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Ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates
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We investigate the ground-state phases of a mixture of spin-1 and spin-2 Bose-Einstein condensates at zero
magnetic field. In addition to the intraspin interactions, two spin-dependent interaction coefficients are introduced
to describe the interspin interaction. We systematically explore the wide parameter space, and obtain phase
diagrams containing a rich variety of phases. For example, there exists a phase in which the spin-1 and spin-2
vectors are tilted relative to each other breaking the axial symmetry.
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I. INTRODUCTION

There is a wide variety of quantum fluids with internal
degrees of freedom, such as superfluid 3He [1], p-wave and
d-wave superconductors [2], possible superfluids in neutron
stars [3,4], and spinor Bose-Einstein condensates (BECs) of
atomic gases [5,6]. In these systems, the order parameters
have spin or angular momentum degrees of freedom, and their
ground-state phases, dynamics, and topological excitations are
richer than those of single-component superfluids. If two or
more quantum fluids with internal degrees of freedom are
mixed, the order-parameter space is greatly extended and the
physics is further enriched.

Spinor BECs of ultracold atoms are suitable systems for
realizing such a mixture of quantum fluids due to their high
controllability. However, in most previous experiments, spinor
BECs of spin-1, spin-2, and spin-3 atoms have been realized
only individually [7–11]. The ground state of a spin-1 BEC
can be ferromagnetic or antiferromagnetic, and topological
excitations, such as monopoles [12], skyrmions [13], half-
quantum vortices [14], and knots [15], are possible. A spin-
2 BEC is more intriguing because of the presence of the
cyclic phase and non-Abelian vortices [16–18]. We expect
that a mixture of such spinor BECs will exhibit novel quan-
tum phases and topological excitations. A mixture of spin-1
and spin-1 BECs has been studied theoretically and phase
diagrams and many-body properties have been determined
[19–29]. The spin dynamics in a mixture of a spin-1 23Na
BEC and a spin-1 87Rb thermal gas have been observed
experimentally [30].

Recently, a mixture of spin-1 and spin-2 87Rb BECs was
realized experimentally, and the spin dynamics were observed
[31]. Motivated by this experiment, in the present paper we
theoretically investigate the ground-state phase diagrams of
the mixture of spin-1 and spin-2 BECs at zero magnetic field.
The spin-1 and spin-2 BECs have one and two spin-dependent
interaction coefficients, respectively. In addition to these in-
traspin interactions, in a spinor mixture we must consider the
interspin interaction, which is described by two spin-dependent
interaction coefficients for the spin-1 and spin-2 mixture. This

gives a total of five spin-dependent interaction coefficients. We
therefore study the ground-state phase diagrams by varying
these five interaction coefficients. Using the Monte Carlo
method, we determine the phase diagrams for various sets
of the parameters. Unlike for the phase diagrams of the
individual spin-1 and spin-2 BECs, the spinor mixture has
phases that continuously change with respect to the interaction
coefficients, including phases in which the spin-1 and spin-2
vectors are tilted from each other, breaking the axial symmetry.
According to the interaction coefficients measured in Ref. [31],
the ground state of the mixture of spin-1 and spin-2 87Rb
BECs is different from that of the individual spin-1 and spin-2
BECs.

This paper is organized as follows. Section II presents the
problem and reviews the ground states of spin-1 and spin-2
BECs. Section III details the numerical calculations and the
various phase diagrams of the spinor mixture. Section IV
provides the conclusions of this study.

II. FORMULATION OF THE PROBLEM

The spin state of spin-1 and spin-2 atoms are denoted by
|f,m〉, where f = 1,2 and m = −f, − f + 1, . . . ,f . We con-
sider BECs with spin-1 and spin-2 atoms at zero temperature
and zero magnetic field in the mean-field approximation. The
macroscopic wave function for the BEC of spin state |f,m〉
is expressed as ψ

(f )
m (r) = √

ρf (r)ζ (f )
m (r), where ρf (r) is the

density and ζ
(f )
m (r) is the complex spin vector normalized

as
∑

m |ζ (f )
m (r)|2 = 1. The energy Ef of a spin-f BEC with

atomic mass Mf confined in a trap potential Vf (r) is given by
[5,6,16,17]

E1 =
∫

d r
1∑

m=−1

ψ (1)∗
m (r)

[
− h̄2

2M1
∇2 + V1(r)

]
ψ (1)

m (r)

+1

2

∫
d r

[
g

(1)
0 + g

(1)
1 F(1)(r) · F(1)(r)

]
ρ2

1 (r) (1)
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for a spin-1 BEC and

E2 =
∫

d r
2∑

m=−2

ψ (2)∗
m (r)

[
− h̄2

2M2
∇2 + V2(r)

]
ψ (2)

m (r)

+ 1

2

∫
d r

[
g

(2)
0 + g

(2)
1 F(2)(r) · F(2)(r)

+ g
(2)
2

∣∣A(2)
0 (r)

∣∣2]
ρ2

2 (r) (2)

for a spin-2 BEC, where

F(f )(r) =
∑
mm′

ζ (f )∗
m (r)S(f )

mm′ζ
(f )
m′ (r) (3)

is the mean spin vector, with S(f ) being the vector of (2f +
1) × (2f + 1) matrices for spin f , and

A
(2)
0 = 1√

5

(
2ζ

(2)
2 ζ

(2)
−2 − 2ζ

(2)
1 ζ

(2)
−1 + ζ

(2)2
0

)
(4)

is the spin-singlet scalar for spin 2. The interaction coefficients
in Eqs. (1) and (2) have the forms,

g
(1)
0 = 4πh̄2

M1

a
(1)
0 + 2a

(1)
2

3
, (5a)

g
(1)
1 = 4πh̄2

M1

a
(1)
2 − a

(1)
0

3
, (5b)

g
(2)
0 = 4πh̄2

M2

4a
(2)
2 + 3a

(2)
4

7
, (5c)

g
(2)
1 = 4πh̄2

M2

a
(2)
4 − a

(2)
2

7
, (5d)

g
(2)
2 = 4πh̄2

M2

7a
(2)
0 − 10a

(2)
2 + 3a

(2)
4

7
, (5e)

where a
(f )
F is the s-wave scattering length between spin-

f atoms with colliding channel of total spin F . We de-
note the spin vectors as ζ (1) = (ζ (1)

1 ,ζ
(1)
0 ,ζ

(1)
−1) and ζ (2) =

(ζ (2)
2 ,ζ

(2)
1 ,ζ

(2)
0 ,ζ

(2)
−1 ,ζ

(2)
−2).

Before considering the mixture of spinor BECs, we summa-
rize the ground-state phases for individual spin-1 and spin-2
BECs in a uniform system. The ground state of a spin-1 BEC
depends on the sign of g

(1)
1 . When g

(1)
1 < 0, the ground state is

the fully polarized ferromagnetic state,

ζ
(1)
F ≡ eiχ R̂(1,0,0), (6)

where χ is an arbitrary phase and R̂ is an arbitrary SO(3)
rotation in the spin space. When g

(1)
1 > 0, the ground state is

the polar state,

ζ
(1)
P ≡ eiχ R̂(0,1,0). (7)

The spin-2 BEC has more variety of ground states. Wheng
(2)
1 <

0 and g
(2)
2 > 20g

(2)
1 , the ground state is the ferromagnetic state,

ζ
(2)
F ≡ eiχ R̂(1,0,0,0,0). (8)

When g
(2)
2 < 0 and g

(2)
2 < 20g

(2)
1 , the ground state has contin-

uous degeneracy: a linear combination of the uniaxial nematic

FIG. 1. Spherical harmonic representations S(θ,φ) of the spin
states. (a) Spin-1 ferromagnetic state ζ

(1)
F . (b) Spin-1 polar state ζ

(1)
P .

(c) Spin-2 ferromagnetic state ζ
(2)
F . (d) Spin-2 state ζ

(2)
F ′ . (e) Spin-2

uniaxial nematic state ζ
(2)
UN. (f) Spin-2 biaxial nematic state ζ

(2)
BN. (g)

Spin-2 cyclic state ζ
(2)
C . The labels F, P, F′, U, B, and C shown for each

representation are used to identify the spin state in the phase diagram.

state,

ζ
(2)
UN ≡ eiχ R̂(0,0,1,0,0), (9)

and the biaxial nematic state,

ζ
(2)
BN ≡ eiχ R̂(1,0,0,0,1)/

√
2, (10)

is the ground state. When g
(2)
1 > 0 and g

(2)
2 > 0, the ground

state is the cyclic state,

ζ
(2)
C ≡ eiχ R̂(1/2,0,i/

√
2,0,1/2). (11)

For later use, we define the state,

ζ
(2)
F ′ ≡ eiχ R̂(0,1,0,0,0), (12)

which is not the ground state but a stationary state of the Gross-
Pitaevskii equation. The spherical harmonic representation of
the spin state is convenient for visualizing the symmetry of the
system [32],

S(θ,φ) =
f∑

m=−f

ζ (f )
m Ym

f (θ,φ), (13)

where Ym
f is the spherical harmonics. The spherical harmonic

representations of the above spin states are shown in Fig. 1.
We consider a mixture of spin-1 and spin-2 BECs. The

interaction energy between the spin-1 and spin-2 BECs is
obtained to be (see appendix for derivation)

E12 =
∫

d r
[
g

(12)
0 + g

(12)
1 F(1)(r) · F(2)(r)

+g
(12)
2 P

(12)
1 (r)

]
ρ1(r)ρ2(r), (14)

where P
(12)
1 is defined in Eq. (A7). The interaction coefficients

in Eq. (14) are given by

g
(12)
0 = 2πh̄2

M12

2a
(12)
2 + a

(12)
3

3
, (15a)

g
(12)
1 = 2πh̄2

M12

a
(12)
3 − a

(12)
2

3
, (15b)

g
(12)
2 = 2πh̄2

M12

3a
(12)
1 − 5a

(12)
2 + 2a

(12)
3

3
, (15c)
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where M12 = (M−1
1 + M−1

2 )−1 is the reduced mass and a
(12)
F is

the s-wave scattering length between spin-1 and spin-2 atoms
with colliding channel of total spin F .

In the following analysis, we assume that the spin healing
lengths are much larger than the size of the atomic cloud and
we neglect the spatial variation of the spin states ζ (f ). The
kinetic and potential energy terms in E1 and E2 in Eqs. (1)
and (2) then become independent of the spin states ζ (f ). The
spin-dependent part of the total energy E = E1 + E2 + E12

thus reduces to

Espin = 1

2

(
c

(1)
1 F(1) · F(1) + c

(2)
1 F(2) · F(2) + c

(2)
2

∣∣A(2)
0

∣∣2)
+ c

(12)
1 F(1) · F(2) + c

(12)
2 P

(12)
1 , (16)

where

c(f )
n = g(f )

n

∫
ρ2

f (r)d r,

c(12)
n = g(12)

n

∫
ρ1(r)ρ2(r)d r, (17)

with n = 1,2. In the rest of this paper, we normalize the
interaction coefficients c

(f )
n by 4πh̄2aB

∫
ρ2

f d r/Mf and c(12)
n

by 2πh̄2aB

∫
ρ1ρ2d r/M12, where aB is the Bohr radius, and

therefore these interaction coefficients are dimensionless.
Our purpose is to find the spin states ζ (1) and ζ (2) that

minimize the energy Espin. We numerically obtain the ground
state as follows. First we set complex random numbers to ζ

(f )
m

and minimize the energy in a stochastic manner, that is, we
try a small random change to the spin state ζ

(f )
m + δζ

(f )
m and

adopt the change if the energy is lowered. After sufficiently
many steps in this random walk in the spin space, we obtain a
metastable state or the ground state. Repeating this procedure
many times with different initial random states, we can exclude
metastable states and determine the true ground state.

III. GROUND STATES OF A MIXTURE
OF SPIN 1 AND SPIN 2

To see the effect of the interaction between the spin-1 and
spin-2 BECs, we first consider the case without the intraspin in-
teractions, c

(1)
1 = c

(2)
1 = c

(2)
2 = 0. The spin-dependent energy

then reduces to Espin = c
(12)
1 F(1) · F(2) + c

(12)
2 P

(12)
1 . Figure 2

shows the ground-state phase diagram with respect to c
(12)
1

and c
(12)
2 , and Table I shows Espin for each phase. When c

(12)
1

is sufficiently large and negative, the state in which the spin
vectors F(1) and F(2) are fully polarized in the same direction
is energetically favored, and the ground state is ζ (1) = ζ

(1)
F

TABLE I. Spin-dependent energies Espin for the phases in Fig. 2
with c

(1)
1 = c

(2)
1 = c

(2)
2 = 0.

Espin

FF+ 2c
(12)
1

FF− −2c
(12)
1 + 3c

(12)
2 /5

PU 2 c
(12)
2 /5

PF and PB 0

FIG. 2. Ground-state phase diagram with respect to the interspin
interactions c

(12)
1 and c

(12)
2 without the intraspin interactions, c

(1)
1 =

c
(2)
1 = c

(2)
2 = 0. The spherical harmonic representations of the spin

states are also shown, where the left- and right-hand figures indicate
the spin-1 and spin-2 states, respectively. The letter pairs specify
the spin-1 and spin-2 states, which are defined in Fig. 1, and the
subscript ± indicates the sign of F(1) · F(2). In the striped region, the
linear combination of the polar-ferromagnetic (PF) and polar-biaxial
nematic (PB) states are continuously degenerate.

and ζ (2) = ζ
(2)
F . We abbreviate this state as “FF+,” in which

the first and second capital letters indicate the spin-1 and
spin-2 states shown in Fig. 1, respectively, and the subscript +
denotes that the two spin vectors are in the same direction. In
a similar manner, when c

(12)
1 is large and positive, the ground

state is the ferromagnetic state with F(1) and F(2) being in
opposite directions. This phase is denoted as “FF−,” where
the subscript − represents that the two spin vectors are in
the opposite directions. In general, we define the subscripts
± to indicate the sign of F(1) · F(2). As shown in Fig. 2,
there are two regions between these ferromagnetic phases.
When c

(12)
2 < 0 and c

(12)
2 /5 < c

(12)
1 < c

(12)
2 /10, the ground state

is ζ (1) = ζ
(1)
P and ζ (2) = ζ

(2)
UN, which is denoted as “PU”.

When c
(12)
2 > 0 and 0 < c

(12)
1 < 3c

(12)
2 /10, the ground state is

continuously degenerate: The linear combination of the “PF”
(polar-ferromagnetic) and “PB” (polar-biaxial nematic) states
is the ground state. We have numerically confirmed that the
phase diagram in Fig. 2 is correct.

Next we consider the cases of nonzero intraspin interaction
coefficients c

(1)
1 , c(2)

1 , and c
(2)
2 . Figure 3 shows the ground-state

phase diagram for c
(1)
1 = −0.46, c(2)

1 = 1.1, and c
(2)
2 = −0.05,

which correspond to the interaction coefficients of 87Rb for
ρ1 = ρ2 in Eq. (17). There is a remarkable number of phases
with complicated structures. If the interspin interaction is
absent, i.e., at the origin of the phase diagram, the ground
state for spin 1 is the ferromagnetic state and that for spin 2
is the nematic state. Comparing Fig. 3 with Fig. 2, we find
that the four phases in Fig. 2, FF+, FF−, PU, and PB, also
appear in Fig. 3, where the continuous degeneracy in Fig. 2 is
removed and the PF state disappears in Fig. 3. There are many
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FIG. 3. Ground-state phase diagram for c
(1)
1 = −0.46, c(2)

1 = 1.1,
and c

(2)
2 = −0.05. The ground state for c

(12)
1 = c

(12)
2 = 0 is the ferro-

magnetic state for spin 1 and the nematic state (linear combination
of the U and B states) for spin 2. The region of many phases in (a) is
magnified in (b). The upper-case letter pairs indicate the spin-1 and
spin-2 states as defined in Fig. 1 and the lower-case letters indicate
the intermediate states as defined in Table II. The subscripts ± denote
the sign of F(1) · F(2). The physical quantities along the dotted line
are shown in Fig. 4(a). The spin states at the black dots are shown in
Fig. 4(b).

intermediate states, labeled by lower-case letters classified in
Table II. In the regions of these intermediate states, either or
both of the spin-1 and spin-2 states continuously change with
respect to c

(12)
1 and c

(12)
2 .

We now consider the phases along the dotted line in Fig. 3.
When c

(12)
1 is large and negative, the ground state is the FF+

state. When c
(12)
1 crosses the phase boundary between FF+

and a+, the lengths of the spin-1 and spin-2 vectors begin
to decrease, as shown in Fig. 4(a). In this a+ phase, the spin
vectors F(1) and F(2) remain in the same direction. In contrast,
in the b+ phase, the directions of the spin vectors F(1) and
F(2) become different. This can be regarded as axisymmetry

TABLE II. Classification of the intermediate states that change
continuously in the phase diagram. “Nonzero” indicates that the value
depends on c

(12)
1 and c

(12)
2 . E indicates the trivial group. The subscript

+ or − is added to a–d to indicate the sign of F(1) · F(2).

|F(1)| |F(2)| A
(2)
0 F(1) × F(2) Isotropy group

a Nonzero Nonzero Nonzero 0 Z2

b Nonzero Nonzero Nonzero Nonzero E
c 1 Nonzero Nonzero 0 Z4

d 1 Nonzero 0 0 Z3

e 0 0 Nonzero 0 Z2 × Z2

breaking of the magnetization, that is, if we fix the vector
F(1) to the z direction, the vector F(2) has a component F

(2)
⊥

perpendicular to the z axis. Examples of such axisymmetry
breaking states are shown in Fig. 4(b). Axisymmetry breaking
has been found in a mixture of spin-1 and spin-1 BECs in the
presence of an external magnetic field [24]. In the FF′

+ phase,
the directions of the spin vectors F(1) and F(2) become the same
again. In this phase, the spin-1 state returns to ζ (1) = ζ

(1)
F and

the spin-2 state is ζ (2) = ζ
(2)
F ′ , which does not depend on c

(12)
1

and c
(12)
2 within the phase, as seen from the plateau in Fig. 4(a).

In the a+, b+, and a+ phases, the spin states continuously
change again; the spin vectors F(1) and F(2) are in the same
direction in the a+ phase, while they take different directions

FIG. 4. (a) Dependence of F (1)
z , F (2)

z , and F
(2)
⊥ on c

(12)
1 along the

dotted line in Fig. 3, where F
(f )
⊥ = [(F (f )

x )2 + (F (f )
y )2]1/2. Here, the

spin-1 and spin-2 states are rotated so that F(1) is in the z direction,
and hence F

(1)
⊥ is always zero. (b) Spherical-harmonic representations

of the spin states marked by the black dots in Fig. 3, where the left-
and right-hand figures are the spin-1 and spin-2 states, respectively.
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FIG. 5. Ground-state phase diagram for c
(1)
1 = −0.46, c

(2)
1 =

−1.1, and c
(2)
2 = 1.5. The ground state for c

(12)
1 = c

(12)
2 = 0 is the

ferromagnetic state for both spin 1 and spin 2. The spherical harmonic
representations of the spin states are also shown, where the left- and
right-hand figures represent the spin-1 and spin-2 states, respectively.

in the b+ phase. The FU phase is connected to the origin of the
phase diagram; although a linear combination of the FU and
FB states is the ground state at the origin, only the FU state
occupies the finite region of the phase diagram. The phases on
the right-hand side of the phase diagram, a−, b−, . . . are similar
to the corresponding phases a+, b+, . . . where the spin vector
F(1) or F(2) is flipped, i.e., the time-reversal transformation
is applied to the spin-1 or spin-2 state. For example, in the
FF′

− phase, when the spin-1 state is ζ (1) = (1,0,0), the spin-2
state is ζ (2) = (0,0,0,1,0), which is the time-reversal state of
ζ (2) = (0,1,0,0,0) in the FF′

+ phase. For c
(12)
2 < 0, the phase

structures are simpler. In the c± phases, the spin-1 state is fixed
to the ferromagnetic state, while the spin-2 state continuously
changes with F(1) and F(2) being kept in the same direction.
A typical c state is shown in Fig. 4(b).

In the experiment in Ref. [31], the values of the interspin
scattering lengths of 87Rb were measured, which correspond
to c

(12)
1 	 0.83 and c

(12)
2 	 4.8 in the present case, if ρ1 = ρ2

in Eq. (17), i.e., an almost 1:1 mixture of spin-1 and spin-2
atoms. In the phase diagram in Fig. 3, these values correspond
to the PB state, namely, the polar state for spin 1 and the biaxial
nematic state for spin 2. The ground-state phase of the spin-1
87Rb BEC alone is the ferromagnetic state and that for spin
2 is the biaxial or uniaxial nematic state. Thus, the ground
state of the 1:1 mixture of spin-1 and spin-2 87Rb BECs is
different from those of the individual BECs due to the interspin
interaction.

Figure 5 shows the ground-state phase diagram for c
(1)
1 =

−0.46, c(2)
1 = −1.1, and c

(2)
2 = 1.5. If the interspin interaction

is absent, the ground state is the ferromagnetic state both for
spin 1 and spin 2 for these parameters. The phase diagram is
much simpler than Fig. 3. Comparing Fig. 5 with Fig. 2, we
find that the PB and PU states disappear in Fig. 5. Between the
PF and FF± phases, there exists the region of the b state, in

FIG. 6. Ground-state phase diagram for c
(1)
1 = −0.46, c(2)

1 = 1.1,
and c

(2)
2 = 1.5. The ground state for c

(12)
1 = c

(12)
2 = 0 is the ferromag-

netic state for spin 1 and the cyclic state for spin 2. The region of
many phases in (a) is magnified in (b). The physical quantities along
the dotted line are shown in Fig. 7(a). The spin states at the black dots
are shown in Fig. 7(b).

which the axisymmetry is broken. For the present parameters,
the spin-2 state is almost the ferromagnetic state in the b phase.
The angle between the two spin vectors changes from 0 to π

across the region of the b state.
Figure 6 shows the ground-state phase diagram for c

(1)
1 =

−0.46, c
(2)
1 = 1.1, and c

(2)
2 = 1.5. If the interspin interaction

is absent, i.e., at the origin of the phase diagram, the ground
state of the spin-1 BEC is the ferromagnetic state and that of
the spin-2 BEC is the cyclic state for these parameters. The
phase diagram is again very complicated. Let us examine the
phases along the dotted line. As c

(12)
1 is increased from a large

negative value, the ground state changes from the FF+ state
to the a+, b+, and FF′

+ states, which is similar to the case in
Fig. 3. After that, a new phase appears, labeled by d+. In this
phase, the value of |A(2)

0 | in the spin-2 state vanishes, as in the
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FIG. 7. (a) Dependence of F (1)
z , F (2)

z , F
(2)
⊥ , and |A(2)

0 |2 on c
(12)
1

along the dotted line in Fig. 6. Here, the spin-1 and spin-2 states are
rotated so that F(1) is in the z direction, and hence F

(1)
⊥ is always zero.

The small changes in F (1)
z and |A(2)

0 |2 are magnified in the insets.
(b) Spherical-harmonic representations of the spin states marked by
the black dots in Fig. 6, where the left- and right-hand figures are the
spin-1 and spin-2 states, respectively.

cyclic state, whereas |F(2)| is finite, as shown in Fig. 7(a). The
spin-1 state is in the ferromagnetic state ζ (1) = ζ

(1)
F . From the

shape of the spherical harmonic representation in Fig. 7(b),
we find that this state may be regarded as an intermediate state
between the FC and FF′ states. The d± states also exist in the

FIG. 8. Ground-state phase diagram for c
(1)
1 = 0.46, c

(2)
1 = 1.1,

and c
(2)
2 = −1. The ground state for c

(12)
1 = c

(12)
2 = 0 is the polar state

for spin 1 and the nematic state for spin 2.

FIG. 9. Ground-state phase diagram for c
(1)
1 = 0.46, c

(2)
1 = 1.1,

and c
(2)
2 = 1.5. The ground state for c

(12)
1 = c

(12)
2 = 0 is the polar state

for spin 1 and the cyclic state for spin 2. The region of many phases
in (a) is magnified in (b). The physical quantities along the dotted line
in (a) are shown in Fig. 10(a). The spin states at the black dots are
shown in Fig. 10(b).

region c
(12)
2 < 0. The structures of the a±, b±, and c± regions

in Fig. 6 appear to be different from those in Fig. 3.
Figure 8 shows the ground-state phase diagram for c

(1)
1 =

0.46, c
(2)
1 = 1.1, and c

(2)
2 = −1. If the interspin interaction is

absent, the ground state of the spin-1 BEC is the polar state and
that of the spin-2 BEC is the nematic state for these parameters.
We find from Fig. 8 that the PB and PU phases extend and
contact each other at c

(12)
2 = 0. In this phase diagram there is

no symmetry broken state, such as the b state.
Figure 9 shows the ground-state phase diagram for c

(1)
1 =

0.46, c
(2)
1 = 1.1, and c

(2)
2 = 1.5. If the interspin interaction

is absent, the ground state of the spin-1 BEC is the polar
state and that of the spin-2 BEC is the cyclic state for these
parameters. In this phase diagram, a new state appears, labeled
e. The e state has no magnetization for both spin 1 and spin 2,
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FIG. 10. (a) Dependence of F (1)
z , F (2)

z , F
(2)
⊥ , and |A(2)

0 |2 on c
(12)
1

along the dotted line in Fig. 9. Here, the spin-1 and spin-2 states are
rotated so that F(1) is in the z direction, and hence F

(1)
⊥ is always

zero. The small changes in |A(2)
0 |2 are magnified in the insets. (b)

Spherical-harmonic representations of the spin states marked by the
black dots in Fig. 6, where the left- and right-hand figures are the
spin-1 and spin-2 states, respectively.

F(1) = F(2) = 0, as shown in Fig. 10(a). From the shapes of
the spherical harmonic representation in Fig. 10(b), the e state
is an intermediate state between the cyclic and nematic states.
In the phase diagram, the regions of the e state are located
at the heads of the PB and PU regions. For the parameters in
Fig. 9, interestingly, the two regions of the e state are detached
from each other near the origin, where the a± states fill in.
Although in Fig. 10 the quantities F(1), F(2), and A

(2)
0 seem to

jump at the boundary of the e region, they continuously change
across the very narrow regions of the a± states. In all of the
phase diagrams presented above, these quantities continuously
change at the phase boundaries of the intermediate (a, b, c, d,
and e) regions.

Figure 11 shows the ground-state phase diagram for c
(1)
1 =

0.46, c(2)
1 = −0.0005, and c

(2)
2 = 1. If the interspin interaction

is absent, the ground state of the spin-1 BEC is the polar state
and that of the spin-2 BEC is the ferromagnetic state for these
parameters. We take the small value of c

(2)
1 , because the PU

region is far from the origin for a larger value of c
(2)
1 . The a±

states occupy the region near the origin instead of the PU state.
Compared with Fig. 2, the degeneracy is removed and the PF
state remains in the upper region of Fig. 11.

Finally, we mention the order-parameter manifold of the
ground state. In the case of individual spin-1 and spin-2 BECs,
the Hamiltonian is invariant with respect to changes in the
global phase U(1), and the rotation in the spin space SO(3).
The ground state therefore has continuous degeneracy, with a

FIG. 11. Ground-state phase diagram for c
(1)
1 = 0.46, c

(2)
1 =

−0.0005, and c
(2)
2 = 1. The ground state for c

(12)
1 = c

(12)
2 = 0 is the

polar state for spin 1 and the ferromagnetic state for spin 2. The
spherical harmonic representations of the spin states are also shown,
where the left- and right-hand figures represent the spin-1 and spin-2
states, respectively.

manifold represented by U(1) × SO(3). However, for example,
the spin-1 ferromagnetic state in Fig. 1(a) is invariant with
respect to rotation around the symmetry axis (with a global
phase shift due to the spin-gauge symmetry). In other words,
the isotropy group of the spin-1 ferromagnetic state is SO(2).
The order-parameter manifold of the spin-1 ferromagnetic state
is thus U(1) × SO(3) / SO(2) 	 SO(3) [5]. The isotropy group
of the spin-1 polar state is SO(2) ×Z2, since Fig. 1(b) is
invariant with respect to rotation around the symmetry axis
and upside-down rotation with global phase π .

In the case of the mixture of spin 1 and spin 2, the
Hamiltonian is invariant with respect to changes in the global
phase for each of the spin-1 and spin-2 states, in addition to
the spin rotation of both spin-1 and spin-2 states, and then
the symmetry group of the Hamiltonian is U(1) × U(1) ×
SO(3). For example, the isotropy group of the FF state is SO(2),
and therefore the order-parameter manifold of the FF state
is U(1) × SO(3). Similarly, the FF′ and FU states have this
manifold. The isotropy groups of the intermediate states are
summarized in Table II, whose symmetries are lower than those
of individual spin states. For example, the symmetry-broken
state b in Table II only has the trivial isotropy group (only the
identity element).

IV. CONCLUSIONS

We have investigated the ground-state phase diagrams
of a mixture of spin-1 and spin-2 BECs in the mean-field
approximation. We obtained two types of ground states. One
is a pair of known stationary states in spin-1 and spin-2 BECs,
such as the FF and PB states. In the other type of ground
state, either or both of the spin states continuously change with
respect to the interaction coefficients. The latter type of ground
state is classified in Table II.

023622-7



IRIKURA, ETO, HIRANO, AND SAITO PHYSICAL REVIEW A 97, 023622 (2018)

For the various choices of the intraspin interaction coef-
ficients, c

(1)
1 , c

(2)
1 , and c

(2)
2 , we obtained the phase diagrams

with respect to the interspin interaction coefficients, c
(12)
1 and

c
(12)
2 . These phase diagrams have remarkably rich structures.

In all the phase diagrams, the FF+ and FF− phases occupy the
regions of large negative and positive c

(12)
1 , respectively. Also,

the PF, or the PB and FF′
± phases are located in the c

(12)
2 > 0

region, and the PU phase is located in the c
(12)
2 < 0 region

(except Fig. 5). Between these phases, there exist various
intermediate phases with interesting phase structures. Among
them, we found the axisymmetry broken phase (b in Table II),
in which the spin-1 and spin-2 vectors are tilted from each
other.

We have also determined the ground-state phase of a
mixture of spin-1 and spin-2 87Rb BECs, using the measured
interaction coefficients [31]. It has been known that the ground
state of the spin-1 87Rb BEC alone is the ferromagnetic state
and that of spin-2 BEC is a linear combination of the uniaxial
and biaxial nematic states at zero magnetic field. By contrast,
for an almost 1:1 mixture, the ground state is the polar state
for spin 1 and the biaxial-nematic state for spin 2. The ground
state of the spinor mixture of 87Rb BECs is thus changed by
the interaction between spin-1 and spin-2 BECs.

We have neglected the magnetic dipole-dipole interaction
(DDI). This approximation is valid when the dimensionless
ratio εdd = μ0μ

2/(3g) is much smaller than unity, where μ0 is
the magnetic constant, μ is the magnetic moment of the spin-1
or -2 atom, and g is one of the coefficients in Eqs. (5) and (15).
For εdd ∼ 1, we must consider the DDI energy given by

Eddi ∝
∫

d r1d r2ρ1(r1)ρ2(r2)

× F(1) · F(2) − 3(F(1) · e)(F(2) · e)

|r1 − r2|3 , (18)

where e = (r1 − r2)/|r1 − r2|. In Eq. (18), the spatial varia-
tion of the spin state is neglected on the same assumption in
Eq. (16). If the density distributions ρ1 and ρ2 are isotropic,
the integral in Eq. (18) vanishes and the DDI can be ne-
glected even when εdd ∼ 1. On the other hand, if the density
distributions are anisotropic, the anisotropic spin-dependent
interaction emerges from Eq. (18). Moreover, if there exist
some resonances, the dipolar effect may be enhanced [33].

The present study can be extended in various directions. For
example, the magnetic field dependence (linear and quadratic)
of the phase diagrams is the next planned extension of this
work. Since the ground-state manifolds of the spinor mixture
are different from those of single BECs, novel topological
excitations will be possible. If phase separation occurs in the
spinor mixture, we expect that the interface between domains
will create interesting problems.
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APPENDIX A: DERIVATION OF INTERACTION ENERGY
BETWEEN SPIN-1 AND SPIN-2 ATOMS

The spin state of colliding spin-1 and spin-2 atoms can be
represented by the bases as

|F ,M〉 =
∑
mm′

CFM
mm′ |1,m〉|2,m′〉, (A1)

where CFM
mm′ is the Clebsch-Gordan coefficient,F = 1, 2, and 3

are total spin, and M = −F , − F + 1, . . . ,F . The projection
operator for the colliding channel of total spin F is defined by

P̂F =
F∑

M=−F
|F ,M〉〈F ,M|, (A2)

which is rotation invariant. In the present Hilbert space, the
identity operator Î is given by

P̂1 + P̂2 + P̂3 = Î . (A3)

We define the spin operators acting on the spin-1 and spin-2
states as f̂ 1 and f̂ 2, respectively. We find

f̂ 1 · f̂ 2 = 1

2

(
f̂ 1 + f̂ 2

)2 − 1

2

∑
f =1,2

f (f + 1)Î

= 1

2

∑
F=1,2,3

F(F + 1)P̂F − 4Î . (A4)

Since the Hamiltonian must be rotation invariant, the two-body
interaction Hamiltonian between spin-1 and spin-2 atoms is
written as

Ĥ12 = 2πh̄2

M12

∑
F=1,2,3

aF P̂Fδ(r1 − r2), (A5)

where M12 = (M−1
1 + M−1

2 )−1 is the reduced mass. Using
Eqs. (A3) and (A4), the interaction Hamiltonian can be
rewritten as

Ĥ12 = (
g

(12)
0 Î + g

(12)
1 f̂ 1 · f̂ 2 + g

(12)
2 P̂1

)
δ(r1 − r2), (A6)

where g
(12)
0 , g

(12)
1 , and g

(12)
2 are defined in Eq. (15). The mean-

field energy is thus given by Eq. (14), where P
(12)
1 = |A1,1|2 +

|A1,0|2 + |A1,−1|2 with

A1,1 = 1√
10

ζ
(1)
1 ζ

(2)
0 −

√
3

10
ζ

(1)
0 ζ

(2)
1 +

√
3

5
ζ

(1)
−1ζ

(2)
2 , (A7a)

A1,0 =
√

3

10
ζ

(1)
1 ζ

(2)
−1 −

√
2

5
ζ

(1)
0 ζ

(2)
0 +

√
3

10
ζ

(1)
−1ζ

(2)
1 , (A7b)

A1,−1 =
√

3

5
ζ

(1)
1 ζ

(2)
−2 −

√
3

10
ζ

(1)
0 ζ

(2)
−1 + 1√

10
ζ

(1)
−1ζ

(2)
0 . (A7c)

APPENDIX B: LINEAR STABILITY ANALYSIS AND
PHASE BOUNDARIES

We perform a linear stability analysis of a stationary state
to obtain the phase boundaries analytically. The total energy is
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given by

E = c
(1)
0

2

(
1∑

m=−1

∣∣ζ (1)
m

∣∣2

)2

+ c
(2)
0

2

(
2∑

m=−2

∣∣ζ (2)
m

∣∣2

)2

+1

2

(
c

(1)
1 F(1) · F(1) + c

(2)
1 F(2) · F(2) + c

(2)
2

∣∣A(2)
0

∣∣2)
+ c

(12)
1 F(1) · F(2) + c

(12)
2 P

(12)
1 . (B1)

Using this energy, the Gross-Pitaevskii (GP) equation is
written as

ih̄
∂ζ

(f )
m

∂t
= ∂E

∂ζ
(f )∗
m

. (B2)

All of the ground states in the phase diagrams are stationary
solutions of the GP equation. We write a stationary solution as

ζ (f )
m (t) = e−iμf t/h̄Z(f )

m , (B3)

where μf is the chemical potential for spin f . We consider a
small deviation from the stationary solution as

ζ (f )
m (t) = e−iμf t/h̄

(
Z(f )

m + u(f )
m e−iωt + v(f )∗

m eiω∗t). (B4)

Substituting this into Eq. (B2) and taking the first-order terms
of u

(f )
m and v

(f )
m , we obtain an 8 × 8 eigenvalue equation

with respect to ω. If one or more eigenvalues are negative or
complex, the stationary state Z

(f )
m is not the ground state.

For example, we take the stationary state Z
(f )
m as the

ferromagnetic state ζ (1) = (1,0,0) and ζ (2) = (1,0,0,0,0),
which corresponds to the FF+ state in the phase diagrams.
Diagonalizing the eigenvalue equation, we obtain

ω = −3c
(12)
1 , (B5a)

ω = −6c
(2)
1 − 3c

(12)
1 + 3

10
c

(12)
2 , (B5b)

ω = −8c
(2)
1 + 2

5
c

(2)
2 − 4c

(12)
1 + 3

5
c

(12)
2 , (B5c)

ω = −c
(1)
1 − 2c

(2)
1 − 3c

(12)
1 + 7

20
c

(12)
2

±
[
A2 − 1

2
Ac

(12)
2 +

(
7

20
c

(12)
2

)2
]1/2

, (B5d)

and ω = 0, where A = c
(1)
1 − 2c

(2)
1 + c

(12)
1 . In the case of Fig. 2,

for example, the condition ω > 0 for Eqs. (B5a) and (B5c)
gives c

(12)
1 < 0 and c

(12)
2 > 10c

(12)
2 , which agree with the phase

boundary of the FF+ phase in Fig. 2. On the other hand, for
the phase diagram in Fig. 3, the phase boundary of the FF+
phase is determined by Eqs. (B5c) and (B5d) for c

(12)
2 < 0 and

c
(12)
2 > 0, respectively.

Taking the stationary state Z
(f )
m as ζ (1) = (1,0,0) and ζ (2) =

(0,0,0,0,1), i.e., the FF− state, we obtain

ω = −6c
(2)
1 + 3c

(12)
1 − 3

5
c

(12)
2 , (B6a)

ω = −8c
(2)
1 + 2

5
c

(2)
2 + 4c

(12)
1 − 3

5
c

(12)
2 , (B6b)

ω = ±
(

−c
(1)
1 + 2c

(2)
1 + c

(12)
1 − 1

20
c

(12)
2

)

+
[
B2 − 11

10
Bc

(12)
2 + 97

400
c

(12)2
2

]1/2

, (B6c)

ω =
∣∣∣∣c(12)

1 − 3

10
c

(12)
2

∣∣∣∣, (B6d)

and ω = 0, where B = c
(1)
1 + 2c

(2)
1 − 3c

(12)
1 . For example, for

the phase diagram in Fig. 3, the phase boundary of the FF−
phase is determined by Eqs. (B6b) and (B6c) for c

(12)
2 < 0 and

c
(12)
2 > 0, respectively.
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