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The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the
interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules.
Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism
behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called
“environment-assisted quantum transport”. Here, we propose a quantum simulation of the excitation transport in
an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our
scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the
influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to
the impact of a continuous insertion of excitations. Our paper discusses experimental error sources and realistic
parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
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I. INTRODUCTION

The way excitations propagate through a network defines
the fundamental properties of matter from large solids to
small molecules. Extremely rich physics can be at play
even in apparently simple systems, especially if coupled to
an outside environment, such as happens in photosynthetic
complexes [1–3]. In such biomolecules, photon energy is
absorbed in pigments of a photosynthetic antenna, creating
an exciton quasiparticle. The exciton is then transferred to
a reaction center where the energy is harvested in a bio-
chemical process. The surprisingly high efficiency of this
energy transfer triggered several decades of active research
(see, e.g., Refs. [4–7]). After experiments demonstrated the
presence of long-lived coherences in the dynamics of the
Fenna-Matthews-Olson complex [8–10], various theoretical
investigations suggested that quantum dynamical processes
are of major importance for the excitation transport in such
biological systems [11–18]. These studies found that the
Anderson localization of excitations, induced by static disorder
within the network, can be lifted by dephasing, induced by
coupling to the environment. The result is an unexpectedly
large transfer efficiency, termed “environment-assisted quan-
tum transport” (ENAQT). Whether this effect actually appears
in biomolecules is, however, disputed, because the illuminating
sunlight is incoherent [1]. Moreover, the effect depends on
the precise way the transfer from the network to the reaction
center is modeled [19]. Recently, model experiments have
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started investigating ENAQT in small networks of photonic
waveguides [20,21], classical electrical oscillators [22], and
superconducting qubits [23,24]. Proposals exist also to analyze
ENAQT in embedded Rydberg aggregates [25–28], where first
studies on the quantum transport under dissipation have already
been performed [29].

Here, we discuss how the precisely controllable platform
of trapped ions can be used to realize engineered dephasing
noise, and thus investigate ENAQT with various highly tunable
parameters. These include disorder strength, environmental de-
phasing rate, noise spectrum, and hopping range of excitations.
Importantly, the trapped-ion platform allows also for control
of injection and extraction rates, enabling a systematic study of
the effect of interactions on the quantum transport. Rather than
aiming at a quantitative modeling of ENAQT in biomolecules,
our aim in this paper is to illustrate the broad range of phenom-
ena that can be explored in trapped-ion quantum simulation.
Our numerical studies should be of independent interest for
understanding the excitation transfer in quantum networks. Our
theoretical proposal is accompanied by a detailed discussion
of the experimental error sources, showing that the proposed
quantum simulation can be implemented in state-of-the-art
experiments. The engineered dephasing noise brings a new
dimension to transport experiments in trapped ions or cold
gases, which have investigated clean [30–33] as well as
disordered systems [34–39], but mostly viewing environmental
noise as a nuisance. Here, we are interested in the beneficial
effects of engineered noise for enhanced quantum transport.

The quantum network we are interested in is represented by
a spin model [Fig. 1(a)], which can be mapped onto internal,
electric degrees of freedom of the ions [Fig. 1(b)]. Tunable
hoppings of excitations are generated by spin-dependent
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(a)

(b)

FIG. 1. Proposed quantum-simulation setup to study excitation
transfer in the interplay between engineered disorder, dephasing, and
long-range hopping. (a) Spin model of the open quantum network.
Spins at sites i have disordered on-site energies h̄ωi , and are coupled
to other spins with hopping strength Jij . The considered scenario is the
propagation of an initial excitation injected at site isource to the target
site isink. (b) Illustration of the proposed ion-trap implementation.
The spins are mapped onto internal, electric degrees of freedom of
ions (blue dots) arranged in a linear chain. The quantum simulation
requires laser beams with single-site addressability (red) to locally
adjust ac Stark shifts, which induce disorder and dephasing, as well
as a broad laser beam illuminating the entire ion chain (green), which
drives the interactions Jij .

forces, induced by lasers and transmitted by phonons
[31,40–44]. We focus on linear chains with interactions that
have approximately a power-law distance dependence, as are
natural in various trapped-ion experiments [31,43,44], but the
proposal can also be applied to other realizable geometries
[44–47]. (In particular, the irregular networks found in biolog-
ical molecules could be designed in special trap designs such
as segmented Paul traps [48] or surface traps [49], as well as by
engineering the interactions via time-periodic driving [50] or
additional laser frequencies [51].) Addressable ac Stark shifts
have been shown to enable the generation of programmable
disorder [39] and have been proposed for the simulation of
dephasing in adiabatic quantum optimization [52]. Amplitude
and phase modulations have also been used to simulate a qubit
in a dephasing environment [53]. These ingredients render
trapped ions a highly versatile platform for investigating the
excitation transfer in open quantum networks.

Below, we will use detailed numerical investigations to dis-
cuss how the quantum transport depends on various parameters
that become accessible in this platform, especially hopping
range, disorder strength, Markovian and non-Markovian de-
phasing, and nonlinear effects appearing at large injection rates
of excitations. We now briefly summarize the main effects for
each of these parameters.

A series of recent works has demonstrated that the propa-
gation of excitations in regular networks with power-law hop-
pings depends crucially on the hopping range [54–57]: If the
hopping strength diminishes fast with distance, the propagation
is bound to effective sound cones, similar to what happens for
exponentially localized interactions [58]. In the opposite limit
of infinite-range hopping, destructive interference between
hopping paths suppresses the transfer efficiency [13]. For large
but finite hopping range, this effect is weakened, leading to
extremely slow excitation modes balanced by other modes with
divergent propagation speed [54,57]. In our numerical studies
we find that this coexistence increases transfer efficiency
at short times as compared to short-range interactions and
decreases it at longer times. Disorder has a nontrivial effect
on this behavior: While large amounts of disorder lead to
Anderson localization [59], weak disorder counteracts the
destructive interference induced by the long-range hopping
[13], thus actually improving the transfer efficiency. Trapped-
ion experiments have already observed the fast excitation
modes appearing with power-law interactions [31,32], as
well as the obstruction of thermalization due to long-range
interactions [60] as well as many-body localization [39].
Here, we propose to perform similar experiments in view of
the efficiency of excitation transport and in the interplay with
engineered noise.

Although noise destroys the linear superpositions that are a
main feature of quantum mechanics, it is known that dephas-
ing can lift Anderson localization and thus lead to ENAQT
[11–13]. When the dephasing becomes too strong, however,
a quantum Zeno dynamics sets in that freezes the excitation
[61]. Thus, maximum transfer efficiencies are attained in an
intermediate regime of dephasing. Moreover, the character of
the noise can be adjusted from Markovian to non-Markovian.
We compare Markovian noise to a simple non-Markovian
process, where we find that—while the maximum achievable
transfer efficiency is similar for both types of noise—the
non-Markovian dephasing can yield high transfer efficiencies
in a broader parameter range. Recent theoretical investigations
have shown that non-Markovian baths play a crucial role
in ENAQT. They enhance coherences [14,16,62], and baths
that are structured to fit the energy spectrum of the network
can strongly improve the energy transfer [15,17,18]. This
advantage disappears, however, at long times if the transfer to
the reaction center is the only loss mechanism [62], showing
the delicate interplay between different dissipative and coher-
ent effects. In biomolecules, structured non-Markovian noise
appears through coupling to phonon modes. Here, they can
be designed by hand by adjusting the power spectra of the
engineered dephasing.

Finally, the presented scheme can also be used to investigate
nonlinear effects in the spin network, which appear in the
presence of multiple excitations. We investigate the dynamics
of a driven-dissipative system in which the excitations are
continuously injected into the system by incoherently coupling
a source site to an infinite-temperature heat bath. The injection
of excitations from a heat bath is of particular significance for
simulating the dynamics of biomolecules, as it resembles the
incoherent absorption of photons by photosynthetic systems
[1]. We find that there exists a finite value of the driving that
yields optimal transfer rates.
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The body of this paper is structured as follows. First, in
Sec. II, we introduce the model of the quantum network that
we propose to simulate. We show how this model can be
implemented in the ion chain in Sec. III. In Sec. IV, we present
numerical studies for various scenarios of excitation transfer
that may be simulated in the ion chain. In Sec. V, we address
the robustness of the simulation towards possible sources of
errors in a realistic experimental setup. Finally, in Sec. VI, we
present our conclusions.

II. MODEL OF THE QUANTUM NETWORK

In this section, we introduce the model that we use for
studying the excitation transfer, depicted in Fig. 1(a). Its
realization in a chain of trapped ions is discussed in the next
section. In photosynthetic complexes, the transport is governed
by exciton quasiparticles. Their bosonic commutation relations
are naturally matched by the internal pseudospins manipulated
in trapped-ion setups. The dynamics of such a spin network,
consisting of N connected sites, is modeled by the Hamiltonian

Ĥ = ĤJ + Ĥωi
(1)

with

ĤJ = h̄
∑

i<j

Jij σ̂
+
i σ̂−

j + H.c., (2)

Ĥωi
= h̄

∑

i

ωi σ̂
+
i σ̂−

i . (3)

Here, σ̂+
i (σ̂−

i ) are spin raising (lowering) operators for site
i, h̄ωi is the on-site excitation energy, and Jij denote the cou-
pling strengths between spin i and j . We denote the eigen-
vectors of the operator σ̂+

i σ̂−
i , which counts the presence or

absence of an excitation at site i, with |↑〉i for the eigenvalue
1 and |↓〉i for the eigenvalue zero.

In the following, we focus mainly on a situation where an
exciton quasiparticle has just been generated. We model this
situation through an initial state with only the spin at site isource

in state |↑〉 and all the other spins in state |↓〉, i.e.,

|ψ(t0)〉 =|↓〉1 |↓〉2 · · · |↑〉isource |↓〉isource+1 · · · |↓〉N . (4)

We are interested in the transfer of the initial excitation to the
remote site isink, where the excitation is absorbed and removed
from the quantum network. The absorption of the excitations
is modeled by a Markovian dissipation process, described by
the Lindblad superoperator

Ldiss(ρ̂) = �

2

[−{
σ̂+

isink
σ̂−

isink
,ρ̂

} + 2σ̂−
isink

ρσ̂+
isink

]
, (5)

with � being the rate at which an excitation at site isink is
removed from the quantum network.

Moreover, we consider the transport behavior under dephas-
ing processes that act independently on each site, as are caused
by environmental noise. If the correlation time of the noise
goes to zero, the dephasing process is Markovian, which can
be modeled by the Lindblad superoperator

Ldeph(ρ̂) =
∑

i

γi

2
[−{σ̂+

i σ̂−
i ,ρ̂} + 2σ̂+

i σ̂−
i ρ̂σ̂+

i σ̂−
i ] (6)

with γi denoting the dephasing rate at site i. In the following,
we will also study non-Markovian dephasing caused by noise
generated by the Goldstein-Kac telegraph process [63,64]. This
process allows us to adjust the bath correlation time, thereby
enabling us to study the crossover from Markovian to non-
Markovian noise.

In total, the time evolution of the quantum network is
described by the master equation

d

dt
ρ̂ = − i

h̄
[Ĥ ,ρ̂] + Ldiss(ρ̂) + Ldeph(ρ̂) . (7)

The dynamics of the model discussed above is confined to
the single-excitation and zero-excitation sectors, as Ĥ and
Ldeph preserve the excitation number 〈ψ(t0)| N̂exc |ψ(t0)〉 = 1
with N̂exc = ∑

i σ̂
+
i σ̂−

i , and Ldiss can only reduce it. Here,
interactions between the excitations are of no importance.
However, the framework presented in this paper can also be
used to investigate the nonlinear dynamics of a spin network
when several excitations are present. In Sec. IV D, we study
the regime where a large number of excitations is injected by
a continuous drive. This driven dynamics can be modeled by
the Markovian process

Lsource(ρ̂) = �source

2

[−{
σ̂+

isource
σ̂−

isource
,ρ̂

} + 2σ̂−
isource

ρσ̂+
isource

]

− �source

2

[−{
σ̂−

isource
σ̂+

isource
,ρ̂

} + 2σ̂+
isource

ρσ̂−
isource

]
,

(8)

which describes the incoherent creation and annihilation of
particles at site isource caused by the coupling to an infinite-
temperature heat bath, modeling the absorption of photons by
photosynthetic systems [11–13].

III. MAPPING OF THE MODEL TO AN ION CHAIN

In this section, we discuss an implementation of the above
model in an ion-trap quantum simulation. A schematic rep-
resentation of such an ion trap is depicted in Fig. 1(b). We
focus here on the setup described in Ref. [65] for 40Ca+

ions. Similar considerations also apply to other experimental
implementations. We consider an ion chain with N ions,
confined in a linear Paul trap with axial trapping frequency
ωz and radial trapping frequencies ωx,y . Each site of the spin
model is represented by a qubit encoded in the internal level
structure of a single ion, |↑〉i = |3 2D5/2 mj = −1/2〉

i
and

|↓〉i = |4 2S1/2 mj = −1/2〉
i
.

A. Implementation of the hopping terms

The hopping of an excitation between sites as described
by ĤJ can be generated by a nonlocal interaction between
the qubits in the ion chain, such as in Mølmer-Sørenson-
type protocols [31,40,43]. The Mølmer-Sørenson interaction
is driven by a laser field that illuminates the entire ion
register uniformly with two frequencies ω± = ω0 ± �, with
ω0 being the frequency of the atomic transition |↑〉 ↔ |↓〉 and
� a detuning of the laser fields. By coupling the transverse
vibrational modes of the ion chain to the electronic state of the
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ions, one can implement the interaction Hamiltonian

Ĥint = h̄
∑

i<j

Jij σ
x
i σ x

j . (9)

The coupling strength between ion i and j is given by

Jij = 	i	j

h̄k2

2m

∑

n

bi,nbj,n

�2 − ν2
n

, (10)

with m the ion mass, νn the eigenfrequencies of the transverse
phononic modes, and bi,n the elements of the normal-mode
matrix [66]. Further, k is the laser wave number and 	i are the
Rabi frequencies induced by the laser driving. For the sake of
simplicity, we assume all 	i equal.

In addition to the interaction described by Ĥint, one can
realize large, constant on-site excitation energies as described
by [31,32,67]

Ĥωconst = h̄ωconst

∑

i

σ̂+
i σ̂−

i . (11)

This is achieved by shifting the two frequencies of the laser
beam that implement the Mølmer-Sørenson interaction by a
frequency ωconst. In the limit of large on-site energies ωconst �
Jij , we can neglect off-resonant transitions generated by σ̂+

i σ̂+
j

and σ̂−
i σ̂−

j , and we obtain

Ĥint + Ĥωconst → ĤJ + Ĥωconst . (12)

In this limit, the Hamiltonian approximately decouples into
sectors with conserved excitation number.

An interesting feature of the ion-chain implementation is
the ability to tune the range of the interaction encoded in Jij ,
as given by Eq. (10), by changing the detuning � [31,43,44].
The result is an adjustable distance dependence approximating
a power law, i.e.,

|Jij | ∝ ||xi − xj ||−α, (13)

where the xi denote the equilibrium positions of the ions. For an
ion chain with almost equidistant ions the power law simplifies
to

|Jij | ∝ |i − j |−α . (14)

This tunability allows us to study networks with different
geometrical properties. In principle, the decay exponent α

can be tuned between zero and three, though realistic laser
intensities restrict it to the range α ∈ [0.75,1.75] while main-
taining reasonable coupling strength on the order of 100 s−1

[31,43,44]. By addressing the axial center-of-mass mode, it
is additionally possible to study the limit α = 0 [40]. In
the following, this limit will be of particular interest, as it
corresponds to the well-studied model of a fully connected,
equally weighted graph [13], with

|Jij | = |Ji ′j ′ | for i �= j, i ′ �= j ′ . (15)

In order to determine the exponent α for a given detuning, we
fit the spin-wave dispersion relation in the single-excitation
manifold (the eigenvalues of the coupling matrix J ) for an
exact power-law dependence, as given by Eq. (13), to the
dispersion relation for the experimentally relevant Jij derived
from Eq. (10) [31]. The relation between α and the detuning �

is illustrated in Fig. 2 for realistic experimental parameters.
As this figure shows, the power-law dependence is a good
approximation for small systems [31]. For large chains, the
distance dependence is better described by a combination of
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FIG. 2. Fitting the experimentally relevant interactions to an ideal
power law. (a) Detuning � plotted over the fitted exponent α, obtained
from fitting the dispersion relation for an exact power law to the
dispersion relation calculated for an experimental implementation.
The parameters are ωx,y = 50ωz, for N = 5,10,20,30 (from thick to
thin lines, and red, orange, green, blue). (b) The deviations of the
fit, measured by χ 2, increase with system size. In the limits α = 0
and 3, the ideal power law becomes exact, but already in the range
α = 2 . . . 3 deviations are small.

power law and exponential decay [68]. In the limiting cases
α = 0 and 3, however, the ideal power law becomes exact [68].
Moreover, deviations from the ideal power law are very small
in the range α ∈ [2,3]. This behavior is consistent with the fact
that in this range the power-law interactions have only a weak
effect on, e.g., dispersion relation and dynamics as compared
to a system with short-range interactions [54].

B. Implementation of the on-site energies

Another important ingredient of our model is the ability to
realize on-site energies h̄ωi that vary from site to site, used to
simulate static disorder. By letting them fluctuate over time,
they moreover simulate Markovian as well as non-Markovian
dephasing. Such on-site energies can be generated in an ion
chain through the quadratic ac Stark effect induced by an
additional, off-resonant laser field. The realization of site-
dependent on-site energies requires tightly focused, steerable
laser beams, as have been demonstrated in the setup described
in Ref. [65] and have been used to implement static disorder
for studies of many-body localization in an ion chain [39].

C. Initial-state preparation

The initial state |ψ0〉 as given in Eq. (4) can be realized
faithfully through optical pumping and steerable, addressable
laser beams [31].

D. Implementation of Ldiss

The Markovian process described by Ldiss, which models
the absorption of the excitation at site isink, can be imple-
mented by exploiting spontaneous decay processes in the level
structure of the ions. A suitable realization is via the quantum
operation

Edecay(ρ̂) =
∑

i∈{1,2}
K̂

†
i ρ̂K̂i (16)

with the Kraus operators

K̂1 = √
pdecay σ̂

isink+ , (17)

K̂2 = |↓〉isink
〈↓|isink +√

1 − pdecay |↑〉isink
〈↑|isink . (18)

By interrupting the time evolution after a time �T , applying
Edecay, and repeating this process, we recover in the limit
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�T → 0 the decay process described by Ldecay with pdecay =
��T . The implementation of this amplitude-damping oper-
ation in an ion chain is described in Ref. [65]. There, the
tightly focused, steerable laser beams are used to transfer
some population from the qubit state |↑〉isink

to the intermediate
state |S ′〉isink = |4 2S1/2 mj = 1/2〉

isink
via a partial Rabi flop.

The amplitude damping is completed by a laser field that drives
the transition from |S ′〉isink to the manifold 4 2P1/2 and pumps
the population to the qubit state |↓〉isink

via optical pumping.
Single-side addressability of the second laser beam is here not
required, since only ions in the intermediate state |S ′〉isink are
affected.

For an experimental investigation of the system dynamics,
it may also be of interest to realize the decay of |↑〉isink to a
third auxiliary internal level by pumping the population to a
different state of the ions. In this way, the simulated amplitude
damping as described by Ldiss can be distinguished from the
radiation-field-induced spontaneous decay process acting on
the ions.

E. Simulation of dephasing and non-Markovian dynamics

In the trapped-ion quantum simulator, controlled noise can
be induced by time-dependent laser fields to realize fluctuating
on-site energies h̄ωi(t) [52,53]. A strength of the proposed
trapped-ion setup is that it can realize almost arbitrary power
spectra, which will allow a quantitative modeling of the
structured spectra characteristic of biomolecules [14–18,62].
We focus in the following on a generic and simple noise process
generated by the Goldstein-Kac telegraph model [63,64], as
has been applied, e.g., to investigate the impact of phase
[69] and intensity fluctuations [70] on atom-laser interactions.
The Goldstein-Kac process simulates Markovian dephasing as
induced by a heat bath with vanishing bath correlation time
and modeled by Ldeph, as well as non-Markovian processes
associated to heat baths with finite correlation time such as
phonon fluctuations with exponential memory. The Goldstein-
Kac telegraph process is a dichotomic process (i.e., ωi(t) ∈
{−ωGK/2,ωGK/2}), described by the Markovian master equa-
tion

∂t2P [ωi(t2) = ±ωGK/2 | ωi(t1) = ω]

= −λ±P [ωi(t2) = ±ωGK/2 | ωi(t1) = ω]

+ λ∓P [ωi(t2) = ∓ωGK/2 | ωi(t1) = ω]

for ω ∈ {−ωGK/2,ωGK/2} and t2 > t1. (19)

Here, λ± are the transition rates of the dichotomic Markovian
process. For the sake of simplicity, we assume that λ+ = λ− ≡
λ and that at time t0 the process attained its equilibrium state

P [ωi(t0) = ωGK/2] = P [ωi(t0) = −ωGK/2] = 1/2. (20)

Furthermore, we assume that energies h̄ωi(t) of different sites
are sampled from independent telegraph processes. The two-
time correlation function is then given by

〈〈ωi(t)ωj (t + δ)〉〉T = δi,jω
2
GKe−2λ|δ|/4, (21)

corresponding to a Lorentzian noise spectrum:

Si,j (ω) = δi,j

ω2
GK

2λ − iω
. (22)

Even though the Goldstein-Kac telegraph process, as given
by Eq. (19), is itself Markovian, the distribution of ωi(t)
that it generates can be non-Markovian, characterized by a
frequency-dependent noise spectrum of Si,j (ω). We recover
Markovian dephasing, as described by Ldeph, Eq. (6), in the

limit λ → ∞, with associated dephasing rates γi = γ = ω2
GK

2λ
.

Non-Markovian features become unimportant as soon as the
rate λ is much larger than all the other rates and frequencies in
the system, i.e., λ � Jij ,�,�source,ωGK.

F. Implementation of Lsource

The tightly focused steerable laser beam used to implement
Ldeph can also be employed in a similar way to generate the
Markovian process described by Lsource, Eq. (8). For this,
the laser field has to be tuned in resonance to the transition
|↑〉isource

↔ |↓〉isource
and the intensity as well as its phase

have to be modulated faster than the time scales induced
by the rates �,�source, γ , and Jij in order to simulate the
thermal noise of an infinite-temperature reservoir. This can
be done by implementing suitable step functions as described
in Sec. III E.

IV. NUMERICAL RESULTS

Thus, all terms describing the model of a quantum network
given by the master equation (7) can be realized with existing
trapped-ion technology. We postpone the discussion of poten-
tial error sources to Sec. V, and first investigate numerically
the excitation transport through a quantum network described
by the master equation (7). These results not only enable
predictions for the ion-chain quantum simulator, they also
represent detailed theoretical studies for excitation transfer
and ENAQT in systems with power-law interactions. Our
numerical simulations have been performed by propagating the
density operator as described by the Lindblad master equation
(7) using the QuTiP (Quantum Toolbox in Python) package
[71]. In the numerical calculations, we focus mainly on ion
chains of length N = 10, which is on the order of system sizes
where current experiments have demonstrated individually
addressable ac Stark shifts [39,72], but we present results
for up to N = 70 ions. We assume that the radial trapping
frequency ωx,y in the linear Paul trap is 20 times the axial
trapping frequency ωz. To simplify the following discussion,
we moreover introduce the maximum value of the coupling
strengths

Jmax = max
i<j

|Jij | (23)

and express all other relevant parameters in units of Jmax. The
calculations are performed for a decay rate at site isink of � =
Jmax. Furthermore, we assume that the dephasing rates for all
sites are equal, i.e.,

γ = γi for all i ∈ {1,2 . . . ,N} . (24)

With the exception of Sec. IV D, we take �source = 0, such
that excitations are brought into the system only during the
preparation of the initial state |ψ(t0)〉. In order to reduce the
impact of boundary effects, we assume that the excitation
is initially injected at ion isource = N/5 + 1 and is removed
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(a) (b) (c)

FIG. 3. Transfer efficiency, defined as the time-dependent probability for having absorbed the excitation at site isink, as function of time,
comparing different hopping ranges α and dephasing rates. The system is without static disorder and its size is N = 10 sites. (a),(b) Comparison
between α = 0.8 (thick red line), α = 1.0 (orange), and α = 1.2 (thin blue). Solid lines correspond to realistic couplings in the ion chain [see
Eq. (10)] and dashed lines correspond to an ideal power-law dependence [see Eq. (14)]. (a) Results for vanishing dephasing. Initially, a few fast
modes carry part of the excitation earlier to the target site with decreasing α (insets). At later times, destructive interference effects decelerate
the excitation transfer for small α. (b) This characteristic behavior is rather robust against dephasing (data for γ = 0.1Jmax). (c) Long-time
behavior for α = 0. Without dephasing, destructive interference hinders a large part of the excitation from ever reaching the target site (solid
line). Nonvanishing dephasing cancels the interference effect and facilitates the excitation transfer (dashed line).

by the dissipative process at isink = 4N/5 (when comparing
different N ) and isink = 7 (when considering fixed N = 10),
respectively. We study the speed of excitation transfer through
the ion chain by evaluating the probability for having absorbed
the excitation after a certain time at site isink.

We address several physical regimes of interest. In particu-
lar, we study the transfer efficiency in dependence on hopping
range, disorder, and Markovian and non-Markovian dephasing.
At the end of this section, we will moreover consider a
driven system with �source �= 0, where interactions between
excitations play a fundamental role.

A. Influence of the hopping range

We start our investigation by studying the influence of the
hopping range on the speed of the excitation transfer. To cleanly
extract the influence of the hopping range, we assume for now
that no static disorder is present.

It is known that the dynamics of a one-dimensional spin
model quantitatively differs in the three regimes α < 1, 1 <

α < 2, and α > 2 [31,32,54–57]. In the regime α > 2, the
propagation of the excitation is confined by a well-defined
sound cone, typical of systems with short-range interactions
[58]. In the regime 1 < α < 2 of weakly long-range interac-
tions, a clear sound cone cannot be defined, because some spin-
wave modes develop a weakly divergent speed of propagation.
A fully nonlocal behavior can be observed in the regime
α < 1. In this regime, a strong divergence appears in the
spin-wave dispersion relation, and a part of the excitation
can spread almost instantaneously over the entire network.
The total weight of the excitation carried by these divergent
modes, however, remains limited. Away from the divergence,
the dispersion relation flattens out, and the corresponding
modes become slower and slower with decreasing α, so that
extremely fast and extremely slow modes coexist [54,57].

For our purposes, the transition from α < 1 to α > 1 is of
particular significance, as this can directly be observed in the
short-time behavior of the quantum network. This is illustrated
in Fig. 3(a), where we compare three different parameters,

α = 1.2 (blue), α = 1 (orange), and α = 0.8 (red). For com-
parison, we include ideal power-law interaction dependence as
given by Eq. (14) (dashed lines), as well as realistic coupling
strengths that can be realized in the ion chain, given by
Eq. (10) (solid lines). In both cases, the initial excitation
transfer accelerates with decreasing α.

As illustrated in Fig. 3(b), this short-time behavior is
robust against dephasing. The chosen value of γ = 0.1Jmax

is well beyond natural dephasing rates from experimental
imperfections in a state-of-the-art ion-trap experiment [65] (see
Sec. V). Even in the presence of such strong dephasing, the
characteristic behavior in the dynamical regimes α < 1 and
α > 1 can be observed.

For large times, another effect comes into play. As shown in
Ref. [13], in case of a fully connected graph with equal coupling
strengths, the probability for having absorbed the excitation
after (t − t0) → ∞ converges against 1

N−1 . For t → ∞, the
remaining quantum state has zero overlap with isink, and,
hence, a large part of the excitation remains in the network
without ever being absorbed at isink. This behavior, which
can be understood as a destructive interference effect, can
clearly be observed in the time evolution for α → 0 shown in
Fig. 3(c). In the presence of dephasing, however, the destructive
interference at isink is destroyed and for all α the probability
for having absorbed the excitation converges against unity for
t → ∞.

We find that the same destructive interference effect also
causes a slowing down of the absorption rate for small but
nonzero α, as can be observed in Figs. 3(a) and 3(b). As a
result, for not too short times, lower values of α result in a lower
absorption efficiency, thus reversing the short-time behavior.
This behavior can also be understood in terms of the spin-wave
dispersion relation, with its coexistence of fast and slow modes.

To work out the dependence on the hopping range more
clearly, we study the absorption probability at fixed times as
a function of the exponent α and system size. To facilitate
comparison between different ion numbers N , we choose an
ideal power-law dependence of the interactions [see Eq. (14)].
As we are interested in transport from one end of the chain to
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(a) (b)

FIG. 4. System-size dependence of the transfer efficiency as
function of hopping range α, for vanishing dephasing rate and static
disorder. System sizes are from thick to thin lines N = 10 (red),
N = 30 (orange), N = 50 (green), and N = 70 (blue), and plotted
is the probability for having absorbed an excitation (initially created
at isource = N/5 + 1) at site isink = 4N/5 after a fixed time (t − t0).
(a) Considering (t − t0)Jmax = N/10, there appears a rather smooth
increase of the absorption probability below α � 1.7 and a sharp
drop at α → 0. (b) Choosing (t − t0)〈vg〉 = (isink − isource)/5, with
〈vg〉 the average group velocity, the absorption probability drastically
increases at α � 2 and has a maximum in the range 1 � α � 2 (except
for the smallest studied system size of N = 10). Results are for an
ideal power-law dependence.

the other, where the distance between source and target sites
increases as a function of N , we require a suitable scaling of
(t − t0).

In Fig. 4(a), we take (t − t0) simply proportional to N .
For the chosen proportionality constant, the probability for
having absorbed the excitation goes to zero for large α, as in
short-range interacting chains the excitation requires a finite
propagation time to reach the target site. At smaller α, fast
modes reach the target site even at short times, leading to a
nonvanishing absorption probability. In the opposite limit of
α → 0, the destructive interference effect suppresses the ex-
citation transfer. As a consequence, large transfer efficiencies
are reached in the range 0 < α ≈ 1.7.

Since the time required for an excitation to propagate is
given by the group velocity, it can be more convenient to use
this quantity to define the size dependence of t . Corresponding
results are plotted in Fig. 4(b), where we used the average group
velocity

〈vg〉 = (N − 1)(ωN − ω1)/π (25)

to fix (t − t0)〈vg〉 = (isink − isource)/5. Here, the ω1 � ω2 �
· · · � ωN are the eigenfrequencies of the coupling matrix J

defining the spin-wave dispersion. The time is chosen such
that the target site lies outside the sound cone existing at α > 2,
which is determined by the maximum group velocity. With this
choice, we observe a clear transition between the two regimes
α < 2 and α > 2. For α < 2, a clear sound cone cannot be
defined [54], and part of the excitation can reach the target site
already at very short times, even for large systems.

These results hold true in the short-time regime. For
larger t − t0 the situation is quite different, as the destructive
interference effect and the larger number of slow spin-wave
modes dominate the behavior. The probability for absorbing
the excitation at isink then increases for higher values of α.

0.1 0.5 1 5 10 50100
0.05
0.10
0.15
0.20
0.25

FIG. 5. Impact of static disorder on the transfer efficiency, for
two dephasing rates (solid lines, γ = 0; dashed, γ = 0.1Jmax) and
two system sizes (dark blue, N = 10 at time t − t0 = 10/Jmax; light
red, N = 20 at time t − t0 = 20/Jmax; isource = N/5 + 1 and isink =
4N/5). Results are for α = 0. The destructive interference hindering
the excitation transfer in clean systems is lifted by small amounts of
disorder, while at large disorder Anderson localization obstructs the
transfer. Optimal transfer efficiency is achieved in an intermediate
range of disorder. Markovian dephasing (dashed lines, γ = 0.1Jmax)
can increase the absorption probability when compared to the noise-
free system (solid lines, γ = 0). The numerical simulations show
averages over 1000 randomly generated samples of static disorder.

B. Influence of static disorder

Another question that can be addressed by the proposed
quantum simulation is the influence of static disorder. In
the following, we choose the on-site energies randomly and
independently from a uniform distribution over the interval
[−W,W ], with W being the disorder strength. Such a bounded
distribution captures the physics of doped semiconductors
and alloy models (see Ref. [73] and references therein), but
other disorder distributions could also be easily realized in
the trapped-ion setup. For large α, the transport efficiency
will be reduced by disorder-induced localization. For small
α, however, we expect a tradeoff between the destructive
interference described previously, which is destroyed for finite
values of W [13], and Anderson localization, which sets in
at large W . The tradeoff between both effects, giving an
optimal transfer efficiency at intermediate disorder strengths,
is illustrated in Fig. 5.

C. Impact of non-Markovian dephasing

The impact of non-Markovian environmental noise on
excitation transfer in biological systems has recently become
an active field of research [14–16,18,62]. Our scheme allows
for the investigation of such non-Markovian effects following
the ideas outlined in Sec. III E. In the following, we focus on the
propagation of an excitation in a fully connected network with
α = 0. The results of a numerical simulation are illustrated in
Fig. 6.

We employ the Goldstein-Kac telegraph process described
in Sec. III E to model physical scenarios with varying temporal
noise correlations. For long persisting temporal correlations,
i.e., λ � Jmax,�,W,ωGK, the noise behaves effectively as static
disorder. Its impact on the system dynamics differs from what
has been discussed in Sec. IV B, since under the dichotomic
telegraph process at λ → 0 and α = 0 the network effectively
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FIG. 6. Impact of non-Markovian dephasing on the transfer
efficiency, as a function of the rate λ = λ+ = λ− characterizing
the Goldstein-Kac telegraph process (bullets). Data are for α = 0,

N = 10, t − t0 = 2.5/Jmax, and ωGK/Jmax = 4,8,16,32,64 (brown
triangles, red squares, orange circles, blue open triangles, and green
open squares). The absorption probabilities for corresponding Marko-
vian processes with dephasing rate γ = ω2

GK/(2λ) are plotted as
lines. These illustrate the crossover from the non-Markovian regime
(λ � 10Jmax) to the Markovian regime (λ � 10Jmax). The numerical
simulations are performed by averaging over 500 randomly generated
samples of noise.

decouples into two infinitely connected subgraphs defined by
ωi = ±ωGK/2. Within each subgraph, transport is unhindered,
in contrast to disorder chosen from the uniform distribution
over the interval [−W,W ].

With increasing λ, the noise enhances the absorption proba-
bility, similar to the impact of Markovian dephasing discussed
above. In the opposite limit of λ � Jmax,�,W,ωGK, where
the temporal correlations of the noise are extremely short,
one recovers an effectively Markovian dephasing process with
associated dephasing rate

γ = ω2
GK

2λ
. (26)

When sending λ → ∞ with ωGK = const, the dephasing rate
γ → 0; the impact of the noise vanishes and the excitation
is again localized by the destructive interference effect. Con-
sequently, the probability for absorbing the excitation attains
its maximum for intermediate values of λ, in a regime domi-
nated by finite temporal noise correlations and non-Markovian
behavior.

In Fig. 6, we also compare these results with a corresponding
Markovian process, with the dephasing rate given by Eq. (26).
The maximally achieved values of the absorption probabilities
are similar for Markovian and non-Markovian noise. Never-
theless, non-Markovian dephasing can reach higher absorption
probabilities over a larger parameter range as compared to its
Markovian counterpart.

We can quantify the crossover from Markovian to non-
Markovian behavior by computing the distance between two
different starting states [74,75]. At sufficiently long times,
all states will converge to

⊗10
i=1 |↓〉i . In the Markovian case,

this convergence is monotonic, while the memory effects of
non-Markovian noise can lead to temporary recurrences of the
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FIG. 7. Trace distance as measure of non-Markovianity. At low
rates λ, strong recurrences (i.e., positive derivatives) demonstrate the
non-Markovian nature of the noise. As the rate is increased, the curves
gradually become more monotonic, indicating purely Markovian
behavior. Data for ωGK/Jmax = 4, α = 0, N = 10, averages over 150
noise realizations. Red, orange, green, blue curves (from thick to thin
lines) correspond to λ/Jmax = 0.1,1,10,100, respectively.

trace distance. Figure 7 shows the trace distance for two start-
ing states, ρ(t = 0) = |ψ1〉 〈ψ1| and σ (t = 0) = |ψ2〉 〈ψ2|,
with |ψ1〉 = σ+

2

⊗10
i=1 |↓〉i and |ψ2〉 = 1√

2
(I + σ+

2 )
⊗10

i=1 |↓〉i ,
where there is a single excitation at site 2, respectively half an
excitation. As it can be seen in Fig. 7, in the region that is well
described by the equivalent Markovian process (Fig. 6), the
trace distance decreases monotonically. Upon crossing over
into the non-Markovian region, clear recurrences appear.

D. Dynamics of a driven system

Within the proposed scheme, one can go beyond single
excitations and investigate nonlinear interaction effects. One
way to study these is by continuously pumping excitations
into the system, for example by the incoherent Markovian
process described by the superoperator Lsource introduced in
Sec. II. In the following, we concentrate on the properties
of the steady state that emerges in the limit (t − t0) → ∞
due to the interplay of the Markovian processes described by
Lsource,Ldiss, and the hopping term HJ . We performed these
calculations by numerically searching for the steady state of the
Lindblad master equation (7) using the QuTiP package [71].

In the limit (t − t0) → ∞, the rate at which the excitations
are removed from the system at isink converges against a
constant value, which in a photosynthetic system corresponds
to the rate at which excitations are recombined at the target
site. We numerically evaluate this rate as a function of �source,
which quantifies the coupling strength of site isource to the
thermal reservoir. The corresponding results are depicted in
Fig. 8(a), while the total number of excitations in the system
is presented in Fig. 8(b). Naively, one would expect that the
rate for absorbing excitations as well as the total number of
excitations in the system increase monotonically with �source.
However, as Fig. 8 illustrates, there is an optimal injection rate
�

opt
source that yields a maximal rate. This optimal value depends

on α and hence on the connectivity of the network, as depicted
in Fig. 9.

The existence of an optimal value for �source is a man-
ifestation of nonlinear effects that come into play as the
number of excitation in the spin network grows. In order
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FIG. 8. Transfer in a continuously driven system as a function
of driving rate, without dephasing and static disorder. Excitations are
created at site isource = 2 with rate �source and the target site is isink = 5,
in a system of size N = 6. The couplings are approximate power
laws characterized by α = 0, 1.5, 3.0 (from thick to thin lines, and
red, orange, blue). (a) Rate for absorbing excitations at site isink and
(b) total number of excitations in the steady state. Due to nonlinear
effects, the absorption rate is a nonmonotonic function of �source.

to understand this behavior, we first focus on α > 0 in the
limiting cases �source � Jmax and �source � Jmax. In the regime
�source � Jmax, the dynamics of the system is dominated by
the hopping term described by HJ with its highly delocalized
eigenstates, and the driving described by Lsource can be treated
as a perturbation. The excitations brought into the system by
Lsource delocalize. As the excitations spread over the entire spin
network, nonlinear effects arising from the fact that each site
can only support a single excitation are negligible.

Increasing �source brings more excitations into the sys-
tem and initially improves the absorption rate. As �source

increases further, however, Lsource can no longer be treated
as a perturbation. In the regime �source � Jmax, the structure
of the eigenstates of the superoperator Lsource dominates the
dynamics, and HJ represents a small perturbation. SinceLsource

describes the creation of excitations at isource, its eigenvectors
reflect a highly localized dynamics, and in the limit �source �
Jmax the excitation remains localized at isource in a Zeno-like
effect. This behavior is illustrated in Fig. 10(a) for α = 1.5.
The probability for finding the excitation at isink �= isource goes
to zero as �source → ∞. In this limit, isink decouples from the
rest of the system, and the resulting dynamics is that of a single
two-level atom coupled to an infinite-temperature heat bath.
Consequently, the average number of excitations in the system
converges against 0.5.
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FIG. 9. Maximum transfer rate in the steady state of a contin-
uously driven system as a function of hopping range, for realistic
couplings (solid) and an idealized power-law dependence (dashed),
without collective dephasing and static disorder. The source site is
isource = 2 and the target site isink = 5, with N = 6. (a) The maximum
absorption rate of excitations at isink has a minimum at intermediate
values of α. (b) The optimal source rate �opt

source achieving the maximum
transfer rate given in panel (a) decreases monotonically with α.

(a) (b)

FIG. 10. Average number of excitations per site in the steady
state, plotted against the rate �source for an ion chain with N = 6 ions.
The excitations are created at site isource = 2 and are absorbed at site
isink = 5. The parameters are α = 1.5 (a), α = 0 (b), and with γ = 0
and no static disorder.

The behavior changes drastically when α = 0. For large
values of �source, the steady state is similar to α > 0, with
0.5 excitations at isource and vanishing excitation number
everywhere else. In the limit of small �source, however, the
steady state for α = 0 deviates significantly from the steady
state for nonzero α. The reason is again the destructive
interference effect, which reduces the number of excitations
that reach site isink in a given time, and thus decreases the
rate for absorbing the excitations when compared to scenarios
with α > 0 [Fig. 8(a)]. As a consequence, excitations can
accumulate in the system, and, instead of vanishing numbers
of excitations, we find an average excitation number of 0.25
at each site, except at isink [Figs. 10(b) and 8(b)]. The result is
a counterintuitive behavior: while overall more excitations are
present in the steady state, fewer of them are absorbed at the
target site. As these results show, the nonlinear behavior due
to interactions between excitations leads to highly nontrivial
dynamics.

V. EXPERIMENTAL CONSIDERATIONS

In this section, we address possible sources of errors in a
realistic experiment and compare their rates to achievable time
scales. The Mølmer-Sørenson gate at α → 0, employing the
axial center-of-mass mode, can be performed with gate times
up to 50 μs (Jmax ≈ 15.7×103 s−1) [76]. When addressing the
radial modes to obtain tunable long-range interactions, real-
istic interaction strengths are Jmax ≈ {230,360,125,100} s−1

for α = {0.75, 1.07, 1.41, 1.75} [31]. The observation of the
phenomena discussed for α → 0 requires times not longer than
T = 20/Jmax ≈ 1.25 ms. The transition between the dynami-
cal regimes α < 1 and α > 1 can be observed within times on
the order of T = 10

Jmax
< 0.1 s for N = 10 ions and T = 20

Jmax
<

0.2 s for N = 20 ions. In the following, we compare these time
scales to two classes of errors, those which limit the time over
which physical qubits can store quantum information and those
which concern the operations performed on the qubit.

A. Qubits as quantum memories

Two possible error sources are particularly relevant for
reducing the coherence time of the qubits in the ab-
sence of additional operations: amplitude damping, which is
caused by spontaneous decay, and phase damping, which is
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predominantly caused by relative fluctuations between the
frequency of the qubit transition and the laser field used to
read out the state of the qubit.

For an optical qubit in the setup described in Ref. [65], the
lifetime is τ1 = 1.13 s. The run times T estimated above are at
least an order of magnitude smaller than the lifetime τ1. Since
the spontaneous decay acts on all ions with the same decay rate
of τ−1

1 , its effect on the absorption probability can be removed
in the single excitation sector via the analytical expression

P ′
a(t) = 1 − e−(t−t0)/τ1 [1 − Pa(t)]. (27)

Here, Pa(t) is the probability for having absorbed the excitation
at site isink in the absence of spontaneous decay and P ′

a(t) is
the probability for not finding the excitation in the quantum
network at time t in the presence of spontaneous emission.
Due to the simple structure of Eq. (27), it is straightforward to
eliminate the effect of spontaneous decay in the postprocessing
of the experimental data.

In addition, frequency fluctuations of the qubit transitions
and the laser field generate dephasing noise, which, however,
has been reported to be almost identical for all the ions [65].
Hence, one can find decoherence-free subspaces in which this
type of dephasing is practically absent. In our case, subspaces
of fixed excitation numbers are decoherence free. Decoherence
between different subspaces does not affect the proposed
quantum simulations, since the coherent Hamiltonian part of
the time evolution as well as the (possibly non-Markovian)
dephasing noise conserve the number of excitations, while
the excitation number is only changed by the incoherent
Markovian processes Ldiss and Lsource.

B. Errors from faulty qubit operations

A second class of error appears as soon as operations on the
qubits are performed, in particular initialization, generation of
the dynamics, and readout.

1. Preparation of the initial state

The first step of the proposed experiment is the preparation
of the initial state |ψ(t0)〉. This can be done via optical
pumping, which allows for the preparation of the states |↓〉i
and |↑〉i with a fidelity beyond F = 99.9% [77]. Another
important initialization step is the cooling of the vibrational
modes of the ion chain. After a cooling time of 200 μs, an
average steady-state phonon number of 〈n〉 = 0.5 per mode can
be achieved, sufficient to implement Mølmer-Sørenson-type
interactions with satisfactory fidelity [65].

2. Time evolution

By implementing the Hamiltonian Ĥ as well as the dephas-
ing and dissipative processes discussed in Sec. II, intensity
fluctuations of laser fields enter as additional error source.
Since the time scale of these fluctuations, on the order of
seconds or minutes [65], is much longer than a single run
of the experiment, this error amounts to a random variation
of Jmax that remains static within each run. The numerical
results presented above indicate that the excitation transfer
does not crucially depend on the precise value of Jmax, so this
error should not change the results significantly. In addition,
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FIG. 11. Comparison of the time evolution with and without
off-resonant terms in Ĥint, Eq. (9). Solid curves are from thicker to
thinner and bottom to top for ωconst/Jmax = 1, 2, 10 (orange, green,
blue). Already with ωconst/Jmax = 10, the result is hardly discernible
from the ideal case of ωconst/Jmax → ∞ (red dashed). The exponent
describing the hopping range is α = 1, system size is N = 10, and
there is no static disorder or dephasing.

intensity fluctuations of the addressed beams generating the
ac Stark shifts lead to fluctuations of the local excitation
energies h̄ωi . However, these appear only in the form of static
disorder and dephasing. These will randomize somewhat the
amplitude of the disorder strength and the dephasing rate, but
since observables depend smoothly on both parameters the
effect should not be significant. Thus, our proposed quantum
simulation will be robust against the intensity fluctuations of
the laser field.

3. Influence of off-resonant terms in the interaction Hamiltonian

In Sec. II, we have proposed to engineer the Hamiltonian
ĤJ by implementing Ĥint and eliminating off-resonant terms
such as σ+

i σ+
j by working in the regime h̄ωconst � Jij . With

a finite ratio ωconst/Jij , off-resonant terms may influence the
system dynamics by creating and annihilating excitations. In
order to quantify the impact of such off-resonant excitations,
we performed a simulation taking them into account, with the
result depicted in Fig. 11. Already for ωconst/Jmax = 10.0 the
impact of the off-resonant terms in Ĥint is hardly discernible.

4. Measurement

In the final step of the experiment, one measures the number
of remaining excitations (number of ions in state |↑〉i). This
can be done through electron shelving [78] with extremely
high accuracy [65], such that the errors it introduces can be
neglected relative to other error sources discussed above.

C. Accessible parameter regimes

To estimate the reachable parameter regimes, we compare
the relative rates of the ingredients generating Eq. (7). As men-
tioned above, interactions have been experimentally demon-
strated with Jmax on the order of 100 s−1 up to 15.7×103 s−1.
Disorder and dephasing amplitudes can be orders of magnitude
larger: with detunings of 100 GHz from the 4 2P3/2 ↔ 3 2D5/2

transition an ac Stark shift of 2π×1 MHz is achievable [79]
and in Ref. [72] ac Stark shifts of up to 10 MHz have been
demonstrated. Further, dephasing autocorrelation time can
be much shorter than the other relevant time scales. For
example, by changing the intensity of the corresponding lasers
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using an acousto-optic modulator one can achieve switching
times on a nanosecond scale, allowing for the realization of
dephasing deep in the Markovian regime. For 171Yb+ ions,
with the qubit transition in the microwave range, flat as well
as structured dephasing noise has been demonstrated up to a
cutoff frequency of 200 Hz [53].

VI. CONCLUSION

In summary, we have presented a feasible scheme to
quantum simulate the transfer of excitations through a quantum
network. The proposal exploits existing trapped-ion tech-
nology and can be robustly implemented in state-of-the-art
experiments.

As we have shown, the main parameters describing
ENAQT—disorder strength and dephasing rate—can be tuned
over wide ranges, permitting the study of this phenomenon
in the interplay between Anderson localization, noise-induced
transfer, and freezing due to quantum Zeno dynamics. An
additional feature of ion chains is that of tunable long-range
interactions. In detailed numerical simulations, we have il-
lustrated how the transfer efficiency grows with increasing
hopping range at short times, but diminishes at larger times
due to a localization phenomenon induced by destructive
interference [13]. Counterintuitively, but similar to the case
of disorder-induced ENAQT, small amounts of disorder or de-
phasing destroy the destructive interference and thus enhance
the transport efficiencies for large hopping ranges.

Furthermore, the proposed scheme allows one to study the
impact of non-Markovian effects on the excitation transfer, thus
complementing recent theoretical investigations into the role
of non-Markovian processes for the energy-transfer process
in biomolecules [14–18,62]. In our numerical calculations,
we have found that, while the Markovian and a simple non-
Markovian dephasing reach similar maximal transfer efficien-
cies, the non-Markovian noise can hold larger values over a
broader parameter range. Here, we have been interested in
the transfer up to a fixed but finite time, which in realistic
experiments will be limited by loss mechanisms. In the limit of
infinite waiting times, the efficiency will become independent
of non-Markovian effects [62].

Our scheme also provides a framework for investigating
nonlinear dynamics, which emerges as larger numbers of
excitations are injected into the spin network. In this regime,

numerical calculations are intractable except for very small
systems, thus making it a particularly attractive target for
quantum-simulation experiments. We have studied this regime
for small driven-dissipative systems in which excitations are
injected continuously from an infinite-temperature heat bath,
resembling the incoherent absorption of photons by photosyn-
thetic systems. We have found markedly different behavior for
α = 0 and α > 0. While for α = 0 large numbers of excitations
may be present, due to the destructive interference effect the
rate of absorbing them at the target site may actually be lower
than for α > 0. It will be interesting to use interactions between
excitations to design so-called optical ratchet states. There, the
system can continue to absorb excitations while not losing to
spontaneous emission those already gained [80].

Experiments may investigate these effects not only in
one-dimensional chains but also in other geometries. Two-
dimensional crystals can be realized, e.g., in Penning traps
[44,46] or linear Paul traps with strong axial confinement [47],
and segmented Paul traps [48], nanofabricated surface traps
[49], periodic driving [50], and additional laser frequencies
[51] may allow one to design arbitrary interaction patterns. A
further future direction will be to design the dissipation as a
true quantum bath instead of classical dephasing. This may be
achieved, e.g., by coupling the spin network to the vibrational
phonon modes of the ion crystal [81], as has been proposed for
the study of spin-boson models [82,83].

To conclude, by exploiting the high level of control of
current ion-chain experiments, it will be possible to study
many different aspects of excitation transfer in open quantum
networks in a highly controllable environment. These studies
may permit deeper insights into phenomena such as the
energy transfer in photosynthetic systems or the conductance
properties of materials.
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