we evaluated 〈ab†〉 for the
ground state with different sets of parameters N,c, and �. We
obtained results which deviated significantly from the exact
result computed numerically, specifically for the parameters
N = 10, c = 1.0, and � = 0.5 where the obtained estimate
differs by a factor of 10 from the exact value. We attribute this
to a poor estimate of em using the equidistant approximation,
which is not surprising. From Eq. (33) it can be noticed that the
value of em depends on all the roots, and the largest contribution
is given by the last few roots. In contrast to the energy in
Eq. (13), the expression (33) is very sensitive to any deviation
from the exact value for any of the roots. From Fig. 9 one can
see that the last roots are predicted poorly from the equidistant
approximation, which explains the poor performance for the
expectation values. We would like to note, however, that
Eq. (39) has been checked numerically and application of the
exact solution of the Bethe equations (14) for the evaluation of
em leads us to the correct result. While it appears that evaluating
expectation values in the general case is rather difficult, there is

0 5 10 15 20 25
0

4

8

12
Numerical
solution

Approximation

FIG. 9. Numerical and approximate solutions of the Bethe equa-
tions (14) corresponding to the ground state, for c = 0.4, � = 0.5,
and N = 25.
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a possibility that evaluating certain types of correlations may
still be possible using approximate methods that we discuss
here. For example, energies are nothing but the expectation
value of the Hamiltonian, and this can be evaluated efficiently.
Thus similar quantities that are related to the Hamiltonian may
be possible to calculate efficiently.

VI. SUMMARY AND CONCLUSIONS

In this paper we used the QIM formalism to obtain ap-
proximate analytical formulas for the ground-state and the
first excited-state energies, for attractive interactions U < V

of the two-site Bose-Hubbard model. For the reader who
is disinterested in the QIM formalism, the main results are
Eq. (18) for the ground-state energy, Eq. (27) for the first
excited state for U − V < 2ε, and Eq. (31) for U − V > 2ε.
The obtained formulas work with remarkable precision for
a wide range of parameters. Due to the nature of the QIM
solutions, the expressions work well as long as the parameter
c2 = (U − V )/J is not too small; for typical cases where
N > 103, the accuracy is better than 1% for all formulas as
long as c2 > 0.01. The errors of the formulas tend to increase
with N , with better than linear scaling seen for all cases.

Our formulas are based upon an equidistant approximation
for the solution of the Bethe equations, which were obtained
by analyzing the structure of the roots. Solving the Bethe
equations has a comparable computational difficulty to solving
the original Hamiltonian itself, which is the major drawback
for practical use of the QIM formalism in the context of
the Bose-Hubbard model. Our approximate solutions for the

roots makes the practical use of the QIM solutions possible,
yielding the relatively simple formulas for the energies. The
high accuracy of the energies despite the approximate solution
of the Bethe equations is due to the relative insensitivity
of the energy formula (13) to roots with small magnitudes.
Unfortunately, this is not true of evaluating expectation values,
which is more sensitive to all the roots of a given state. This
makes the equidistant approximation a poor choice in this case.
An obvious extension of this work would be to find a similar
approximate solution of the Bethe equations for the repulsive
case U > V . This is equivalent to finding the solutions of
the most excited states in Fig. 2. The qualitatively different
structure of the roots has prevented us from obtaining a similar
ansatz solution in this paper, but we do not see any fundamental
reason why this would not be possible.
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