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Motion of vortices in inhomogeneous Bose-Einstein condensates
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We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional
Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and
phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics
in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical
prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced
ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the
only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model
that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous
condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for
specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial,
and are thus difficult to efficiently and accurately model using a simplified point-vortex description.
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I. INTRODUCTION

Vortices are ubiquitous across a wide variety of physi-
cal contexts [1], ranging from optical fields [2,3] and free-
electron waves [4-6] to condensed-matter systems such as
superconductors [7] and superfluids [8—10]. They arise in many
interesting physical processes such as multiwave interference
[11], phase transitions [12—14], and turbulence [15]. As such,
an understanding of their dynamics has applicability to a
broad class of problems. Dilute gas Bose-Einstein condensates
(BECs) present an ideal test-bed for theoretically studying
vortex physics, as the weak atomic interactions in these
systems allow for a highly accurate mean-field description. In
addition, there exist well-established experimental techniques
for creating [16-22] and imaging [23-25] vortices in BECs,
and hence laboratory studies of vortex physics in these systems
are commonplace [26].

The simplest regime of vortex dynamics is that of a single
vortex in a trapped BEC. An off-axis vortex has been experi-
mentally observed to orbit the center of a harmonically trapped
condensate at a constant radius and frequency [23,27-30],
and similar dynamics have been observed for vortices in
superfluid Fermi gases [31,32]. Although conceptually simple,
this motion has proved nontrivial to describe theoretically due
to the inhomogeneous density profile which results from the
harmonic trapping. Many attempts have been made to derive
analytical expressions for the velocity of a single quantized
vortex in these nonuniform systems [33—47]; however, there
is no consensus on the precise form of such an expression.
In fact, even the specific physics responsible for the orbital
motion is not universally agreed upon—there are conflicting
descriptions of how density and phase gradients affect the
vortex motion [35,40,42], and there has been extensive debate
over the relevance of image vortices to systems with soft
boundaries [35,39,43,48-50]. The effects of more general
fluid inhomogeneity on vortex motion have also been stud-

2469-9926/2018/97(2)/023617(12)

023617-1

ied theoretically [48,49,51,52], a problem that will become
increasingly relevant as experiments begin to utilize more
complex trapping geometries [15,53-55].

Despite the theoretical complications resulting from fluid
inhomogeneity, focus has recently shifted towards increas-
ingly complex regimes of vortex motion in effectively
two-dimensional (2D) BECs. Experiments have been per-
formed to investigate configurations such as vortex dipoles
[23,56,57], few-vortex clusters [58,59], and quantum turbu-
lence [25,60,61]. To theoretically model the dynamics of
these 2D systems, it has proven fruitful to apply point-vortex
approximations, in which the vortices are treated as point
particles whose motion is described by a set of coupled
differential equations [57,59,62—69]. These models, which are
both conceptually and computationally simple, have been used
to provide qualitative predictions of the dynamical and statis-
tical behavior observed in both experiments [57,59,69,70] and
Gross-Pitaevskii simulations [66,67,71,72]. However, current
point-vortex models cannot take general fluid inhomogeneity
into account. In the case of harmonic trapping, a phenomeno-
logical term is commonly included to capture the vortex orbital
motion (e.g., [57,59]), but it only provides a quantitatively
accurate prediction of the dynamics for vortices near the trap
center [35,50].

In this work, we use the Gross-Pitaevskii equation (GPE)
to derive a general and exact expression for the velocity of a
vortex, applicable in generic 2D Bose-Einstein condensates.
Although this expression has appeared in previous BEC
literature [42,43,45], its importance has been understated.
To demonstrate its accuracy and generality, we simulate the
motion of a single vortex in both harmonic and hard-walled
disk-shaped trapping potentials using the GPE. We find ex-
cellent agreement between the simulated dynamics and those
predicted by the analytics. We also examine other models from
the literature and find that the expression derived here provides
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the best prediction of the vortex velocity. In addition, we show
that it is possible to derive point-vortex equations of motion for
arbitrary fluid geometries directly from this general equation,
although approximations are necessary to account for ambient
velocity fields that are induced by the inhomogeneous density.

This paper is structured as follows. In Sec. II we derive
the vortex equation of motion before verifying its accuracy
using GPE simulations in Sec. III. Section IV reviews past
literature on the subject and attempts to clarify a number of
misconceptions present throughout previous works. In Sec. V
we derive and test an improved point-vortex model for a
harmonically trapped BEC. Finally, we summarize and discuss
our findings in Sec. VI.

II. THE VORTEX VELOCITY IN AN INHOMOGENEOUS
SUPERFLUID

The dynamical evolution of a Bose-Einstein condensate
can be described using the nonlinear Schrodinger equation
ihd, v = H with the Hamiltonian

hZ
H=——V+ U, (1)
2m

where ¥ is the condensate wave function, m is the mass of the
condensed atoms, and I/ is, in general, a complex operator. For
the nondissipative, zero-temperature Gross-Pitaevskii model
used throughout this work, U(r,t) = V(r,t) + gn(r,t), where
V(r,t) is an external trapping potential, n(r,t) = | (r,t)|?
is the condensate density and g is a parameter that de-
scribes the interactions between condensate atoms. However,
for the purposes of this derivation, the precise form of U
turns out to be unimportant and could include terms due to
thermal atom density or non-Hermitian growth and decay
terms. Hence, the resulting equation for the vortex velocity
is exceptionally general and its applicability is not limited to
BECs.

We begin by assuming that at time ¢ = 0 there is a singly
quantized vortex in a 2D condensate at the location r, =
(x5,¥.), which we express in complex notation as z, = x, +
iy,. Such a vortex state may be described, with no loss of
generality, by the wave function

Yo = Y(r,t =0) = (z — z,)pe'?, )

where 5(r,t) and ¢(r,t) are smoothly varying real functions
that respectively describe the background magnitude and phase
of the wave function in the absence of the vortex. The function
z = x + iy accounts for both the density and phase of the
condensate close to the vortex core.

We may use the Gross-Pitaevskii equation to propagate the
wave function forward an infinitesimal time 8¢ by applying the
unitary evolution operator:

Ynew = Y (r,t = 8t) = exp (—%H&)lﬁo (3a)

N (1 _ %H‘S’)‘/’“ (3b)

where in the second line we have expanded the exponential
term in a Taylor series to first order in §¢. Substituting the
Hamiltonian, Eq. (1), and the vortex ansatz wave function,

Eq. (2), into this expression results in

L i .
Ynew ~ (2 — Zo),[)’elq> - lﬁat <_%v2 +Ll)(z - ZO)1561¢'
“)

The Laplacian term may be expanded to yield
V[(z — z.)pe"®] = [(z — 2.)V?5 + 2(1.0) - Vs
+2i{(z = 2)VA + p(1,D)} - Vo
+(z = 2PV — (VP N, (5)
where we have used V(z — z,) = (1,i) and V*(z — z,) = 0.
Substituting Eq. (5) into Eq. (4), we evaluate Ve at 7 = z, +
87 = (x5 + 8x) +i(y, + &y), which is the new location of the

vortex after time 8¢. Because ¥, must vanish at the new core
location, we find that

i K2 -
0~ {Szﬁ - ﬁSt[—%(Szvzﬁ +2i[8zVp + p(1,i)] - Vé

+2(1,i) - Vj + 8zp[i Vi — (VP)]) + 821/{,5] }ei‘f’.

(6)

The ¢!? term is nonzero in general, and hence the term inside the
braces must be equal to zero. We take the limit of the resulting
expression as §z — 0 and 6t — 0, leaving only terms that are
first order in &z and §t:

ih _
0~ 825 + Zl—mat(ziﬁ(l,i) VG +21,i)-V). (D)

Rearranging, we obtain an expression

. 8z h ) - . \Y}
Uy +ivy = — = —((111) Vo +(—i,1)- Tp) (3
5t m p
for the vortex velocity v, = (vy,v,) to first-order accuracy,
which becomes exact in the limit of adiabatic vortex motion

[73,74]. Expressed in vector form, the velocity of the vortex is

vy (ro) = %(VJ) —k xVInp) (9a)

ro

= v,(r.) + vg(r,), (9b)

Here we have identified two independent contributions to
the vortex velocity: the background superfluid velocity due
to ambient phase gradients v, = (i/m)V¢ and a density
gradient velocity vy, = —(i/m)k x VInp. In Eq. (9a), we
have explicitly included the dependence on the unit vector
£, which points in the direction of the vortex circulation
vector k = ksZ, where the integer s is the vortex winding
number, and k¥ = h/m is the quantum of circulation. It is
straightforward to verify this dependence on & by repeating the
above calculation with z — z*, z, — z¥, and 8z — §z*. We
show in Sec. III C 4 that v, is only dependent on the direction,
and not the magnitude, of k.

We note that Eq. (9) is an entirely local expression—
the vortex is not directly affected by global features of the
condensate, such as its overall density profile, the presence of
boundaries, or the existence of other vortices in the system. All
such effects modify the motion of the vortex phase singularity
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implicitly through the changes in the ambient condensate
density and phase. Furthermore, the vortex velocity derives
exclusively from the kinetic energy term in the Hamiltonian,
and hence the velocity of the vortex does not explicitly depend
on U (although there is an implicit dependence via the wave
function). Equation (9) is therefore generic and applies even for
more general forms of U, such as those which include dynamics
of thermal atom densities, higher-order nonlinear terms, and
dissipative effects.

III. NUMERICAL STUDY OF THE VELOCITY
OF A SINGLE VORTEX

A. The motion of a single vortex in an axisymmetric trap

The goal of Sec. Il is to verify the expression, Eq. (9), for
the vortex velocity by numerically simulating the motion of a
single vortex in a trapped 2D BEC using the Gross-Pitaevskii
equation. In doing so, we uncover a number of interesting
features underlying the vortex motion, including the effects
of varying density on the ambient superfluid velocity and a
multipole moment induced in the vortex velocity field. We
consider two cylindrically symmetric geometries: a harmonic
trap and a uniform disk-shaped trap with hard walls. It is well
documented that, in each of these cases, a single off-centered
vortex will orbit around the center of the trap at a constant
radius r, = |r,| with a radially dependent velocity vom(75)
[23,27,35,50]. However, this motion is typically thought to
derive from different physical effects in each of these two cases.

In the uniform disk trap, the vortex motion is understood to
arise from the Bernoulli effect, whereby the warping of the flow
field due to the boundary leads to a pressure gradient, and hence
a radial force, which drives the vortex in a circular path due
to the gyroscopic effect of the rotating fluid. Equivalently, the
motion can be described using the mathematical construction
of image vortices—hypothetical vortex charges which exist
outside the condensate and alter the fluid velocity field such
that the boundary conditions of zero radial flow are satisfied
[50,75]. These images generate a phase gradient within the
fluid and thus induce vortex motion via the first term in Eq. (9).

By contrast, in the harmonic trap, the vortex orbital motion
is usually attributed to the inhomogeneity of the condensate
[35], while the effect of the ambient superfluid velocity v, has
often been disregarded [35] or treated inadequately [40,42]
(see Secs. III C 2 and IV for further discussion on previous
results). However, our simulations reveal that both terms in
Eq. (9) contribute significantly to the vortex velocity in the
harmonic trap, as we show in Sec. IIIC.

B. Numerical methods

We numerically solve the Gross-Pitaevskii equation [76,77]
using a fourth-order split-step pseudospectral method on a
512 x 512 grid, with a spacing approximately equal to the
healing length £. To obtain the harmonic and uniform disk
geometries, we use trapping potentials Vj(r) = ;Lh(r/Rh)2
and V,(r) = u,(r/ R, respectively, where the chemical
potential in the harmonic trap is chosen to be four times
that in the uniform trap, u, = 4u,. We set the interaction
parameter in the GPE to g, = 2g, = 1.28 x 10* i?/m and use
a trap radius of R = 128§, = 64§&,, with &, = §,/2. These

parameter values ensure that we are within the Thomas-Fermi
regime, and physically could correspond, for example, to a
87Rb BEC in a trap with 2D radius R = 30 xm. An axial radius
of R, =0.1R =3 um in each trap would then correspond
to a total atom number of N, = 2N, ~ 1.3 x 10°, assuming
harmonic confinement in the z direction. For each trap, we
calculate the ground state using imaginary time propagation.
We then imprint a vortex of charge s at location r, by multi-
plying the wave function by f(|r — r.|)e’?®, where ¢,(r) =
sarctan [(y — v.)/(x — x.)], and f(x) = x//x% + 2£2 is the
approximate density profile of a vortex [78]. This initial state
is evolved to t = 5 x 10* i/ using the GPE (long enough to
see at least four orbits at the lowest frequencies). As a result
of the imprinting method, the ambient phase ¢(r) is initially
zero everywhere. When the initial state is evolved in time,
the ambient phase field develops continuously over a small
fraction (<1%) of a vortex orbital period. During this time, the
vortex accelerates from rest until it reaches its (approximately)
constant angular frequency and radius. Vortices are identified
by locating phase singularities in the wave function.

Throughout the time evolution, we independently measure
each of the three terms in Eq. (9):

(i) The total orbital velocity [the left-hand side of Eq. (9)]
is calculated from the angular frequency of the vortex orbital
motion as Vo = WorbFo-

(i) To measure the ambient superfluid velocity field
v(x,) = (R/ m)V(f)(r)|ro, we first calculate the ambient phase
é(r) by subtracting the axisymmetric vortex phase field from
the total phase of the condensate: ¢(r) = ¢(r) — ¢,(r). This
subtraction must be done carefully to minimize numerical
fluctuations at the vortex core. We then average the resulting
velocity field vy(r) within a series of annuli r, — & < |r —
r,| < r, + & around the vortex core, where r,, is varied between
2 & and 11£. Due to fluctuations in the velocity within |r —
r,| < & (and contributions from a multipole velocity field—see
Sec. III C 3), we extrapolate the measurements from the larger
annuli to determine the velocity at r.

(iii) The density-dependent velocity v,(r,) = —(i/m)k x
Vp/plr, is measured numerically around the vortex core
by fitting a plane P(x,y) = A+ Bx + Cy to p(r) = |¥(r)|
within the annulir, — & < |r — r,| < r, + &, where r, is var-
ied between 6 £ and 11 £. We then calculate the density terms
as p(r.) = (A), |Vply, = ((B)? + (C)*)!/2, where the average
is taken over both time and the radii r,. For comparison, we
also calculate v, using the ground-state density profile and find
very good agreement between the two methods.

C. Results
1. Vortex orbital dynamics

The numerically measured velocity curves for a vortex
located at variable radius r, in a harmonically trapped system
are shown in Fig. 1. As predicted by Eq. (9), the sum of the
density and phase gradient terms gives excellent agreement
with the total vortex velocity. For improved clarity at small
values of r,, we have also included the orbital frequency
measurements in the inset of the figure. This data clearly
shows that, for all radii, the ambient superfluid velocity is
actually the dominant contribution to the vortex motion, while
the density-dependent effect only becomes significant near the
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FIG. 1. The contributions to the vortex orbital velocity and fre-
quency (inset) in a harmonically trapped condensate, for a vortex
initiated at variable radius r,. In the main frame the black diamonds
denote the measured orbital velocity v, while the two terms on the
right-hand side of Eq. (9), v, and v,, are plotted as red circles and
blue triangles, respectively. The sum v, + v, is also shown as a solid
green line for comparison with v,,. All corresponding frequencies
are plotted equivalently in the inset. In the main frame, the dotted
line shows the fit v(r,) = (i/m)ar,/(BR* — r?), a generalized image
vortex velocity, to vs(r,), where & = 6.79, B = 1.32 (see Sec. VB).
The dashed curve is the result of calculating v, using the ground-state
density profile. In the inset, the data for the lowest four radii have
been omitted due to numerical noise.

boundary. This finding is in contradiction with much of the
literature on the topic, as we discuss in Sec. I'V.

Figure 2 shows the measured velocity data for a single
vortex in the uniform trap. Once again, we find that the total
velocity is well described by the sum of the phase and density
terms, as Eq. (9) predicts. We also observe that, in this system,
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FIG. 2. The contributions to the vortex orbital velocity and fre-
quency (inset) in a uniform, disk-shaped condensate, for a vortex
imprinted at variable radius r,. The data are labeled as in Fig. 1,
except that the dotted curve shown here is the velocity v(r,) =
(i/m)r./(R* — r?) produced by an image vortex at 7, = R?/r.. As
in Fig. 1, the frequency data at the lowest four radii have been omitted
due to numerical noise.
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FIG. 3. The (a) one-dimensional density profile n(x) = | (x,0)?
and (b) y component of the background velocity field v, = V¢ along
the x axis in both the harmonic (red) and uniform disk (blue) traps for
a vortex at position x, & 0.75 R (highlighted by the vertical shaded
region). In the inset of panel (b), the y component of v, has been
plotted across the whole condensate for each trap, with a dotted line
indicating the cross section shown in the main frame and a black circle
denoting the vortex location. The color scales in the inset are the same
as the y axis of (b). All numerical data has been averaged over ~130
dynamical frames in each geometry. The solid green line in (b) is the
velocity field produced by an image vortex at X, ~ 0.75~! R, while
the black dotted line shows the sum of Eq. (10) and the image vortex
velocity field. For comparison with Figs. 1 and 2, the measurements
of v; atr, & 0.75 R in each trap are also shown as filled circles. (Note
that there is a factor of 2 difference for the velocity in the harmonic
trap due to the scaling with &,.)

the overwhelming contribution to the vortex velocity for radii
r. < 0.9 R is the phase gradient. This is to be expected, since a
vortex should move with the background flow field in a uniform
superfluid [79]. The sudden increase in v; near the boundary
is due to the finite width of the wall—in an infinite cylindrical
well, this term would remain negligible everywhere. We also
find that, for small radii, v,(r,) agrees well with the velocity
field produced by an image vortex outside the condensate
at radius ¥, = r,R?/|r,|?, the expected image location for a
disk-shaped system with infinitely hard walls [75,80]. As the
vortex approaches the edge of the fluid, the phase gradient
velocity becomes stronger than the image vortex predicts. This
can be attributed to the fact that neither the vortex nor the
wall are infinitesimally narrow features and consequently, the
ideal point-vortex image picture fails near the boundary of the
condensate.

2. Contributions to the ambient velocity field

Whereas the density gradient velocity in Eq. (9) is straight-
forward to measure from ground-state properties, the ambient
velocity field v,(r) induced by the vortex is, in general, more
complicated. To demonstrate this, we measure the background
velocity field everywhere in the condensate for a vortex at
radius r, & 0.75 R in each of our two traps. The inset of
Fig. 3(b) shows the y component of each measured velocity
field over the entire condensate when the vortex is located
atr, ~ (0.75 R,0), while the main frame of panel (b) shows a
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one-dimensional slice through this field along the x axis. Panel
(a) shows the corresponding density profiles, normalized to n,,
the maximum density in the harmonic trap.

In the uniform trap, the background velocity field is well
described by an image vortex located at t, =~ (0.75"' R,0)
(the expected location for a hard-walled disk trap), although
the agreement becomes worse near the boundary closest to
the vortex, due to the finite core size and boundary width.
By contrast, the velocity field in the harmonic trap is more
complicated. A peak in the background velocity in the region
around the vortex core is clearly visible and has been previously
identified and discussed in Ref. [43]. It was suggested in
Ref. [43] that the background velocity field v,(r) could be
split into two independent contributions: an image vortex field
arising from the presence of the boundary, plus an additional
contribution due to the fluid inhomogeneity at the vortex
location. In fact, Sheehy and Radzihovsky [40] derived an
approximate expression for this second contribution:

by VP <|l‘ - l‘oIIVﬁ(ro)|> (10)

Ppeak() = X 5]

which is responsible for the peak in the region around the vortex
[81]. For comparison, we show in Fig. 3(b) the sum of the
image velocity field and Eq. (10), as suggested in Ref. [43].
While qualitatively reasonable, this approach does not provide
quantitative accuracy. Moreover, Eq. (10) is only valid near,
but outside of, the core region and therefore fails at greater
distances.

Interpreting these observations in light of Eq. (9), we em-
phasise that a density gradient at the vortex location produces
two distinct effects on the vortex motion:

(1) A “direct” effect on the vortex produced by v; [which
does not contribute to the ambient velocity field v; shown in
Fig. 3(b)].

(i) An “indirect” effect via a warping of the phase field
which enters v; in addition to an image effect due to the
boundary, and which manifests as a peak in the azimuthal
velocity field around the vortex in the harmonically trapped
condensate [shown in Fig. 3(b)].

Unlike for the uniform trap, we do not expect the back-
ground “image vortex” field in an inhomogeneous system to
be described by a single pointlike image vortex located outside
the fluid. Instead, we expect the softness of the boundary
to delocalize the image, much like a spherical aberration
produced by a soft mirror [82]. It may therefore be possible to
approximate the image field more accurately using a config-
uration of multiple image vortices; however, doing so would
destroy the simplified physical picture that makes the image
representation appealing.

3. Induced multipole moments

In addition to the effects of boundaries and varying conden-
sate density on the background velocity field v, (r) (discussed
in Sec. III C 2), dipole, and higher multipole, moments in the
velocity field v;(r) of the vortex have been predicted to emerge
as a result of the internal structure of the defect. This effect
arises due to the dynamical excitation of the n, = 0 kelvon
quasiparticles localised within the vortex core [77,83-87].
Because the vortices considered here are two-dimensional,

kelvons with axial quantum numbers n, > 0 are suppressed
[88].

In Ref. [89], it was predicted that a vortex moving relative
to the background superflow should exhibit an altered intrinsic
velocity field v;(r) which is no longer circularly symmetric.
Outside of the vortex core, the corrections can be expressed in
terms of a multipole expansion [89]:

vir) = @) + 0P + ...

nl. r—r,
= —|[zx
m |I'—I'O|2
r—r)2d—2[d-(r—r)]r—r,
+( ) [ (4 )I( )+...},
|r_ro|
(11
where the dipole moment
2 _
dzvrd%On r-r —aln‘%) (12)

Here, a ~ 1.49 is a numerical constant, and v, is the velocity
of the vortex relative to the superfluid in the vortex frame of
reference.

To investigate the possibility of such multipole effects in our
Gross-Pitaevskii simulations, we have performed further nu-
merical calculations in the disk-shaped trap, using an increased
resolution of 4096 x 4096 grid points, and a smaller interaction
parameter, g = 148 /i*/m. This reduces the condensate radius
to R~ 21£, and increases the number of grid points per
healing length to ~ 64. After imprinting the vortex phase
winding into the ground state of the trap and evolving for a
short amount of imaginary time, a quadrupole-like structure
becomes visible in the flow field, once both the monopole field
vﬁl) (r) and the local mean background velocity (v) have been
subtracted away [90]. Figures 4(a)—(b) show this numerically
measured velocity field for a vortex initiated at r, ~ (0.5 R,0).
Although the data shown has been obtained using imaginary
time propagation, the same structure develops during real time
evolution, and is 1-2 orders of magnitude weaker than the
background superflow v driving the vortex motion.

We are only able to reproduce a dipole field—such as the
prediction of Egs. (11) and (12) shown in Figs. 4(c)—(d)—
as a numerical artifact arising from an inaccurate subtraction
of the monopole field, which essentially imprints a vortex-
antivortex dipole in the wavefunction. Further investigation
into the vortex core localised multipolar velocity fields is a
topic of future work.

4. The velocity of a vortex with multiple circulation quanta

To confirm that Eq. (9) applies equally well for higher
charge vortices, we have repeated our numerical analysis of
the vortex velocity in a harmonic trap using a single s = 2
vortex. Due to the inherent energetic instabilities of this vortex
state [19,91], the singularity immediately splits into two singly
charged vortices, which continuously emit phonons and gradu-
ally drift apart, causing the center-of-mass velocity to decrease
(for approximately one trap orbit, however, the two vortex
cores are indiscernible). To minimize the effects of this splitting
on our velocity data, we cut off our measurements once the

023617-5



GROSZEK, PAGANIN, HELMERSON, AND SIMULA

PHYSICAL REVIEW A 97, 023617 (2018)

x10™

. H 1
(©)
03 WEMIZZ ’
TS
RN :
0 e
{ N *\&A»}A‘y<‘;*}rt
NN L i
Ay yf f K prtss .
AN
771N
0.3 PN,

0.3 0.8

0.6

o

4

o
Tz~~~

[¢lumé? /h

-0.3 0 0.3 x10™
T

FIG. 4. Comparison between the numerical [(a)/(b)] and pre-
dicted [(c)/(d)] density-weighted velocity fields within the vortex core,
left over after subtracting out the vortex monopole field vgl) (r) and the
local background velocity (v,) (averaged over the region shown). The
left and right columns, respectively, show the direction and magnitude
of each velocity field. The vortex is located at x, ~ 0.5 R, and will
travel in the positive y-direction under real time evolution.

distance d, between the two singularities becomes greater than
8 & and only calculate the background fields for the early times
when d, < 3&. The obtained velocity and frequency curves
are shown in Fig. 5, demonstrating that Eq. (9) still holds,
even for a multiquantum vortex. Surprisingly, if the derivation
in Sec. II is repeated using an ansatz wave function with
(z—2) = (z—2z)" (e, a multiquantum vortex of charge
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FIG. 5. The contributions to the orbital velocity and frequency
(inset) foracharge s = 2 vortex in aharmonic trap, initiated at variable
radius r,. The data are labeled as in Figs. 1 and 2. The dotted curve
shown in the main frame is a fit to v(r,) = (fi/m)ar,/(1.32R> — r?),
which gives @ = 12.26, a value that is ~1.81 times larger than that
obtained from the single-vortex fit. Frequency data at the lowest radii
have been omitted due to numerical fluctuations.

s > 0), then the velocity in Eq. (9) becomes v, = |s|(vs + vy),
which does not match with our numerical results.

For all radii, the total orbital velocity of the vortex is
approximately 1.6 times greater than the velocity obtained for
a charge s = 1 vortex at the same radius. This increase comes
entirely from the phase gradient term, which grows by 1.8
times—slightly lower than the factor of 2 one would expect
from a simple image vortex picture. We have confirmed that,
in the uniform disk trap, the vy, component does scale by a factor
of 2, suggesting that the slightly smaller value observed in the
harmonic trap is related to the shape of the induced velocity
peak discussed in Sec. III C 2. It is interesting to note that,
for vortices with large circulation, the phase gradient term in
Eq. (9) becomes increasingly dominant, since v, does not scale
with [s].

IV. COMPARISON WITH RESULTS IN THE LITERATURE

Many expressions describing the motion of vortices in
inhomogeneous fluids to varying degree of accuracy are found
in the literature. We find that, unlike our analytical solution
Eq. (9), none of the other models agree precisely with the
numerically measured orbital velocity of a single vortex. In
the following, we discuss the two most widely used approaches
and briefly review some more recent results.

A. The two standard approaches

The first of the two common methods from the literature
invokes a force balancing argument whereby the negative
gradient of the energy E(r,) is equated to the “Magnus force”
on the vortex [32,33,38,40,92,93]:

Fiag 2 miik x v, = VE(r,), 13)

where i = 2, and the gradient VE(r,) is taken with respect
to the vortex location r,. The same formula has also been
obtained using a variational Lagrangian approach [34,35]. The
advantage of this expression is that the vortex velocity can be
calculated directly from the total energy E of the fluid, which
is straightforward to measure numerically, and can be approx-
imated analytically for a single vortex [33-35,38]. However,
we argue that this approach also has a number of significant
shortcomings. First, Eq. (13) requires knowledge of the global
properties of the condensate, making it less general than the

local description of Eq. (9). Moreover, as suggested by the <
notation, the Magnus force, rather than being proportional to
the vortex velocity, should be proportional to the velocity of
the vortex relative to the background superflow [94-96]:

Fyag = miik x (v, — v5) = miik X vy, (14)

where Eq. (9) has been used to obtain the second equality.
Hence, the Magnus force should only give rise to the velocity
vy resulting from the density gradient. The force balance
argument used to obtain Eq. (13) is therefore called into
question, since it is not clear which forces are actually being
equated.

The second approach is to use a matched asymptotic expan-
sion [97,98], where analytic solutions of the Gross-Pitaevskii
equation are found both within and far from the vortex core.
The two solutions are then matched at an intermediate length

023617-6



MOTION OF VORTICES IN INHOMOGENEOUS BOSE- ...

PHYSICAL REVIEW A 97, 023617 (2018)

0.2

FIG. 6. Comparison between our numerically obtained orbital
velocity (from Fig. 1) and the predictions of Egs. (9), (13), and (15)
for a single vortex orbiting at radius r,, in a harmonically trapped BEC.
The inset shows the corresponding orbital frequencies, where the data
for the lowest radii have been excluded due to numerical noise.

scale, providing an analytic expression for the vortex velocity
of the form [35]:

3h R\ .
v, = In| — )& X VViyp. (15)
dmp §

This expression can be equivalently described in terms of
a density gradient [40,42], since Vii o V V. Hence, this
expression is mathematically equivalent to v, in Eq. (9), up to
a correction factor. The obvious drawback of this expression is
that it neglects the phase gradient velocity v, accounting for
its absence with a multiplicative factor.

For comparison between our model and those that appear in
the literature, Fig. 6 shows the orbital velocity and frequency
(inset) of a vortex in a harmonic trap as calculated from Egs. (9),
(13), and (15) using our numerical results. Figure 6 shows
that Eq. (9) gives the best agreement with the observed orbital
velocity from the GPE.

B. Potential sources of confusion

In a harmonic trap, it is possible to simplify both Eqgs. (13)
and (15) to the same functional form

o
o

S (19

v, X
by substituting the Thomas-Fermi density profile n(r) =
no(1 —r?/R?) and local chemical potential wu(r) = gn(r),
where n, is the density at the trap center [34,35,38,40,50].
The agreement between these two approaches has previously
been interpreted as confirmation of their validity [50], despite
the shortcomings of each method. To further confound the
problem, it has also previously been assumed that Eqgs. (10)
and (15) are equivalent due to their similar functional forms
[40,50]. However, as clarified in Sec. III C 2, these two expres-
sions describe different physics: while Eq. (10) approximates
an induced phase gradient around the vortex, Eq. (15) [or
equivalently, the velocity v, in Eq. (9)] describes a component

of the vortex velocity that does not appear in the superfluid
phase.

An additional source of potential confusion in the har-
monically trapped system is that all three velocity terms in
Eq. (9) have approximately the same radial dependence, as
shown in Fig. 1. Therefore, the density gradient term vy
may provide a reasonable estimate for the total velocity if
multiplied by a suitable constant, as in Eq. (15). However,
this approach ignores the essential physics of the induced
background velocity field and image effects, and will therefore
not yield quantitatively accurate results in general.

It is also worth noting that, due to the specific shape
of the harmonic trapping potential, Eq. (16) has the same
functional form as predicted by the point-vortex approximation
for a uniform disk of incompressible fluid; a system which
corresponds to the exactly soluble electrostatic problem of a
point charge inside a conducting ring. As discussed throughout
Sec. III C, however, the vortex velocities in these two systems
arise from different physical sources, and therefore should not
be conflated.

C. Image vortices

In deriving the above expressions, Eqgs. (13) and (15),
it is usually assumed that image vortices do not play a
role in bounded inhomogeneous systems [35,50]. Assuming
conservation of particle number, the boundary condition for
the mass current is fi - j = fi - nvy; = 0, where 1 is the unit
vector normal to the fluid boundary. Because the density n(r)
gradually approaches zero at a soft wall, this condition is
automatically satisfied regardless of the value of v, at the edge
of the system. By contrast, for a hard-walled system, the density
is finite even at the boundary of the fluid, and therefore image
vortices must be introduced to ensure i - v, = 0. However, as
we have argued in Sec. III C 2, there is a component of the
background superfluid velocity field arising from boundary
effects even in the harmonic trap, although it does not appear
to be well approximated using a single localized image vortex,
as is the case in the uniform disk geometry.

D. Further comparisons

Here we briefly discuss a number of other related works
whose results seem to have been largely neglected throughout
the BEC literature since they were published, as most authors
have instead opted to use the methods described in Sec. IV A.

Nilsen et al. [42] obtained the same general expression
for the vortex velocity in an inhomogeneous fluid, Eq. (9),
via an equivalent derivation as presented here. However, they
proceeded by assuming that v; = 0 and replaced vy with
V In(p) for a single vortex in a harmonic trap. Essentially, this
led to a model that is equivalent to Eq. (15) and which neglects
important contributions to the vortex velocity.

Jezek and Cataldo [43,51] also derived Eq. (9) using a
different approach, although their model included a phe-
nomenological correction factor multiplying v,—a factor that
we have found to be unity. They also performed a detailed
analysis of the induced background velocity field around a
vortex in a harmonic trap [43], as we have done in Sec. III C 2.
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Various forms of Eq. (9) have also appeared in the context
of optical vortex motion in nonlinear media [99-101], since the
dynamics in these optical systems are governed by a nonlinear
Schrodinger equation similar to the Gross-Pitaevskii model
used here.

V. GENERALIZING THE POINT-VORTEX MODEL

Equipped with an improved understanding of the motion
of a vortex in an inhomogeneous superfluid, we now turn to
an application of this theory, namely, a generalized model
for describing the dynamics of point vortices in arbitrary
geometries. In particular, we will examine how our findings
apply to a harmonically trapped BEC, although the approach
we outline here could be applied to more general geometries.
To our knowledge, all previous work considering point-vortex
dynamics in harmonic traps has ignored the ambient phase
gradient effects discussed throughout Secs. II-IV. Rather, the
orbital motion of a single vortex has always been modeled
using the simplified form in Eq. (16) [59,65,102], where
a multiplicative constant is included to set the time scale
of the dynamics. In this section we will show that this
simplifying assumption results in a model that provides a
poor quantitative description of the vortex dynamics and that
some minor adjustments based on our findings above can
improve the model significantly. However, we conclude that,
due to the complicated nature of the induced ambient velocity
field discussed in Sec. III C 2, a fully general and efficient
point-vortex description seems unachievable.

A. Requirements of a point-vortex model

We first wish to specify what we consider to be the
requirements of a point-vortex model, namely:

(i) The model must be simple, both computationally and
conceptually. Specifically, it must be more efficient to solve
numerically than the GPE; otherwise there is no improvement
over the standard approach to simulating BEC dynamics. To
gain the improvement, however, it may be necessary to perform
initial calibrations for the model using the GPE.

(ii) The predictions for the velocities of each vortex in the
system must only depend on their circulations and instanta-
neous positions.

(iii) The dynamics predicted by the point-vortex model
must be quantitatively accurate.

B. The point-vortex model

We consider a configuration of N, vortices at positions
{r;(z)} with integer charges {s;}. To obtain a point-vortex
model from Eq. (9), we need to substitute in the phase
field produced by this vortex configuration, as well as the
background density profile of the condensate, as a function
of r;. This approach is quite general, provided a reasonable
approximation for the phase field is obtainable for the geometry
under consideration. Here, we begin by demonstrating that
the point-vortex model for a uniform disk can be derived
exactly using Eq. (9). We then turn to the harmonically trapped
case, where an exact derivation is not possible. Instead, to
arrive at a point-vortex model, we make some simplifying

approximations to account for the ambient velocity fields that
arise from the inhomogeneous density profile.

1. The uniform disk system
In the case of the uniform disk geometry, each vortex
induces a single image vortex of charge §; = —s; located
beyond the fluid boundary at position ¥; = r; R?/|r;|* [75,80].
Hence, the total superfluid phase is given by

N, —y;(t)
o) = ]X:l: {sj arctan [)):——))c)j(t)]
+ §; arctan [y——)'g(t)] }’ (17

X —)?j(l)

where the first term is produced by the physical vortices and
the second term arises from the images. The gradient of this
scalar field is

al r—r)) (r—F))
V¢(r,t) = Z |:Sji X - J° —i—fji X —_j:| (18)

12 _ =2
= [r —r| Ir — |

Substituting this into Eq. (9), and using the fact that V In(p) =
0 (due to the constant density), we find that the velocity of
vortex k at position ry is given by

N,
RIS e BT S o)
J
o |I'k —r; e r |l'k - l’;lz

19)

where the j =k term in the first sum has been excluded
because a vortex is not affected by its own velocity field. This
is the standard point-vortex model for a disk-shaped system
[75,80]: the first term describes the vortex-vortex interactions,
while the second corresponds to vortex-image interactions,
necessary for keeping the vortex particles within the physical
boundary and ensuring that the continuity equation is satisfied
there.

2. The harmonically trapped system

‘We now move on to the more complicated case of a harmoni-
cally trapped condensate. As discussed in Sec. III C 2, the phase
field induced by a vortex in an inhomogeneous condensate is
nontrivial, and hence obtaining a fully general point-vortex
model for this geometry is most likely not possible. Instead, our
goal here is to provide improvements on the model currently
used throughout the literature, without introducing significant
complexity.

As shown in Fig. 3(b), the ambient velocity field produced
far from the vortex core for an off-centered vortex is well
approximated using a standard image description (left side of
the figure). It is only in the vicinity of the vortex core that
this approximation fails, as the contributions from Eq. (10)
become important (we ignore entirely the small effect of the
multipole field discussed in Sec. III C 3). Based on this,
we propose a correction to the phase field in a harmonic
trap that distinguishes between self-image and non-self-image
interactions. To do this, we introduce an additional set of image
vortices, {1"; E; }, to produce the self-induced part of the phase
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field at the vortex locations r = r;. In the infinitesimal region
around the kth vortex, the phase is approximated to be

3 — (1)
P (r,1) = ZS]' arctan [w]

= x —x;(1)

& — 5,
+ Zij arctan [%}
o x —x;()

(20)

_ 3 t
+ 5, arctan |:y—yk()i|,

x — X, (1)

while at all other locations in the fluid, the phase field is given
by Eq. (17). We stress that this approach is only viable in the
dilute-vortex limit when the vortices are separated well enough
that the induced background velocity peak around each vortex
does not significantly affect any other vortex. Alternatively, if
the vortices only approach one another in relatively uniform
regions of the fluid (e.g., at the center of the harmonic trap),
the effect of Eq. (10) should be negligible, and hence this
approach should remain valid. To apply this double-image
approximation, we substitute Eq. (20) into Eq. (9), which yields
the following point-vortex model:

Ny

h s (I —r1)) (l‘k —T;)
V= — §i2 % 5iZX ———
m ; ! |1‘k—1'|2 Z |l‘k—l‘j|2
r, —r,
+52 x ("—_,k)z—kxvmﬁ(rk)]. 1)
|y — |

Note that we have retained the density term, since the fluid is
now inhomogeneous. We approximate p(r,) using a parabolic
Thomas-Fermi profile.

To obtain the generalized image description, we introduce
an effective charge o and system radius +/BR for the self-
images by setting 57 = o5; and F; = BF;, respectively. For a
vortex at radius 7., this modified image will produce a velocity
v(r,) = (Fz/m)aro/(,BR2 — rf). Fitting this generalized image
model to the vy(r,) data in Fig. 1, we obtain ¢ = 6.79, g =
1.32, which gives very good agreement with the obtained data.
‘We therefore have all of the parameters required to test Eq. (21).

C. Testing the model

Having derived and calibrated a point-vortex model, we
may test its accuracy for a few simple two-vortex scenarios
to see how well it reproduces the dynamics predicted by our
Gross-Pitaevskii simulations. In each scenario, we compare
the performance of our model to the model used throughout
the literature for a harmonically trapped BEC:

Z 5j2

JF#k

where @2, = (3/2)In(R/£) [50,59,64,102]. The second term
here corresponds to Eq. (16) and is responsible for the circular
motion of each vortex in the system. We find that replacing
Q, — 0.88 2, gives a better prediction for the orbital fre-
quency at the trap center, so we use this value instead. The key
differences between Eqs. (21) and (22) are that (i) we include

(ry —r;) SiTg
Qizx —— |, (22
|l'k—l'|2+ ZXR2—r,§ @2)
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FIG. 7. The azimuthal velocity of two same-sign vortices in a
harmonically trapped BEC as a function of their symmetric radius .
(a) Comparison of the orbital velocity predictions from the two point-
vortex models, Egs. (21) and (22), and the GPE. (b) Contributions to
the total orbital velocity of each vortex, as measured using the GPE.
We have split the ambient velocity field into vy = vy, + Vi, Where
Vin 1S the velocity produced by the image and the density-induced
phase warping, and vy, is the velocity resulting from the vortex-vortex
interaction.

image vortex effects and (ii) our single-vortex orbital behavior
arises from the sum of the density gradient and the self-image
term.

We have already examined the single-vortex case in
Secs. IIIC and I'V A. Since we have calibrated our model using
the data in Fig. 1, we find very good agreement in this case.
Equation (22), on the other hand, reduces to Eq. (15) for a single
vortex, which provides a significantly less accurate prediction,
as shown in Fig. 6.

1. Test I: Two symmetric same-sign vortices

The first two-vortex case we consider is initialized with
conditions s; = s, = 1, r{ = —r> = (x,,0). In this case, the
two vortices symmetrically orbit around the trap center at a
constant frequency and radius. We calculate the velocity of
each vortex as a function of r, using the GPE and plot the
separate contributions to the velocity in Fig. 7(b). Here, we
have split the ambient velocity measurement v, into viy(r,) =
1/2r,0, the contribution from the other vortex, and vy, (7,),
the velocity due to images and the density-induced phase
warping. Figure 7(a) shows how well each point-vortex model
[Egs. (21) and (22)] predicts the total orbital velocity measured
in the GPE. For small radii, where the vortex-vortex interaction
dominates, the two predictions are equivalent; however, at
larger radii our improved model is significantly more accurate.
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FIG. 8. Numerically calculated orbital frequency for a vortex
dipole initiated at +(x,,0) in a harmonically trapped BEC. The
orbital frequencies calculated from the two point-vortex models,
Egs. (21) and (22), are shown alongside the Gross-Pitaevskii data
for comparison. In the inset, the symmetric orbits observed in the
GPE are shown as solid blue lines for the initial positions x,/R &
{0.02,0.07,0.11,0.16,0.20,0.24}. The corresponding orbits predicted
by each point-vortex model for the same initial conditions are shown
as dotted lines, with Eq. (21) on the right and Eq. (22) on the left.
Dashed vertical lines in the main frame show the position of the
stationary point in each model.

2. Test I1: Symmetric vortex dipole

The second case we examine is a symmetrically placed
vortex dipole, with s; = —s, = 1 and initial condition r; =
—r; = (x,,0). For this configuration, the vortices undergo
symmetric counterrotating orbits on opposite sides of the
trap, which are concentric with one another as x, is varied.
In addition, the orbits vary in frequency as a function of
X,. In Fig. 8, we present both the orbits (inset) and their
frequency (main frame) as a function of x,, obtained using
the GPE. For comparison, we also show the predictions from
both point-vortex models, Egs. (21) and (22). For almost all
values of x,, we obtain only a minor improvement for both
the orbital shapes and their frequencies using our point-vortex
model. This is not surprising, however, since this configuration
violates the requirement that the vortices remain well separated
while in inhomogeneous regions of the trap.

When x, &~ 0.24 R, the dipole configuration is a stationary
state in which all contributions to the vortex velocity cancel.
Using the two point-vortex models, Egs. (21) and (22), this
point is overestimated to be x, &~ 0.260 R and x, =~ 0.269 R,
respectively. Also absent from the point-vortex models is the
frequency resonance observed around the stationary point in

the Gross-Pitaevskii data. This resonance is the result of the
compressibility not accounted for in the simplified models.

VI. DISCUSSION

We have derived a general and exact expression, Eq. (9),
for the velocity of a quantised vortex in a spatially inhomo-
geneous two-dimensional superfluid. Using Gross-Pitaevskii
simulations, we have found that this equation provides highly
accurate predictions of the velocity of vortices in some simple
one- and two-vortex scenarios, both in harmonic and uniform
disk-shaped traps. In doing so, we have clarified precisely how
density and phase gradients affect the motion of a vortex in
each of these systems. In addition, we have found a clear
signature of a multipole moment induced in the velocity field
of the vortex due to its internal core structure. Although past
literature has made significant progress in describing vortex
dynamics in nonuniform fluids, many misconceptions and
erroneous assumptions exist throughout. The Magnus force
has often been attributed to the total vortex velocity; however,
we have shown here that it is in fact only responsible for the
density gradient velocity v, in Eq. (9). We have also found, in
agreement with Ref. [43], that image vortices, which have often
been disregarded in harmonically trapped BECs, are relevant
even for systems with soft boundaries.

Using our findings, we have been able to derive a point-
vortex model for a harmonically trapped BEC which provides
significant improvements for one- and two-vortex dynamics
over the model currently in use throughout the literature. How-
ever, for our approach to remain quantitatively accurate, the
vortices must remain dilute while in regions of varying density,
since our simplified model does not rigorously account for
induced ambient velocity fields in regions of varying density.
Due to this stringent requirement, even with our improvements,
the point-vortex model fails to provide quantitative accuracy
even for simple two-vortex scenarios. Of course, the model
could easily be improved by introducing more accurate approx-
imations for the induced ambient velocity fields around each
vortex; however, any added complexity may rapidly negate the
simplicity required of the point-vortex model. We therefore
conclude that a quantitatively accurate point-vortex treatment
for arbitrary trap shapes is not possible in general due to
the difficulties of modeling ambient velocity fields, which
fundamentally arise from the compressibility of the fluid. For
a qualitative or statistically satisfactory point-vortex model, on
the other hand, the approach presented here should be straight-
forward to apply in a wide variety of inhomogeneous systems.
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