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Nonlinear quantum Rabi model in trapped ions
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We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This
nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the
Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative
generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi
model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the
nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and
blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.
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I. INTRODUCTION

Proposed in 1936 by Rabi [1], the most fundamental
interaction between a two-level atom and a classical light field,
the semiclassical Rabi model, has played an important role
in both physics and mathematics [2,3]. Under the rotating
wave approximation (RWA), its fully quantized form, the
quantum Rabi model (QRM), can be reduced into the Jaynes-
Cummings model (JCM) [4], which is analytically solvable
[5]. This model describes the basic interaction in trapped
ions [6], superconducting circuits [7], and cavity quantum
electrodynamics [8], when the systems are in the regime where
the ratio of coupling strength g and mode frequency ν is
approximately smaller than 0.1 [9]. On the other hand, in
the ultrastrong-coupling (USC) regime, g/ν ∈ (0.1,1) [10,11],
and deep strong-coupling (DSC) regime, (g/ν > 1) [12–14],
we have to take the counter-rotating term that is neglected in
the JCM into account. The QRM is a fruitful physical model
with applications in condensed matter, quantum optics, and
quantum information processing. In fact, the QRM has been in-
vestigated in many contexts, such as quantum phase transitions
[15–17], dissipative QRM [18], generalized QRM [19–22],
multiparticle QRM [23–26], and quantum thermodynamics
[27], among others. Furthermore, proposals and experimental
realizations of the QRM in different quantum simulators as
optical lattices [28], circuit QED [29], as well as trapped ions
[30–33] have been put forward. Reference [30] introduced
an analog method for the simulation of different regimes of
the QRM, otherwise inaccessible to experimentation from first
principles. These ideas have been recently demonstrated in the
laboratory [31].

As one of the most controllable quantum systems, trapped
ions play an important role in diverse proposals for quantum
simulations [30,31,34–47]. However, most of these works are
based on the condition for the system to be in the Lamb-Dicke
(LD) regime. In this regime, the size of the motional wave
packet of the ion is much smaller than the wavelength of
the external laser driving, such that the effective coupling

between the internal and the vibrational degrees of freedom,
generated by the laser field, can be approximated to first order
[6]. This condition can also be expressed as η

√
〈(a + a†)2〉 �

1, where a†(a) is the creation (annihilation) operator associated
to the quantum vibrational mode of the ion on a certain
direction x and η = k

√
h̄/2Mν is the LD parameter in this

direction, with k the wave number of the external laser field,
M the mass of the ion, and ν the frequency of the harmonic
potential.

In this article, we study the nonlinear behavior of a single
trapped ion when it is far away from the LD regime. In the
past, research beyond the LD regime was mainly focused on
the nonlinear JCM [48–51], but has also been studied for
its implications in laser cooling [52–54] or for its possible
applications to simulate Franck-Condon physics [55]. To set
up the stage for a subsequent analysis, we first briefly review
the JCM and take this as a reference to show the difference
with the nonlinear JCM. The appearance of nonlinear terms
in the Hamiltonian suppresses the collapses and revivals for
a coherent state evolution typical from linear cases. Later
on, we investigate how the nonlinear anti-Jaynes-Cummings
model, which appears as the counterpart of nonlinear JCM,
can be combined with controlled depolarizing noise to generate
arbitrary n-phonon Fock states. Moreover, the latter could in
principle be done without a precise control of pulse duration or
shape, and without the requirement of a previous high-fidelity
preparation of the motional ground state. Furthermore, we
propose the quantum simulation of the nonlinear quantum
Rabi model by simultaneous off-resonant nonlinear Jaynes-
Cummings and anti-Jaynes-Cummings interactions. Finally,
we also point out the possibility for the quantum Rabi model
to act as a motional state filter.

II. JAYNES-CUMMINGS MODELS IN TRAPPED IONS

The Hamiltonian describing a laser-cooled two-level ion
trapped in a harmonic potential and driven by a monochromatic
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laser field can be expressed as (h̄ = 1)

H = ω0

2
σz + νa†a + �

2
σx[ei(η(a+a†)−ωt+φ) + H.c.], (1)

where ω0 is the two-level transition frequency, σz,σ
x are Pauli

matrices associated to this two-level system, � is the Rabi
frequency, ω is the driving laser frequency, and φ is the phase
of the laser field.

In the Lamb-Dicke regime, moving to an interaction picture
with respect to H0 = ω0

2 σz + νa†a, and after the application of
the so-called optical RWA, the Hamiltonian in Eq. (1) can be
written as [6]

H LD
int = �

2
σ+[1 + iη(ae−iνt + a†eiνt )]ei(φ−δt) + H.c., (2)

where δ = ω − ω0 is the laser detuning, and the condition
η � 1 allows one to keep only zero and first-order terms in
the expansion of exp [iη(a + a†)]. When δ = −ν and � � ν,
after applying the vibrational RWA, the dynamics of such
a system is described by Jaynes-Cummings Hamiltonian,
HJC = ig(σ+a − σ−a†), where g = η�/2 and φ = 0. This
JCM is analytically solvable and generates population ex-
change between states |↓,n〉 ↔ |↑,n − 1〉 with rate �n,n−1 =
η�

√
n. On the other hand, when the detuning is chosen to be

δ = ν, the effective model is instead described by the anti-
JCM HaJC = ig(σ+a† − σ−a), which generates population
transfer between states |↓,n〉 ↔ |↑,n + 1〉 with rate �n,n+1 =
η�

√
n + 1.

When the trapped-ion system is beyond the Lamb-Dicke
regime, the simplification of the exponential term described
above is not justified and Eq. (2) reads

Hint = �

2
σ+eiη(a+eiνt+ae−iνt )−i(δt−φ) + H.c. (3)

When δ = −ν and � � ν, after applying the vibrational RWA,
the effective Hamiltonian describing the system is given by
the nonlinear Jaynes-Cummings model [48], which can be
expressed as

HnJC = ig[σ+f1(n̂)a − σ−a†f1(n̂)], (4)

where the nonlinear function f1 [48] is given by

f1(n̂) = e−η2/2
∞∑

l=0

(−η2)l

l!(l + 1)!
a†lal, (5)

with a†lal = n̂!/(n̂ − l)!. The dynamics of this model can
also be solved analytically, and as the linear JCM, yields
to population exchange between states |↓,n〉 ↔ |↑,n − 1〉
but in this case with a rate �̃n,n−1 = |f1(n−1)|�n,n−1 =
η�

√
n|f1(n−1)|, where f1(n) corresponds to the value of

the diagonal operator f1 evaluated on the Fock state |n〉, i.e.,
f1(n) ≡ 〈f1(n̂)〉n. If the detuning in Eq. (3) is chosen to be
δ = ν, and � � ν, then the application of the vibrational RWA
yields the nonlinear anti-JCM,

HnaJC = ig[σ+a†f1(n̂) − σ−f1(n̂)a], (6)

which, as the linear anti-JCM, generates population ex-
change between states |↓,n〉 ↔ |↑,n+1〉 with rate �̃n,n+1 =
|f1(n)|�n,n+1 = η�

√
n + 1|f1(n)|. The nonlinear function f1

depends on the LD parameter η and on the Fock state |n〉 on
which it is acting. The LD regime is then recovered when

FIG. 1. (a) Logarithm of the absolute value of the operator f1(n̂)
evaluated for different Fock states |n〉 and LD parameters η. Dark
(blue) regions represent cases where f1(n̂)|n〉 ≈ 0. (b) Nonlinear
function f1(n) for a fixed value of the LD parameter η = 0.5
(oscillating blue curve). Zero value (horizontal orange line).

η
√

n � 1. In this regime, |f1(n)| ≈ 1, and thus the dynamics
are the ones that correspond to the linear models.

Beyond the LD regime the nonlinear function f1, which has
an oscillatory behavior both in n ∈ N and η ∈ R, needs to be
taken into account. In Fig. 1(a), we plot the logarithm of the
absolute value of f1(n,η) for different values of n and η, where
the green regions represent lower values of log (|f1(n,η)|),
i.e., values for which f1 ≈ 0. This oscillatory behavior can
also be seen in Fig. 1(b), where we plot the value of f1 as
a function of the Fock state number n for η = 0.5. For this
specific case, we can see that the function is close to zero
around n = 14 and n= 48, meaning that for η = 0.5, the rate of
population exchange between |↓,15〉 ↔ |↑,14〉 and |↓,49〉 ↔
|↑,48〉 states on the nonlinear JCM will vanish. The same will
happen to the exchange rate between |↓,14〉 ↔ |↑,15〉 and
|↓,48〉 ↔ |↑,49〉 states for the nonlinear anti-JCM.

We observe approximate collapses and revivals for an initial
coherent state with an average number of photons of |α|2 = 30
by evolving with the JCM, as shown in Ref. [56], see Fig. 2(a).
Here, we plot 〈σ z(t)〉 = 〈ψ(t)|σ z|ψ(t)〉 for a state that evolves
according to the JCM. Comparing the same case for the
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FIG. 2. Average value of σz operator versus time for a coherent
initial state |α = √

30〉 after (a) linear JC and (b) nonlinear JC
evolution, both with the same coupling strength g and η = 0.5 for the
nonlinear case. As shown in (a), there exists an approximate collapse
and subsequent revival in the JCM dynamics, while for the nonlinear
JCM this is not the case.
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nonlinear JCM with η = 0.5, as depicted in Fig. 2(b), we
appreciate that in the latter case the collapses and revivals
vanish and the dynamics is more irregular. This can seem
natural given that the phenomenon of revival takes place
whenever the most significant components of the quantum
state, after some evolution time, turn out to oscillate in phase
again, which may be more unlikely if the dynamics is nonlinear.
Notice that we let the case of the nonlinear JCM evolve for a
longer time, since the nonlinear function f1 effectively slows
down the evolution.

III. FOCK STATE GENERATION WITH DISSIPATIVE
NONLINEAR ANTI-JCM

In this section we study the possibility of using the dynamics
of the nonlinear anti-Jaynes-Cummings model introduced in
the previous section to, along with depolarizing noise, generate
high-number Fock states in a dissipative manner. In particular,
the depolarizing noise that we consider corresponds to the
spontaneous relaxation of the internal two-level system of the
ion. Such a dissipative process, combined with the dynamics of
the JCM in the LD regime (linear JCM), is routinely exploited
in trapped-ion setups for the implementation of sideband
cooling techniques. It is noteworthy to mention that the effect
of nonlinearities on sideband cooling protocols, which arise
when outside the LD regime, have also been a matter of study
[52,53].

Our method works as follows: we start in the ground state
of both the motional and the internal degrees of freedom |↓,0〉.
(As we will show later, our protocol works as well when we
are outside the motional ground state, as long as the population
of Fock states higher than the target Fock state is negligible.)
Acting with the nonlinear anti-JC Hamiltonian, we induce a
population transfer from state |↓,0〉 to state |↑,1〉, while at the
same time, the depolarizing noise transfers population from
|↑,1〉 to |↓,1〉. The simultaneous action of both processes
will “heat” the motional state, progressively transferring the
population of the system from one Fock state to the next
one. Eventually, all the population will be accumulated in
state |↓,n〉, where a blockade of the propagation of population
through the chain of Fock states occurs, if f1(n) = 0, as the
transfer rate between states |↓,n〉 and |↑,n + 1〉 vanishes,
�̃n,n+1 = 0. We point out that the condition f1(n) = 0 can
always be achieved by tuning the LD parameter to a suitable
value, i.e., for every Fock state |n〉, where n > 0, there exists
a value of the LD parameter η for which f1(n,η) = 0. As
an example, we choose the LD parameter η = 0.4518, for
which f1(17) = 0, and simulate our protocol using the master
equation

ρ̇ = −i[HnaJC,ρ] + �mL(σ−)ρ, (7)

where �m = 2g is the decay rate of the internal
state, and the Lindblad superoperator acts on ρ as
L(X̂)ρ = (2X̂ρX̂† − X̂†X̂ρ − ρX̂†X̂)/2.

In Fig. 3 we numerically show how our protocol is able
to generate the motional Fock state |17〉, starting from a ther-
mal state ρT = ∑∞

k=0
〈n〉k

(〈n〉+1)k+1 |k〉〈k|, with 〈n〉 = 1. In other
words, one can obtain large final Fock states, starting from
an imperfectly cooled motional state, by a suitable tuning of
the LD parameter. As an advantage of our method compared
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FIG. 3. (a) The nonlinear function f1 evaluated at different Fock
states n for the case of η = 0.451 8 (decreasing blue curve). Zero
value (horizontal orange line). For this value of the LD parameter,
f1|17〉 = 0. (b) Phonon statistics of the initial thermal state with
〈n〉 = 1. (c) Time evolution of the average value of the number operator
n̂ starting from the state in (b) and following the evolution for the
preparation of Fock state |17〉, that is, during a nonlinear anti-JCM
with spontaneous decay of the two-level system. (d) Phonon statistics
at the end of the protocol, t = 100×2π/g, with all the population
concentrated in Fock state |17〉.

to previous approaches [57], we do not need a fine control
over the Rabi frequencies or pulse durations, given that the
whole wave function, for an arbitrary initial state with motional
components smaller than n, will converge to the target Fock
state |n〉. We want to point out that this protocol relies only on
the precision to which the LD parameter can be set, which in
turn depends on the precision to which the wave number k and
the trap frequency ν can be controlled. These parameters enjoy
a great stability in trapped-ion setups [58], and therefore we
deem the generation of high-number Fock states as a promising
application of the nonlinear anti-JCM dynamics.

IV. NONLINEAR QUANTUM RABI MODEL

Here we propose to implement the nonlinear quantum Rabi
model (NQRM) in all its parameter regimes via the use of the
Hamiltonian in Eq. (3). We consider off-resonant first-order
red- and blue-sideband drivings with the same coupling � and
corresponding detunings δr , δb. The interaction Hamiltonian
after the optical RWA reads [6,30]

Hint =
∑

n=r,b

�

2
σ+eiη(a†eiνt+ae−iνt )e−i(δnt−φn) + H.c., (8)

where ωr = ω0 − ν + δr and ωb = ω0 + ν + δb, with δr ,

δb � ν � ω0 and � � ν. We consider the system beyond the
Lamb-Dicke regime and set the laser field phases to φr,b = 0.
If we invoke the vibrational RWA, i.e., neglect terms that rotate
with frequencies in the order of ν, the remaining terms read

Hint = igσ+(f1ae−iδr t + a†f1e
−iδbt ) + H.c., (9)
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where g = η�/2 and f1 ≡ f1(n̂) was introduced in Eq. (5).
The latter corresponds to an interaction picture Hamiltonian
of the NQRM with respect to the free Hamiltonian H0 =
1
4 (δb + δr )σz + 1

2 (δb − δr )a†a. Therefore, undoing the interac-
tion picture transformation, we have

HnQRM = ωR
0

2
σz + ωRa†a + ig(σ+ − σ−)(f1a + a†f1), (10)

where ωR
0 = − 1

2 (δr + δb) and ωR = 1
2 (δr − δb). Equation (10)

represents the general form of the NQRM, where ωR
0 is the level

splitting of the simulated two-level system, ωR is the frequency
of the simulated bosonic mode, and g is the coupling strength
between them, which in turn will be modulated by the nonlinear
function f1(n̂,η). The different regimes of the NQRM will
be characterized by the relation among these four parameters.
First, in the LD regime or η

√
〈(a + a†)2〉 � 1, Eq. (10) can be

approximated to the linear QRM [30]. Beyond the LD regime,
in a parameter regime where |ωR − ωR

0 | � g � |ωR + ωR
0 |,

the RWA can be applied. This would imply neglecting terms
that rotate at frequency ωR + ωR

0 in an interaction picture with
respect to H0, leading to the nonlinear JCM studied previously
in this article. On the other hand, the nonlinear anti-JCM would
be recovered in a regime where |ωR + ωR

0 | � g � |ωR − ωR
0 |.

It is worth mentioning that the latter is only possible if the
frequency of the two-level system and the frequency of the
mode have opposite sign. The USC and DSC regimes are
defined as 0.1 � g/ωR � 1 and g/ωR � 1, respectively, and
in these regimes the RWA does not hold anymore.

As an example, here we investigate the NQRM in the DSC
regime with initial Fock state |0,g〉, where |0〉 is the ground
state of the bosonic mode and |g〉 stands for the ground state
of the effective two-level system. In Fig. 4, we study the case
for η = 0.678 98, where f1|7〉 = 0, g/ωR = 4, and ωR

0 = 0.
More specifically, a quantum simulation of the model in this
regime can be achieved with the following detunings and
Rabi frequency: δr = 2π×11.31 kHz, δb = −2π×11.31 kHz,
g = 2π×45.24 kHz, and � = 2π×133.26 kHz. In Ref. [12],
it was shown that the linear QRM shows collapses and revivals
and a round trip of the phonon-number wave packet along
the chain of Fock states when in the DSC regime. Here,
we observe that in the nonlinear case, Fig. 4, collapses and
revivals do not present the same clear structure, having a more
irregular evolution. Most interestingly, the system dynamics
never surpasses Fock state |n〉, for which f1(n) = 0. Regarding
the simulated regime of the nonlinear QRM, we point out that
the nonlinear term also contributes to the coupling strength.
Therefore, to keep the NQRM in the DSC regime, the ratio
g/ωR should be larger than that for the linear QRM since
f1(n) < 1 always. Summarizing, our result illustrates that the
Hilbert space is effectively divided into two subspaces by
the NQRM, namely, those spanned by Fock states below and
above Fock state |n〉. We denote the Fock number n, where
f1|n〉 = 0, as “the barrier” of the NQRM. To benchmark the
effect of the barrier, we also provide simulations starting from
an initial coherent state with α = 1 whose average phonon
number is 〈n〉 = |α|2 = 1, and make the comparison between
the QRM and the NQRM in the DSC regime. For the parameter
regime g/ωR = 2 and ωR

0 = 0, the fidelity with respect to the
initial coherent state in the linear QRM performs periodic

FIG. 4. (a) Fidelity with respect to the initial state P (t) =
|〈ψ0|ψ(t)〉|2 versus time. As an initial state we choose |0,g〉 and the
evolution occurs under the NQRM with LD parameter η = 0.678 98,
where f1|7〉 = 0, g/ωR = 4, and ωR

0 = 0. (b) Phonon statistics at
different times for the NQRM evolved from the initial state |0,g〉.
The propagation of population through Fock states stops at |n = 7〉,
with Fock states of n > 7 never getting populated.

collapses and full revivals, as it can be seen in Fig. 5(a).
In Fig. 5(b), we observe a round trip of the phonon-number
wave packet, similarly to what was shown in Ref. [12] for
the case of the linear QRM starting from a Fock state. The

t (units of 2π/g)

FIG. 5. (a) Overlap of the instantaneous state with the initial state
P (t) = |〈ψ0|ψ(t)〉|2 versus time for a coherent initial state |α=1,g〉
evolving under the linear QRM. Collapses and revivals are observed,
as expected in the DSC regime of the linear QRM. (b) Phonon statistics
at different times, where we see the round trip of a phonon-number
wave packet.
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(units of 2π/g)

FIG. 6. (a) Overlap with the initial state P (t) = |〈ψ0|ψ(t)〉|2
versus time for initial state |α=1,g〉 evolving under the NQRM
with LD parameter η = 0.578 38, where f1|10〉 = 0, g/ωR = 3.7,
and ωR

0 = 0. (b) Phonon statistics at different times for the NQRM
evolved from the initial state |α=1,g〉. The Fock state |10〉 is never
surpassed because f1|10〉 = 0.

NQRM, on the other hand, has an associated dynamics that
is aperiodic and more irregular, as shown in Fig. 6, and never
crosses the motional barrier produced by the corresponding
f1(n) = 0. Therefore, it can be employed as a motional filter,
which is determined by the location of the barrier with respect
to the initial state distribution. Here, by filter we mean that
the population of Fock states above a given threshold can be
prevented. For the simulation we choose the LD parameter
η = 0.578 38 for which f1|10〉 = 0, which is far from the
center of the distribution of the initial coherent state, as well as
most of its width. The simulated parameter regime corresponds

to the DSC regime with g/ωR = 3.7 and ωR
0 = 0. This case

could also be simulated with trapped ions with detunings of
δr = 2π×11.31 kHz and δb = −2π×11.31 kHz, and a Rabi
frequency of � = 2π×133.26 kHz. As for the corresponding
case with initial Fock state |0,g〉, the evolution of the NQRM
in the coherent state case, depicted in Fig. 6, never exceeds the
barrier.

V. CONCLUSIONS

We have proposed the implementation of nonlinear QRMs
in arbitrary coupling regimes with trapped-ion analog quantum
simulators. The nonlinear term that appears in our model is
characteristic of the region beyond the Lamb-Dicke regime.
This nonlinear term causes the blockade of motional propa-
gation at |n〉 whenever f1(n̂)|n〉 = 0. In order to compare our
models with standard linear quantum Rabi models, we have
plotted the evolution of the population of the internal degrees
of freedom of the ion evolving under the linear JCM and the
nonlinear JCM and observe that for the latter the collapses
and revivals disappear. Also, we have proposed a method for
generating large Fock states in a dissipative manner, making
use of the nonlinear anti-JCM and the spontaneous decay of
the two-level system. Finally, we have studied the dynamics
of the linear and nonlinear full QRM on the DSC regime and
notice that the nonlinear case can act as a motional filter. Our
work sheds light on the field of nonlinear QRMs implemented
with trapped ions and suggests plausible applications.
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