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Recent experiments have illustrated that long-range two-body interactions can be induced by laser coupling
atoms to highly excited Rydberg states. Stimulated by this achievement, we study the supersolidity of lattice
bosons in an experimentally relevant situation. In our setup, we consider two-component atoms on a square
lattice, where one species is weakly dressed to an electronically high-lying (Rydberg) state, generating a tunable,
soft-core shape long-range interaction. Interactions between atoms of the second species and between the two
species are characterized by local inter- and intraspecies interactions. Using a dynamical mean-field calculation,
we find that interspecies on-site interactions can stabilize a pronounced region of supersolid phases. This is
characterized by two distinctive types of supersolids, where the bare species forms supersolid phases that are
immersed in strongly correlated quantum phases, i.e., a crystalline solid or supersolid of the dressed atoms. We
show that the interspecies interaction leads to a rotonlike instability in the bare species and therefore is crucially
important to the supersolid formation. We provide a detailed calculation of the interaction potential to show how
our results can be explored under current experimental conditions.
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I. INTRODUCTION

A supersolid is a translational symmetry-breaking super-
fluid occurring in a solid. It was predicted to exist in bulk
helium over 40 years ago [1], but its observation has remained
a challenge [2]. To reach supersolidity, one typically relies
on long-range two-body interactions to break the translational
invariance of a homogeneous system. Recent experiments have
observed supersolid orders where translational symmetry is
broken by cavity-photon–assisted [3] or spin-orbit-coupling–
enabled [4] momentum transfer.

To achieve supersolids induced purely by two-body inter-
actions, enormous efforts have been spent on polar molecules
[5,6] and magnetic [7] and Rydberg atoms [8,9] due to
the available long-range atom-atom interaction as well as
high-precision control over their internal and motional states.
However, a current challenge is that theoretical propos-
als typically examine regimes that are difficult to achieve
experimentally.

In this work, we study supersolids of a two-species bosonic
mixture on a two-dimensional (2D) square lattice, where
one of the species is weakly coupled to an electronically
high-lying (Rydberg) state by an off-resonant laser [the level
scheme is depicted in Fig. 1(a)]. Uniquely, this setting was
recently realized experimentally at Munich [10] in the study
of Rydberg dressed spin dynamics [11]. The coupling laser
induces strong and long-range interactions between Rydberg
dressed atoms on distances well beyond typical lattice-site
spacings [see Fig. 1(b)], whose strength and sign can be
controlled by the laser (i.e., detuning and Rabi frequen-
cies) and the choices of Rydberg states [12]. The resulting

Bose-Hubbard model features a long-range interaction be-
tween dressed atoms, while interactions between atoms of
the two different species and of the bare species are short
range.

Employing real-space bosonic dynamical mean-field the-
ory (RBDMFT), we find that the system undergoes a series
of many-body phases, including Mott insulator (MI), ordered
density wave (DW), supersolid (SS), and superfluid (SF)
phases. A key result is that the interspecies interaction enables
supersolid phases of the bare species in regions where the
dressed atoms are in DW or SS phases [an example for a DW
is depicted in Fig. 1(c)]. Using Bogoliubov theory, we reveal
that a rotonlike instability emerges due to the interspecies
interaction [see Fig. 1(d)], which signifies a SF-to-SS transition
[13]. Our results open a route to enhance the formation of SS
phases through the Rydberg dressing in two-component atomic
gases.

The paper is organized as follows. In Sec. II, we present
the two-component Bose-Hubbard model of the system, in
which the dressed atoms interact via a long-range soft-core
shape interaction. In Sec. III, ground-state phase diagrams
of the model are systematically examined at low particle
fillings using the RBDMFT. A key finding is that the species
with short-range interactions exhibits a supersolid state. In
Sec. IV, the supersolid mechanism of the bare species is
studied, where a roton instability is found due to interstate
interactions. In Sec. V, we discuss how one can engineer
the required long-range interactions and explore the inter-
esting phases in cold-atom experiments. We conclude in
Sec. VI.

2469-9926/2018/97(2)/023619(10) 023619-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.023619&domain=pdf&date_stamp=2018-02-12
https://doi.org/10.1103/PhysRevA.97.023619


LI, GEIßLER, HOFSTETTER, AND LI PHYSICAL REVIEW A 97, 023619 (2018)

|d

|r
Δ

Ω V
ij

Rc

a 2a 3a

ε(
k
)

|b

kxa

FIG. 1. (a) Two electronic ground states |b〉 (blue) and |d〉 (red)
and a Rydberg state |r〉 are considered. An off-resonant laser (with
Rabi frequency � and detuning �) weakly couples the state |d〉 to
|r〉. (b) The soft-core shape interaction potential Vij (red) between
atoms in the Rydberg dressed state |d〉. The soft-core radius Rc can be
larger than the lattice spacing a. Here, Rc = 2a is shown. (c) SS of the
bare state when dressed atoms are in an ordered density wave (DW).
(d) Roton instability of the bare species. The Bogoliubov dispersion
relation (along the kx axis) of phonons is significantly modified by
the interspecies interaction. A rotonlike instability emerges when the
interspecies interaction Ubd is increased, indicating that the ground-
state phase changes from a homogeneous superfluid to supersolid.
We show Ubd/U = 0 (dotted line), Ubd/U = 0.45 (dashed line), and
Ubd/U = 1 (solid line). Other parameters are ky = 0, V/U = 0.4,
and t/U = 0.04. See text for details.

II. THE HAMILTONIAN OF THE SYSTEM

In sufficiently deep lattices, our setting is described by a
single-band, two-component Bose-Hubbard model,

Ĥ = −
∑
〈ij〉,σ

tσ (b̂†iσ b̂jσ + H.c.) +
∑
i<j

Vij n̂id n̂jd −
∑

i

Ĥi ,

where the single-site Hamiltonian Ĥi =
1
2

∑
σσ ′ Uσσ ′ n̂iσ (n̂iσ ′ − δσσ ′) − ∑

σ μσ n̂iσ . 〈i,j 〉 represents
the nearest-neighbor sites i,j . Index σ (σ ′) = b,d denotes bare
and dressed states, respectively. b̂

†
iσ (b̂iσ ) and n̂iν = b̂

†
iν b̂iν

are the bosonic creation (annihilation) operator for species σ

and atomic density at site i. t and μσ determine the hopping
rate and chemical potential for the two bosonic species. We
assume that the intraspecies interactions Ub,d are identical for
both species [14].

In this model, we consider both short-range and long-range
interactions. Uσσ ′ denotes the inter- and intraspecies short-
range (on-site) interactions, which can be tuned via, e.g.,
Feshbach resonances [15] or state-dependent optical lattices
[16]. The long-range interaction between sites i and j is
Vij ≡ V/[(a/Rc)6(i − j )6 + 1], where V = C̃6/R

6
c character-

izes the long-range interaction at a distance Rc. C̃6, Rc, and a

are the effective dispersion coefficient, soft-core radius, and
lattice constant, respectively. In the following, we choose the
intraspecies short-range interaction Ub,d ≡ U , which also sets
the unit of energy. Details of these parameters will be given
in Sec. V.

III. MANY-BODY GROUND-STATE PHASE DIAGRAM

In this section, we study the stability of quantum phases
of Rydberg dressed systems in optical lattices for fillings
0 � 〈ni〉 � 2. To determine the ground-state phases, we use
RBDMFT to capture higher-order quantum fluctuations, strong
correlations, and arbitrary long-range order in a unified frame-
work [17,18]. It provides a nonperturbative description of
many-body systems in two and three spatial dimensions (the
method is discussed in Appendix A). In the calculations, we
typically consider the lattice size as large as Nlat = 48×48 sites
and an experimentally relevant soft-core radius Rc = 3a [12].
The superfluidity is characterized by the condensate order pa-
rameter φσ ≡ 〈b̂σ 〉, and crystalline order by the real-space den-
sity distribution niσ = 〈n̂iσ 〉 and total density ni ≡ nib + nid .
The coexistence of both condensate and crystalline order
parameters gives the supersolid phase.

A. Density-dependent phase diagram
of Rydberg dressed systems

In this section, we study features of the phase diagram at
various fillings. In the strong-coupling limit with Uσσ ′ � t ,
we find that the system favors a Mott-insulating or density
wave phase with different types of crystalline order in the
individual species. Interestingly, we observe that a density
wave phase with a nonuniform total density which breaks
lattice translational symmetry, with densities nib = 1 and
nid = 2, appears, as shown in the aqua green region of Fig. 2.
These density waves exhibit nonzero density fluctuations,
as shown in Fig. 3. However, quantum fluctuations as a
result of higher-order tunneling processes are weak due to
the strong long-range interactions. Actually, the density wave
of the dressed species is also predicted in the single-species
case [19].

Away from the deep MI regime, i.e., in the intermediate
hopping regime, we observe two types of quantum phase tran-
sitions from MI to supersolid, i.e., the uncoupled ground-state
species demonstrates a phase transition from MI to a supersolid
(SS1) formed by the bare species, while the dressed atom is in
a MI. Further increasing the tunneling rate t , both species are
in a supersolid state (SS2), as shown in Fig. 2. Interestingly,
we observe a pronounced region of supersolid appearing in our
simulations as a result of the on-site interspecies interactions,
indicating a higher chance for directly observing these phases
in realistic experiments, compared to the single-species case
[19]. Actually, we indeed observe that the width of SS1 and
SS2 shrinks as a function of interspecies interactions, as shown
in Fig. 2(f), where SS1 clearly disappears for smaller Ubd .
In addition, the long-range interaction also shifts the phase
transition between MI and SS1, even though the bare species
only possess on-site interactions.

Finally, in the weakly interacting regime with t � Uσσ ′ ,
a superfluid phase with uniform total density distribution is
found in our simulations, where both species demonstrate
homogenous density distribution. Here, crystalline orders are
destroyed by the large density fluctuations and the system only
supports superfluidity with uniform density.

Note that a similar model using dipolar gases has been nu-
merically investigated using a mean-field Gutzwiller approach
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FIG. 2. Phase diagram on a square lattice for Rydberg dressed interaction V/U = 0.02 and 0.2, respectively, demonstrating stable supersolid
regions marked by SS1 and SS2. In the Mott-insulating (MI) phase with spatially uniform total density, the Rydberg dressed species exhibits
different crystalline order, as shown in (a)–(d) for real-space density nd , with lattice sizes being the square of the area of the unit cell of the
Rydberg dressed species [Nlat = 12×12 (⊗), Nlat = 15×15 (⊕), Nlat = 30×30 (	), and Nlat = 34×34 (
)]. Inset: Density wave (DW) phase
with density nb = 1 for the ground-state species and nd = 2 for the Rydberg dressed state in the corresponding filled sites (e). Other parameters
are Ubd = U, μ/U = μb/U = μd/U − 0.05.

and by considering only the nearest-neighbor part of the dipolar
interactions [20]. In our calculations, we take into account the
whole range of the interaction potential. As a comparison, the
phase diagram of dipolar systems is given in Appendix B.

B. Supersolid phases at unit filling

In the following, we will focus on phases at unit filling,
njd + njb = 1. We start with the so-called strong-coupling

limit when Uσσ ′ � t , where the 2D system favors MI phases
with uniform total-particle densities. Crystalline orders in the
MI region can be changed by varying the two-body interactions
(i.e., V/U ). One example is depicted in Fig. 4(a), which shows
relative densities and crystalline structures. Furthermore, when
one increases V/U continuously, the filling fractions fd ≡∑

i nid/Nlat of the dressed species can form a devil’s-staircase
structure [Fig. 5(a)]. An open question here is whether
the staircase in this 2D system is complete. In 1D lattice

FIG. 3. Real-space density nb,d and density fluctuations �b,d ≡ (nb,d − 〈nb,d〉)2 in (a) MI and (b) DW phases, with lattice sizes being the
square of the area of the unit cell of the Rydberg dressed species, (a) Nlat = 15×15 and (b) Nlat = 20×20, respectively. Other parameters are
(a) t/U = 0.03, V/U = 0.3, Ubd = U, μb/U = 0.2, and μd/U = 0.7; (b) t/U = 0.0023, V/U = 0.02, Ubd = U, μb/U = 0.98, and
μd/U = 1.03.
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FIG. 4. Phase diagram of a mixture of ground-state component b and Rydberg dressed species d on a square lattice in terms of hopping
amplitude t and Rydberg dressed interaction strength V . There are four stable phases in the diagram: Mott insulator (MI) with spatially
uniform total local density and crystalline density order for each species, homogeneous superfluid (SF), and two types of supersolids (SS1 with
Rydberg dressed species being in the crystalline phase, and SS2 with both species being in the supersolid). Other parameters are Ubd = U and
nr

b + nr
d = 1. (a)–(d) Real-space density nr

b,d and quasi-momentum-space density nk
b,d distributions of different phases, with lattice sizes being

the square of the area of the unit cell of the Rydberg dressed species [MI,Nlat = 15×15 (⊗); SS1,Nlat = 15×15 (⊕); SS2,Nlat = 12×12 (
);
and SF,Nlat = 24×24 (	)], as shown by the markers in the main figure.

systems, the devil’s staircase and its completeness [21] have
been extensively studied [22]. Moreover, there are very small
regions occupied by DW phases (with a nonuniform total
density).

When the hopping rate increases at fixed interaction V/U ,
we observe a pronounced region of supersolids. The bare
state first enters the supersolid phase (SS1) from an insulating
phase, while the dressed species is still crystallized in this
case [one example is depicted in Fig. 4(b)]. Further increasing
t , both species are in supersolid phases (SS2), as shown in
Fig. 4(c), where nonzero peaks appear for both species in
addition to the zero-momentum condensate, indicating the
coexistence of nontrivial diagonal long-range order and off-
diagonal long-range order associated with phase coherence. A
large supersolid region indicates a higher chance for directly
observing these phases in realistic experiments, compared to
the single-species case [8].

One typically would not expect such supersolids as the bare
species alone can only form superfluid and MI phases due
to the short-range two-body interactions [23]. The underlying
mechanism is that the flow of the bare species is suppressed
by the crystalline distribution of the dressed species via the
interspecies interaction. As a result, the widths of the SS1 and
SS2 phases will strongly depend on the interspecies interaction
Ubd . The numerical result in Fig. 5(b) shows that indeed the two
SS phases shrink as Ubd decreases. The SS1 phase eventually
disappears for sufficiently small Ubd .

IV. SUPERSOLIDITY MECHANISM
OF THE BARE SPECIES

In the rest of the work, we will develop a Bogoliubov mean-
field theory to understand how the interspecies interaction
enables the bare species to form SS phases. Our discussion will
focus on the SS1 phase, where the dressed species is a DW.
This allows us to write down wave functions |DWd〉 of the DW
according to the crystalline structure. We also assume that the
total wave function in the ground state can be decoupled as
|�g〉 ≈ |DWd〉 ⊗ |�b〉, where |�b〉 is the wave function of the
bare component. Then we can derive an effective Hamiltonian
for the bare species by tracing out the dressed atom part, i.e.,
Ĥe = 〈DWd |Ĥ |DWd〉. Explicitly, the effective Hamiltonian
reads

Ĥe = −
∑
〈ij〉

t(b̂†i b̂j + H.c.) + U

2

∑
i

n̂i(n̂i − 1)

−
∑

i

μn̂i + Ubd

∑
{j}

n̂j ,

where {j} denotes lattice sites occupied by dressed atoms.
For convenience, we have omitted the index b of the
bare species. The last term gives the interspecies inter-
action, where the mean particle number per site of the
dressed atoms nd = 1 has been used explicitly. A constant
term, C = 〈DWd |

∑
i<j Vij n̂id n̂jd |DWd〉, characterizing the
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limit. (b) Width of supersolid phases SS1 (blue square) and SS2 (red
circle), δt ≡ tc1 − tc2, as a function of interspecies interaction Ubd/U

for Rydberg dressed interaction V/U = 0.1, where tc1,2 denotes the
critical value of the hopping amplitude of the upper or lower phase
boundary of each phase shown in Fig. 4. (c) Density distribution of
the dressed (red) and bare (blue) species. The dressed atoms form an
oblique lattice with lattice vector a1 and a2. This structure corresponds
to the configuration illustrated in Fig. 4(b). (d) The first Brillouin zone
of the optical lattice (green) and oblique lattice (red) of the dressed
atom. As the lattice vector |aj | > a (j = 1,1), the size and shape of
the first Brillouin zone of the dressed atoms differ significantly from
the square reciprocal lattice of the optical lattice potential.

long-range interaction energy, is neglected in the effective
Hamiltonian.

The interaction with the dressed atoms (the last term in the
effective Hamiltonian) introduces a spatially periodic structure
to the bare species, in addition to the optical lattice. As an
example, we consider parameters corresponding to Fig. 4(b).
Here, the dressed atoms form an oblique lattice; see Fig. 5(c) for
a cartoon picture of the 2D structure. The primitive cell of the
new oblique lattice is apparently larger than the original lattice.
In this example, the primitive lattice vectors are a1 = (1, 4)
and a2 = (4, 1), with which we obtain the area of the primitive
lattice, A = |a1×a2| = 15, while the area of the optical lattice
is 1. In turn, the corresponding reciprocal lattice is smaller than
that of the optical lattice. To illustrate this, we plot the first
Brillouin zone of the two lattices in Fig. 5(b). Apparently they
overlap only in a small central area (low-momentum regions).

As a result, phonon excitations for momentum com-
ponents in and out of the overlap region will be very
different. To show this, we calculate the Bogoliubov dis-
persion relation of the effective Hamiltonian (see details
in Appendix C). In the low-momentum region (where the
two Brillouin zones overlap), Ei

k =
√
ε2
k + 2n̄bUεk with εk =

−2t(cos kxa + cos kya − 2). Outside this region, the disper-

sion becomes Eo
k =

√
(εk − n̄dUbd )2 + 2n̄bU (εk − n̄dUbd ).

Here, n̄b (n̄d ) are the mean population of the bare (dressed)
component. Consequently, the dispersion is no longer con-
tinuous at the boundary of the Brillouin zone of the oblique

t/U

t/
U

&
V

/U

V
/
U

V0/Er

FIG. 6. The hopping rate t and on-site interaction U depend on
the lattice depth V0/Er . Increasing V0/Er , one can observe the phases
discussed in the main text. The inset shows changes of t/U (•) and
V/U (×) individually as a function of V0/Er . Here we consider
the Rydberg state 36S of 87Rb atoms. Other parameters are λ =
1064 nm, as = 5.2 nm, C6 = 241.6 MHz/μm6, � = 7 MHz, and
� = 0.44 MHz.

lattice. The dispersion relation becomes complex when Ubd >

2t n̄d (2 − cos k(b)
x a − cos k(b)

y a), where k(b)
x and k(b)

y are mo-
menta at the boundary. In Fig. 1(d), we plot the dispersion
relation along the kx axis by varying the interspecies interaction
Ubd , where the mode frequency becomes complex at Ubd = U .
This so-called rotonlike instability [13] here indicates that
the emergence of supersolids is indeed induced by the strong
interspecies interaction. Note that the mechanism here is
different from SS phases induced by geometrically dependent
hopping found in frustrated lattices [24].

V. LASER ENGINEERING OF THE DRESSED
INTERACTIONS

The level structure used in the Rydberg dressing is shown
in Fig. 1(a). The species |d〉 is coupled to a Rydberg state by
an off-resonant laser with Rabi frequency � and detuning �.
Interactions between Rydberg atoms are of the van der Waals
type, Vr = C6/r6, where C6 is the respective dispersion coeffi-
cient. The Rydberg dressing gives the soft-core interaction Vij ,
where the effective dispersion coefficient C̃6 = (�/�)4CC and
soft-core radius Rc = (C6/2�)1/6. Rc varies with the Rydberg
states and detuning. For example, one can choose the Rydberg
36S state of 87Rb atoms (C6 = 241.6 MHz μm6) and lattice
constant a = 532 nm. When � = 7 MHz, we obtain Rc ≈ 3a.
With this fixed detuning �, the strength of the soft-core
interaction is now controlled by the Rabi frequency �.

To probe different phases shown in Fig. 4, one needs to
change the parameters V,U , and t together or separately
over certain ranges. One simple way to achieve this is to
tune the lattice potential depth, V0/Er . In optical lattices, the
on-site interaction U depends on the lattice depth through
U = √

8/πkasEr (V0/Er )3/4 and the hopping rate t through
t = 4/

√
πEr (V0/Er )3/4 exp[−2(V0/Er )1/2] [25], where k =

2π/λ,Er = h2/2mλ2, λ = 2a, and as are the wave number,
recoil energy, wavelength of the lattice potential, and s-wave
scattering length, respectively. Upon varying V0/Er and fixing
the other parameters, the ratios t/U and V/U change contin-
uously. One example is shown in Fig. 6. One can see that the
parameters cross the main phases discussed in this paper.
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VI. CONCLUSIONS

In conclusion, we have investigated crystalline phases of
ultracold binary bosonic gases on a square lattice, with one
species possessing a nonlocal interaction induced by Rydberg
dressing. We found two types of supersolid phases that are
robust and occupy large parameter regions at zero temperature.
We showed that the supersolid phases of the bare species are
stabilized by the interspecies interaction. The existence of the
different phases predicted here could be directly observed by
quantum gas microscopy with single-site resolution [26–28]
or through measuring noise correlations [29]. Our results
demonstrate rich features of the Bose-Bose mixture with
long-range interactions, and indicate that this system is well
suited for exploring supersolidity in upcoming experiments.
As the crystalline structure [see Fig. 5(a)] can be changed in
the insulating region by tuning V/U , we expect that supersolid
phases with tunable density patterns can be explored as well.
Moreover, physics in the SS2 region is not fully explored so far.
It was shown that interesting phases, such as supercounterfluid
[30], can be created in a two-component Bose mixture. An
open question here is whether new many-body phases can be
expected when two supersolids coexist in the lattice system.
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APPENDIX A: THE REAL-SPACE BOSONIC
DYNAMICAL MEAN-FIELD METHOD

1. RBDMFT equations

In deriving the effective action, we consider the limit of
a high- but finite-dimensional optical lattice, and use the
cavity method [18] to derive self-consistency equations within
RBDMFT. In a more formal language, first we map the
Hamiltonian onto a set of individual single-site problems, each
of which is described by a local effective action [17],

S
(i)
imp = −

∫ β

0
dτdτ ′ ∑

σσ ′

[
b

(i)
0,σ (τ )∗ b

(i)
0,σ (τ )

]
G(i)

0,σσ ′(τ − τ ′)−1

(
b

(i)
0,σ ′(τ ′)

b
(i)
0,σ ′ (τ ′)∗

)

+
∫ β

0
dτ

{
1

2
Uσσ ′ n

(i)
0,σ (τ )

[
n

(i)
0,σ ′(τ ) − δσσ ′

] +
∑

j (j �=0)

V0j n
(i)
0,d (τ )n(i)

j,d (τ )

−
∑

〈0j〉,σ
tσ

[
b

(i)
0,σ (τ )∗φ(i)

j,σ (τ ) + b
(i)
0,σ (τ )φ(i)

j,σ (τ )∗
]}

. (A1)

Here we have defined the local Weiss Green’s function,

G−1
0,σσ ′(τ − τ ′) ≡ −

(
(∂τ ′ − μσ )δσσ ′ + t2 ∑

〈0i〉,〈0j〉 G1
σσ ′,ij (τ,τ ′) t2 ∑

〈0i〉,〈0j〉 G2
σσ ′,ij (τ,τ ′)

t2 ∑
〈0i〉,〈0j〉 G2

σσ ′,ij
∗
(τ ′,τ ) (−∂τ ′−μσ )δσσ ′ + t2 ∑

〈0i〉,〈0j〉 G1
σσ ′,ij (τ ′,τ )

)
, (A2)

and introduced

φi,σ (τ ) ≡ 〈bi,σ (τ )〉0 (A3)

as the superfluid order parameters, and

G1
σσ ′,ij (τ,τ ′) ≡ −〈bi,σ (τ )b∗

j,σ ′(τ ′)〉0 + φi,σ ′(τ )φ∗
j,σ (τ ′),

(A4)

G2
σσ ′,ij (τ,τ ′) ≡ −〈bi,σ (τ )bj,σ ′(τ ′)〉0 + φi,σ ′(τ )φj,σ (τ ′)

(A5)

as the diagonal and off-diagonal parts of the connected Green’s
functions, respectively, where 〈·〉0 denotes the expectation
value in the cavity system (without the impurity site) [17,31].

2. Anderson impurity model

The most difficult step in the procedure discussed above is
to find a solver for the effective action. However, one cannot
do this analytically. To obtain RBDMFT equations, it is better

to return back to the Hamiltonian representation. Here, each of
the local effective actions (A1) is represented by an Anderson
impurity Hamiltonian,

ĤA = −
∑
〈0j〉σ

tσ (φ∗
j,σ b̂0,σ + H.c.)

+ 1

2

∑
σσ ′

Uσσ ′ n̂0,σ (n̂0,σ ′ − δσσ ′)

+
∑

j (j �=0)

Vj0〈n̂j,d〉n̂0,d −
∑

σ

μ0,σ n̂0,σ

+
∑

l

εl â
†
l âl +

∑
l,σ

(Vσ,l â
†
l b̂0,σ + Wσ,l âl b̂0,σ + H.c.),

(A6)

where the chemical potential and interaction term are di-
rectly inherited from the Hubbard Hamiltonian. The bath
of condensed bosons is represented by the Gutzwiller term
with superfluid order parameters φσ for each component. The
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bath of normal bosons is described by a finite number of
orbitals with creation operators â

†
l and energies εl , where these

orbitals are coupled to the impurity via normal-hopping am-
plitudes Vσ,l and anomalous-hopping amplitudes Wσ,l . The
anomalous hopping terms are needed to generate the off-
diagonal elements of the hybridization function. Note here
that in the high-dimensional limit, intersite interactions only
contribute to the Hartree level [32]. In other words, the Hartree
term of the intersite interaction will dominate as the spatial di-
mension of the system increases. This motivates us to keep only
the Hartree contribution of the intersite interaction in our sim-
ulations as an approximation to the original Hamiltonian, i.e.,

1

2

∑
i �=j

Vij n̂i,d n̂j,d ≈
∑
i �=j

Vij 〈n̂i,d〉
(

n̂j,d − 1

2
〈n̂i,d〉

)
. (A7)

We now turn to the solution of the impurity model. In
practice, we start with an initial set of Anderson parameters
and local bosonic superfluid order parameters, φj,ν(τ ). The
Anderson Hamiltonian can straightforwardly be implemented
in the Fock basis, and the corresponding solution can be
achieved by exact diagonalization (ED) of DMFT [33]. After
diagonalization, the local Green’s function, which includes
all the information about the bath, can be obtained from the
eigenstates and eigenenergies in the Lehmann representation,

G1
imp,σσ ′(iωn) = 1

Z

∑
mn

〈m|b̂σ |n〉〈n|b̂†σ ′ |m〉

× e−βEn − e−βEm

En − Em + ih̄ωn

+ βφσφ∗
σ ′ , (A8)

G2
imp,σσ ′(iωn) = 1

Z

∑
mn

〈m|b̂σ |n〉〈n|b̂σ ′ |m〉

× e−βEn − e−βEm

En − Em + ih̄ωn

+ βφσφσ ′ . (A9)

Integrating out the orbitals leads to the same effective action
as in Eq. (A1), if the following identification is made:

�σσ ′(iωn) ≡ t2
∑

〈0i〉,〈0j〉
Gσσ ′,ij (iωn), (A10)

where Gσσ ′,ij (iωn) is the inverse Fourier transformation of the
Weiss Green’s function defined in Eqs. (4) and (5), and the
hybridization functions read

�1
σσ ′(iωn) ≡

∑
l

(
Vσ,lVσ ′,l

εl − iωn

+ Wσ,lWσ ′,l

εl + iωn

)
,

�2
σσ ′(iωn) ≡

∑
l

(
Vσ,lWσ ′,l

εl − iωn

+ Wσ,lVσ ′,l

εl + iωn

)
. (A11)

Hence, we obtain a set of local self-energies, �(i)
imp,σσ ′(iωn),

�imp,σσ ′(iωn) = (iωnσz + μσ )δσσ ′

+�σσ ′(iωn) − G−1
imp,σσ ′(iωn). (A12)

Then we employ the Dyson equation in real-space representa-
tion in order to compute the interacting lattice Green’s function,

G(iωn)−1 = G0(iωn)−1 − �(iωn). (A13)

The site dependence of the Green’s functions is shown by
boldface quantities that denote a matrix form with site-indexed
elements. Here, G0(iωn)−1 stands for the inverse noninteract-
ing Green’s function,

G0(iωn)−1 = (μ + iωn)1 − t. (A14)

In this expression, 1 is the unit matrix and the matrix elements
tij are hopping amplitudes for a given lattice structure. Eventu-
ally the self-consistency loop is closed by specifying the Weiss
Green’s function via the local Dyson equation,[

G(i)
0,σσ ′(iωn)

]−1 = [
G(i)

σσ ′(iωn)
]−1 + �

(i)
σσ ′(iωn), (A15)

where the diagonal elements of the lattice Green’s function
yield the interacting local Green’s function, G(i)

σσ ′(iωn) =
[Gσ,σ ′ (iωn)]ii . This self-consistency loop is repeated until the
desired accuracy for superfluid order parameters and Anderson
parameters is obtained.

3. Energy within RBDMFT

Calculation of energy is not straightforward within RB-
DMFT since the kinetic energy is given in terms of nonlocal
expectation values. It can be shown that within the RBDMFT
self-consistency conditions, kinetic energy can also be written
in terms of Anderson impurity hybridization functions and
local Green’s functions. A detailed derivation can be found
in Ref. [11].

a. Kinetic energy

In terms of creation and annihilation operators for bosons,
b
†
iσ and biσ , respectively, kinetic energy has the form

Ĥkin = −
∑
〈ij〉,σ

tσ (b†i,σ bj,σ + H.c.). (A16)

Thus expressing the total kinetic energy in terms of real-
space Green’s functions yields

Ekin = −
∑
ij,σ

tσij 〈b̂†σ,i b̂σ,j 〉 (A17)

=
∑
ij,σ

tσij

[
lim

ε→0+

∞∑
n=−∞

eiωnε

β
Gji,σ (iωn) − φ∗

i,σ φj,σ

]
.

(A18)

This expression can be further simplified by employing both
the local and lattice Dyson equations within RBDMFT,

GC
i (iωn)−1 = iωnσz + μ + �i(iωn) − �i(iωn), (A19)[

GC
R(iωn)−1

]
ij

= tij 1 + δij (iωnσz + μ1 − �i(iωn)), (A20)

which yields∑
j

[
GC

R(iωn)−1
]
ij

[G(iωn)]ji

=
∑

j

[tij 12 − δij (�i(iωn) − Gi(iωn)−1)][G(iωn)]ji .

(A21)
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Further using the self-consistency property of the impurity
Green’s function leads to∑

j

tij [G(iωn)]ji = �i(iωn)Gi(iωn), (A22)

and we finally obtain

Ekin = 2

β
lim

ε→0+

∑
iσn�0

Re{[�σ,i(iωn)Gσ,i(iωn)]11e
iωnε}

−
∑
ijσ

tijφ
∗
i,σ φj,σ − Tr[�σ,i(0)Gσ,i(0)]

2β
. (A23)

b. Total energy

The ground state within RBDMFT corresponds to the
solution with the lowest energy, where the corresponding total
energy of the impurity site is given as follows:

E = Ekin + Eint. (A24)

For the Bose-Hubbard model of spin-1 bosons, the on-site
interaction term is given by

Eint = 1

2

∑
i,σσ ′

Uσσ ′ n̂i,σ (n̂i,σ ′ − δσσ ′) +
∑
i<j

Vij n̂i,d n̂j,d .

APPENDIX B: NUMERICAL RESULTS
OF THE DIPOLAR SYSTEM

We have so far studied crystalline order in the Rydberg
dressed systems. Actually, the physics of these competing
orders can also be exhibited in a dipolar system loaded in an
optical lattice, along with quick developments in the cooling
and trapping of magnetic atoms [7] and diatomic molecules [5].
Recently, a Gutzwiller mean-field phase diagram of a binary
Bose mixture on a square optical lattice was studied, where one
species possesses a non-negligible dipole moment [20]. In their
study, only the nearest-neighbor part of the dipolar interactions
was included. To obtain a better understanding of the Rydberg
dressed system studied above and make a comparison, here
we study a mixture of dipolar and nondipolar bosons on
a square optical lattice, with real long-range interactions
beyond nearest-neighbor approximations. We study the system
by means of RBDMFT, which takes into account quantum
fluctuations and is actually a higher-order expansion of the
Gutzwiller mean-field theory.

In Fig. 7, we show the resulting phase diagram of dipolar
and nondipolar bosonic mixtures on a 2D optical lattice. In
general, there are also five phases in this dipolar system,
i.e., SF, MI, DW, and two types of supersolid. Compared
to nearest-neighbor interaction and static mean-field approxi-
mations [20], two big differences have been observed. First,
rich crystalline patterns appear in the system, as shown in
Figs. 7(a)–7(c), with a filling factor of 1/3, 1/4, and 1/8 for
the dipolar species, respectively. Second, we observe that the
region of the supersolid phase is also altered. Note here that
we recover the static mean-field phase diagram with nearest-
neighbor interactions within Gutzwiller approximations in
Ref. [20].

FIG. 7. Phase diagram for a mixture of nondipolar species b and
dipolar component d on a square lattice for a dipolar interaction
strength V/U = 0.1, exhibiting pronounced regions of supersolid
marked by the cyan (SS1) and pink (SS2) colors. In contrast to
the nearest-neighbor case [20], the system demonstrates various
crystalline order, as shown in (a)–(c) for the real-space density
distribution of the dipolar species. Note here that in the DW, marked by
the green color, the total density distribution is spatially nonuniform
with a homogeneous density for the nondipolar species, whereas, in
the MI, the total density distribution is spatially uniform. We observe a
phase separation (PS) in the MI region with a total filling nb + nd = 1,
in addition to a spatially uniform superfluid (SF). Other parameters
are Ubd = 0.9U and μb,d = μ.

APPENDIX C: BOGOLIUBOV SPECTRA
OF THE BARE SPECIES IN THE SS1 PHASE

Using Fourier transformation, Hamiltonian Ĥe is changed
to the momentum space,

H̃ = −
∑

�k
[μ + 2t(cos kxa + cos kya)]b†�kb�k

+ U

2N

∑
�k1�k2 �k3

b
†
�k1
b
†
�k3
b�k3+�k2

b�k1−�k2
+ U1

∑
{�k}

b
†
�kb�k, (C1)

where N is the total number of sites and U1 = n̄dUbd with
n̄d = ndNd/N . Nd is the number of sites occupied by the
dressed atoms and {k} denotes the momentum spanned in the
first Brillouin zone of the lattice occupied by the dressed atoms.

Expanding the Hamiltonian (C1) around |�k| = 0 and keep-
ing only quadratic terms of the operators, this yields

H̃B ≈ −
∑
�k �=0

[μ + 2t(cos kxa + cos kya) − 2Un̄b]b†�kb�k

+ Un̄b

2

∑
�k �=0

(b�kb−�k + b
†
−�kb

†
�k) + U1

∑
{�k �=0}

b
†
�kb�k, (C2)

where H̃B = H̃ + E0 is the Hamiltonian of the phonons and
E0 = UN2

0 /2N is the energy of the condensed atoms, with
N0 to be the number of condensed atoms and μ = −4t +
Un̄b + U1 the chemical potential and the mean occupation of
the condensed atom n̄b = N0/N .
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As the interspecies interaction [the last term in Eq. (C2)]
only appears in the low-momentum regions (Brillouin zone
{k}), we will have two different forms of the approximate
Hamiltonian depending on values of the momentum. Sub-
stituting the chemical potential μ, we get the approximate
Hamiltonian within the first Brillouin zone of the dressed atom,

H̃B ≈
∑
�k �=0

[εk + Un̄b]b†�kb�k + Un̄b

2

∑
�k �=0

(b�kb−�k + b
†
−�kb

†
�k),

and the corresponding Bogoliubov spectrum is

El(k) =
√

εk(εk + 2Un̄b), (C3)

with εk = −2t(cos kxa + cos kya − 2). The spectrum is simi-
lar to the one of a weakly interacting Bose gas in square optical
lattices.

For momenta outside the first Brillouin zone of the dressed
atoms, we have a different form of the approximate Hamilto-
nian,

H̃B ≈
∑
�k �=0

[εk + Un̄b − U1]b†�kb�k + Un̄b

2

∑
�k �=0

(b�kb−�k + H.c.),

and the corresponding Bogoliubov spectra is

El(k) =
√

(εk − U1)(εk − U1 + 2Un̄b), (C4)

which will be nonzero only at large momentum (outside the
first Brillouin zone).

The roton instability occurs at the boundary of the two Bo-
goliubov spectrum. Using Eq. (C4), we find that the spectrum

becomes complex when εk < U1. This allows us to find the
critical value of the tunneling rate tc,

tc = U1

2
[
2 − cos k

(b)
x − cos k

(b)
y

] , (C5)

where k(b)
x and k(b)

y are values of the momentum at the boundary
of the first Brillouin zone of the oblique lattice.

The soft-core interaction will affect structures of the oblique
lattice. Therefore, the critical tc will change as the interaction
V changes. As shown in Fig. 3, the first Brillouin zone is not
of a regular shape, such that the critical value tc will vary with
both k(b)

x and k(b)
y . To show this, we evaluate the critical values tc

using the crystalline structure of the dressed atoms at the SS1-
SS2 phase boundary, which are obtained by the full numerical
calculation. For example, tc lies in a range [0.087,0.094] if
V = 0.3. When the long-range interaction becomes strong,
we find that the range of critical tc increases. For example,
tc ∈ [0.085,0.11] when V = 0.4, and tc ∈ [0.073,0.13] when
V = 0.6. Although these values are close to the numerical
calculations, it is apparent that one will not be able to determine
phase boundaries accurately using the Bogoliubov calculation.

Another limitation of this calculation is that areas of
the crystalline structure become smaller when V is weak.
Long-range correlations become important in determining
the ground-state phases, which prevents us from decoupling
the total wave function into two parts. In this regime, the
Bogoliubov calculation fails to capture the many-body physics.
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