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Thermalization of isolated quantum systems is a long-standing fundamental problem where different
mechanisms are proposed over time. We contribute to this discussion by classifying the diverse quench-dynamical
behaviors of spin-1 Bose-Einstein condensates, which includes well-defined quantum collapse and revivals,
thermalization, and certain special cases. These special cases are either nonthermal equilibration with no revival
but a collapse even though the system has finite degrees of freedom or no equilibration with no collapse and revival.
Given that some integrable systems are already shown to demonstrate the weak form of eigenstate thermalization
hypothesis (ETH), we determine the regions where ETH holds and fails in this integrable isolated quantum system.
The reason behind both thermalizing and nonthermalizing behaviors in the same model under different initial
conditions is linked to the discussion of “rare” nonthermal states existing in the spectrum. We also propose a
method to predict the collapse and revival time scales and find how they scale with the number of particles in the
condensate. We use a sudden quench to drive the system to nonequilibrium and hence the theoretical predictions
given in this paper can be probed in experiments.
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I. INTRODUCTION

Understanding if and how isolated quantum systems driven
out-of-equilibrium thermalize has practical implications as
well as being interesting from a fundamental point of view.
Being able to explain the thermalizing dynamics in an isolated
system is the key to have quantum thermal baths [1,2].
Thermalization of quantum systems also sheds light on how the
statistical mechanics emerge from unitary dynamics of quan-
tum mechanics [3,4]. At the opposite side, nonthermalizing
quantum systems might be useful to store quantum information
in the protected degrees of freedom [5,6].

Study of thermalization of isolated quantum systems has
a long history that starts with the development of quantum
mechanics itself [7] and can be understood in the context of the
eigenstate thermalization hypothesis (ETH) for isolated sys-
tems [8–12]. In this search to understand quantum thermaliza-
tion, analog concepts which are important in the thermalization
of classical systems have been drawn such as the integrability
of the system [13,14]. In this paper, we study dynamics of
the spin-1 spinor Bose-Einstein condensate (BEC) system
under single-mode approximation (SMA), which is known
to be a quantum-integrable model [15] based on its mean-
field calculations [16,17]. The consensus is that quantum-
integrable systems do not thermalize according to statistical
ensembles, but they obey the predictions of generalized Gibbs
ensemble which takes into account the conservation properties
in the system Hamiltonian [14] in the aim of maximizing
the entropy of the system under study [18]. However, it has
also been shown that the nonintegrability does not always
point to thermalization [19–22] and some integrable systems,
e.g., Lieb-Liniger model and integrable spin chains, do show
thermalization in the form of weak ETH [23–25]. In fact, it
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seems that what differentiates a quantum integrable system
from a nonintegrable one in the context of thermalization is not
that the system can thermalize or not, but instead having “rare”
nonthermal eigenstates in the spectrum that do not disappear
in the thermodynamic limit [23]. Our results of the spinor
condensate model support this idea of quantum thermalization
for a specific region of Hamiltonian parameters, where we
observe a spectrum composed of mostly “typical” thermal
states with some “rare” nonthermal ones. The exact diago-
nalization of spin-1 condensate under the SMA for realistic
condensate sizes provides us the opportunity to dig into the
whole spectrum of eigenstates and determine the regions where
ETH is applicable based on the condition in Ref. [11]. Then
we show that these regions in the spectrum are composed of
“typical” thermal eigenstates that lead to vanishing fluctuations
and shrinking support in the thermodynamic limit [23,24]. We
apply some other ETH indicators, as well, such as the scaling of
eigenstate expectation value differences [26,27] and the scaling
of the maximum divergence from the microcanonical ensemble
average [22] with the system size. The scaling exponents match
with each other and all of them point to the observation that
in the thermodynamic limit spinor condensates thermalize for
certain initial conditions (but not for all initial conditions),
implying the weak form of ETH. Given the fact that ultracold
atoms provide a highly controllable and a sufficiently isolated
system [12], we show that a spin-1 spinor condensate under the
SMA could be a testbench to observe the predictions of ETH for
certain sudden quench parameters and the transition between
thermalization and nonthermalization without a need to add
a nonintegrable perturbation to an integrable Hamiltonian
[20,28,29]. In fact, being able to see this transition without
breaking the integrability of the model hints that the thermal-
ization is not directly tied to nonintegrability [20]. Instead, it
might be more relevant to consider the localization properties
of the spectrum to observe thermalizing behavior in isolated
quantum systems [27,29]. Therefore, by invoking the analogy
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between our model and the single quantum-particle hopping
model and hence calculating the participation ratios [30] that is
a widely used tool for Anderson models [31], we show that the
most localized eigenstates in the spectrum (excluding the edges
of the spectrum) are also the “rare” nonthermal eigenstates that
cause nonthermalization behavior in the system.

Quantum collapse and revivals are well-known phenomena
observed in different systems spanning from light-matter inter-
actions in the Jaynes-Cummings model [32] to Bose-Hubbard
models in optical lattices [21,33] and the matter wave field
of a BEC [34]. This kind of behavior is also expected in
discrete and finite systems due to the recurrence theorem
[35]. The possibility that spin-1 BEC under the SMA might
also demonstrate collapse and revivals has been suggested
in Refs. [36,37] and a detailed analysis of collapses with
specific initial Fock states in this model has been given [38].
These full-quantum model studies did not take the Zeeman
effects into account, partly because the model without Zeeman
effects has rotational symmetry and is analytically solvable
via the introduction of angular momentumlike operators in the
Fock basis [36]. On the other hand, the experiments of the
spinor BECs make use of the quadratic Zeeman effect as a
control parameter to sweep across the well-established phase
transitions [39–41] that spinor BECs have in their mean-field
representation [42]. With the introduction of the quadratic
Zeeman effect, at the mean-field level the physics is mapped to
an analytical pendulumlike model [17]. Some of the mean-field
predictions have been experimentally verified [43]. However,
the mean-field model cannot capture the quantum collapse and
revivals of the full-quantum Hamiltonian. In the second part of
our paper, we calculate the time scales for quantum collapse
and revivals in the spin-1 condensate model in the parameter
region where they exist and show that under realistic conditions
and condensate sizes the system equilibrates around its thermal
value, validating the ETH for our model. Finally, we discuss
some particular parameter regions where we observe only
equilibration but not thermalization without quantum revivals
in any time scale of the evolution. This is somewhat unexpected
given the fact that our model is a discrete system with finite
degrees of freedom and the initial information tends to recur
in a long time scale for finite-size systems.

II. CLASSIFICATION OF DYNAMICAL BEHAVIORS
UNDER SUDDEN QUENCH OF SPIN-1 SPINOR

CONDENSATE

The interaction Hamiltonian for a spin-1 BEC in the second-
quantization picture takes the form [39],

Ĥint = 1

2

∫
dr(c′

0 : n̂2(r) : +c′
1 : F̂ 2(r) :), (1)

where :: denotes the normal ordering. The coefficients in the
interaction Hamiltonian depend on the scattering length and
the atom mass through

c′
0 = 4πh̄2

M

a0 + 2a2

3
,

(2)

c′
1 = 4πh̄2

M

a2 − a0

3
,

where a0 and a2 are the scattering lengths corresponding to
a total spin 0 and a total spin 2 of the colliding atoms. The
operators in the interaction Hamiltonian are defined by

n̂(r) =
1∑

m,n=−1

ψ̂†
m(r)Imnψ̂n(r),

(3)

F̂ν(r) =
1∑

m,n=−1

ψ̂†
m(r)(Fν)mnψ̂n(r),

where ψ̂mF
(ψ̂†

mF
) is the Bose field operator for the Zeeman

state mF . Imn and (Fν)mn are the identity and spin-1 matrices,
respectively, and ν = x,y,z in the angular momentum operator
F̂ν . Also note that F̂ 2(r) = F̂ 2

x (r) + F̂ 2
y (r) + F̂ 2

z (r) in Eq. (1)
and the identity matrix Imn results in the density operator
n̂(r) for the condensate. For sodium or rubidium alkali-metal
atoms, we have |c′

0| � |c′
1|, so the symmetric part of the

interaction Hamiltonian dominates over the nonsymmetric
part. This observation leads to the so-called single-mode
approximation (SMA), where we assume that the condensate
wave functions for each spin component φm=−1,0,1(r) are
described by the same spatial wave function φ(r) as in ψ̂m ∼
âmφ(r),m = 0,±1 [36,39,42,44]. Then the spatial wave func-
tionφ(r) satisfies the Gross-Pitaevskii equation which gives the
spatial profile of our spin-1 Bose-Einstein condensate. With
the normalization condition

∫
dr|φ(r)|2 = 1, the interaction

Hamiltonian reduces to rotationally invariant Hint = c1L̂
2/2N ,

where L̂ is the spin-1 angular momentum operator, c1 =
c′

1N
∫

dr|φ(r)|4, and N is the total atom number, which has
well-known analytical solutions [36]. In the experiment, an
additional magnetic Zeeman field is added to the system,
which results in a competition between different terms in
the Hamiltonian and drives phase transitions [41]. The linear
Zeeman term proportional to L̂z = n̂1 − n̂−1 commutes with
the other terms in the Hamiltonian, and its effect is to conserve
the magnetization. It has no influence on spin dynamics and
therefore can be dropped [41]. Adding the quadratic Zeeman
term, the Hamiltonian reduces to

Hint = c1
L̂2

N
− qâ

†
0â0,

= c1

N
(â†

1â
†
1â1â1 + â

†
−1â

†
−1â−1â−1 − 2â

†
1â

†
−1â1â−1

+ 2â
†
1â

†
0â0â1 + 2â

†
−1â

†
0â0â−1 + 2â

†
0â

†
0â1â−1

+ 2â
†
1â

†
−1â0â0) − qâ

†
0â0. (4)

The spin-1 BEC Hamiltonian with the quadratic Zeeman term
gives rise to different phases observed at the ground state
due to the competition between the quadratic Zeeman effect
and spin-mixing interaction [43]. An adiabatic passage from
one phase to another can create highly entangled states from
product states as proposed in Ref. [41] and quite recently
implemented in Ref. [45]. Figure 1 shows the ground-state
quantum phase transitions by observing the order parameter
〈N0〉, the number of particles in Zeeman sublevel |m = 0〉,
by varying the quadratic Zeeman coefficient q. In the rest
of the paper, we study the dynamics of the system under a
sudden quench, i.e., we start from the ground state of the initial
Hamiltonian Hi , which is Hint [Eq. (4)] with an initial quadratic

023603-2



CLASSIFICATION OF QUENCH-DYNAMICAL BEHAVIORS … PHYSICAL REVIEW A 97, 023603 (2018)

q/|c1|
-5 0 5

N
0/

N

0

0.5

1

(a) (b)

q/|c1|
-2 0 2

N
0/

N

0

0.5

1

FIG. 1. The ground-state phase transitions for (a) ferromagnetic
and (b) antiferromagnetic interactions for N = 104 particles in the
condensate and zero total magnetization.

Zeeman term qi , and abruptly quench the Zeeman field to a
final value qf with the final Hamiltonian denoted as Hf . The
dynamics and thermalization behavior of the system are then
investigated. Both the sudden quench and the measurement of
〈N0〉, which is used as the main observable in our study, can
be readily performed in experiment [43,46–48].

We now show how a dynamical phase transition (DPT)
might be arising for spinor condensates via the sudden quench
based on an alternative definition of DPTs that takes the time
average of dynamical response as the order parameter [49,50].
In our study, we start with the ground state, |ψ(0)〉 of the initial
Hamiltonian Hi with q = qi . After a sudden quench of the
Zeeman coefficient q to the value qf , the initial state can be
expressed as

|ψ(0)〉 =
∑

α

cα|ψα〉, (5)

where |ψα〉 are the eigenstates of the final Hamiltonian Hf .
The number of atoms in the Zeeman sublevel |m = 0〉 can be

(a) (b)

(c) (d)

FIG. 2. Eigenstate occupation numbers (EONs) |cα|2 for a fer-
romagnetic quench at (a) qi = −3 to qf = 0.5 and (b) qi = 4.1 to
qf = 2 (focused on nonzero sections of the eigenspectrum in the
insets) and their corresponding eigenstate expectation values (EEVs)
(focused on the nonlinear kink region in the insets) Nαα at (c) and (d),
respectively, for a particle number of 104 with respect to the energy
density E/N .

FIG. 3. The sudden quench map for the ferromagnetic case with
qf and qi on the x and y axes, respectively, for 5 × 103 particles.
Color labels 〈N0(t)〉 in the long-time limit.

written as

〈N0(t)〉 = 〈ψ(t)|N0|ψ(t)〉,
=

∑
α,β

c∗
αcβe−i(Eα−Eβ )tN0,αβ, (6)

where N0,αβ = 〈ψα|N0|ψβ〉 and Eα are the energy of the
eigenstate |ψα〉 under the final Hamiltonian Hf . The long-time
average of 〈N0(t)〉 then should follow the diagonal ensemble
prediction [11,12,51],

〈N0(t)〉t→∞ =
∑

α

|cα|2N0,αα, (7)

if the equilibration happens or when the phase coherence
diminishes. In order to visualize this quantity, in Figs. 2(a) and
2(b) we plot the eigenstate occupation numbers (EONs) |cα|2
for certain sudden quench parameters (seen in the caption).
EONs represent windows in the eigenspectrum where we
are allowed to peak into when we make a measurement.
Figures 2(c) and 2(d) are plots of the corresponding eigenstate
expectation values (EEVs) N0,αα . What we expect to see in
the long-time average of a sudden quench experiment is the
summation of EEVs weighted with EONs as shown by Eq. (7).

Each point on sudden quench maps (Figs. 3 and 4) corre-
sponds to the prediction of diagonal ensemble (equilibration
value if it happens, or the time average of the dynamic response
of the system) when a sudden quench is applied to the ground
state from an initial Hamiltonian with qi to a final Hamiltonian

FIG. 4. The sudden quench map for the antiferromagnetic case
with qf and qi on the x and y axes, respectively, for 5 × 103 particles.
Color labels 〈N0(t)〉 in the long-time limit.
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TABLE I. The regions of the sudden quench map for the ferromagnetic case.

Region Boundaries Dynamic behavior

I |qi | < 4, all qf except traces ETH valid, well-defined collapse and revivals
II |qi | < 4, traces of qf Nonthermal equilibration, collapse, no revival
III qi > 4 & 0 < qf < 4 or qi < −4 & −4 < qf < 0 No equilibration, no collapse or revival
IV The rest of the map No nonequilibrium evolution

with qf . Note that there are different regions on both maps
and the ferromagnetic sudden quench map is more diverse
than the antiferromagnetic one when the ground state is chosen
as the initial state of the nonequilibrium process. Due to the
symmetry embedded in the Hamiltonian for both interactions,
one can obtain point symmetric version of Fig. 3 (reflection
with respect to the origin of the plot) with antiferromagnetic
interaction when the initial state is set as the most excited state
of the Hamiltonian.

These maps capture the ground-state phase transition points
of both FM (q = ±4) and AFM (q = 0) cases. In Fig. 4, the
upper half (qi > 0) of the map plane reveals two different re-
gions with transition points at qf = −4 and qf = 0. Similarly
for the lower half (qi < 0), we observe two regions with the
transition points at qf = 0 and qf = 4. In Fig. 3, for |qi | > 4
we see a similar behavior to Fig. 4 with transition points either
at qf = 0 and qf = 4 (for qi > 4) or at qf = −4 and qf = 0
(for qi < −4). In between |qi | < 4, the two transition points
gradually shift as qi increases. In later sections, we are going
to show that the sudden quench maps also show us when we do
and do not expect a thermal behavior in our system, similar to
the nonequilibrium phase diagram given for the Bose-Hubbard
model in Ref. [21]. Additionally it will provide us a way to
predict types of the dynamical behavior in different time scales.
To give an idea of the regions on the maps, we summarized
them in Table I. Although the nonequilibrium behavior of
these regions will be explained in detail in the rest of the
paper, we shortly list them here. Region I is where the system
equilibrates around its thermal prediction after a collapse with
a well-defined time scale. It is also a region where we observe
clear quantum revivals due to finite-size effects. Region II
demonstrates nonthermal equilibration after a collapse, but no
clear collective revival is observed for these points on the map.
We do not see equilibration, collapse, or revival for region III;
instead we observe an oscillatory behavior around the system’s
PDE value due to the interference of a small number of modes
of the system. Finally in region IV, the initial state turns out to
be already in equilibrium with the quench Hamiltonian, giving
us practically a constant behavior for all times.

III. EIGENSTATE THERMALIZATION
HYPOTHESIS IN SPIN-1 BEC

When a system that is driven out-of-equilibrium equilibrates
around a thermal value predicted by a statistical ensemble,
the process is called thermalization. For isolated interacting
bodies, microcanonical ensemble describes the equilibrium
predictions. In this context, ETH is a possible pathway to
thermalization and explains the match between the equilibra-
tion value predicted by the diagonal ensemble after a quench
[Eq. (7)] and the microcanonical thermal value [11].

The microcanonical ensemble is a statistical ensemble
with a sufficiently narrow energy interval that describes the
equilibrium dynamics of an isolated system [52]. In order
to check the prediction of the microcanonical ensemble, we
seek to define a narrow energy window around the mean
energy of the eigenspectrum. References [11,51,53] emphasize
the approximate linearity of the EEVs in the microcanonical
energy window in order to define a finite and narrow energy
window which will also ensure the validity of ETH. Based
on this idea, they state the following condition (which has
been derived for the eigenstate thermalization to happen by
Ref. [54]):

(δE)2|〈N0〉′′(E)/〈N0〉(E)| 
 1, (8)

where δE is the energy window, 〈N0〉(E) is the EEV behav-
ior of the system N0,αα as a function of the energy, and ′
denotes the differentiation with respect to energy. Another
possibility implemented in Ref. [11] is to define the window
based on a sensitivity analysis where the size of the energy
window chosen does not affect the thermal prediction of the
microcanonical ensemble (see Appendix A for a demonstration
of this method for our model). We generate the finite and
narrow microcanonical energy windows for our model with
a combination of these two ways. Figures 5 and 6 show the
regions where the thermal prediction of the diagonal ensemble
(PDE) matches the prediction of the microcanonical ensemble
(MCE), mean energy eigenstate (Mean ES), and two arbitrary
eigenstates (ES 1 and ES 2) in the microcanonical energy

FIG. 5. The comparison mean values predicted by diagonal
ensemble (PDE), microcanonical ensemble (MCE), the eigenstate
corresponding to the mean energy of the system (Mean ES), and
arbitrary eigenstates in the microcanonical energy window (ES 1 and
ES 2), when the sudden quench is applied from qi = −3 to different
qf values on the x axis for the ferromagnetic case. Each data point
is obtained with a simulation of 104 particles. The inset shows the
difference between the diagonal and the microcanonical ensemble
predictions when it is possible to define a valid energy interval for the
microcanonical ensemble.
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FIG. 6. The comparison of mean values predicted by the diagonal
ensemble (PDE), the microcanonical ensemble (MCE), the eigenstate
corresponding to the mean energy of the system (Mean ES), and
arbitrary eigenstates in the microcanonical energy window (ES 1 and
ES 2), when the sudden quench is applied from qi = 4.1 to different
qf values on the x axis for the ferromagnetic case. Each data point is
obtained with a simulation of 104 particles.

window when it is possible to define one for a sudden quench
from qi = −3 and qi = 4.1 to various qf spanning from −5 to
5, respectively. It is important to note that the match happens
only when the EON window coincides with the approximately
linear or constant parts of the EEV plot. See Fig. 2 for the
cases where the match does not happen, so that the system
fails to thermalize. Hence, we conclude that the relaxation in
the matching cases represents thermalization via ETH, when
we disregard the finite-size effects, e.g., a quantum revival,
which will be discussed in the next section.

In order to strengthen the argument that we see a nonther-
mal behavior only when EON captures the nonlinear “kink”
behavior in the EEV spectrum, we look at a couple of ETH
indicators. These indicators are also used to determine the
form of ETH observed in the system, e.g., weak or strong,
if there is thermalization and they require an energy interval
over the spectrum. It is possible to define a microcanonical en-
semble energy window at the linear region of the spectrum
with the methods mentioned above, while such a window is
not well defined for the kink region. Since we want to compare
two cases, we define a fixed energy interval around the center
of the spectrum. The first ETH indicator that we applied is the
system size scaling of average EEV differences [26,27]. An
EEV difference is defined as

rn = |〈ψn+1|N0|ψn+1〉 − 〈ψn|N0|ψn〉|, (9)

for random eigenstate |ψn〉 chosen in the energy interval and
its adjacent state |ψn+1〉. Regardless of the interval size, when
the interval encompasses the linear region as for qf = 3 in
Fig. 7, we obtain the N−1 scaling with R2 = 1. Therefore the
average of differences between EEVs vanish in the thermody-
namic limit N → ∞. Other indicators are the ETH noise or
fluctuations [23,24],

σN0 =
(∑

ψn∈δE[〈ψn|N0|ψn〉 − 〈N0〉mc,δE]2

Nint

)1/2

, (10)

where the Nint is the number of eigenstates in the chosen
interval, 〈N0〉mc,δE is the microcanonical prediction defined
in the energy interval of δE, and |ψn〉 ∈ δE are the eigenstates

N
10 3 10 4 10 5

χ
δE

10 -4

10 -3

10 -2

10 -1

10 0
sN
σN

rmax

r

FIG. 7. The system size scaling of the support χδE = sN0 (solid
blue), the fluctuations (or the ETH noise) χδE = σN0 (dashed red),
the maximum divergence of EEV differences from the MC prediction
χδE = rmax (dashed-dotted orange), and the average EEV difference
χδE = 〈rn〉δE (dotted purple) for a fixed energy interval when the
interval is chosen right at the middle of the spectrum for qf = 3.
All of the scalings show a trend of N−1 with R2 = 1 where R is the
correlation coefficient.

in the energy interval; the support of the eigenstate distribution
in the energy interval [23,24],

sN0 = maxψn∈δE〈ψn|N0|ψn〉 − minψn∈δE〈ψn|N0|ψn〉, (11)

and the maximum divergence from the microcanonical ensem-
ble prediction [22],

rmax = maxn|〈ψn|N0|ψn〉 − 〈N0〉mc ,δE |, (12)

in Fig. 7 across the energy interval chosen. We obtain N−1

scaling with R2 = 1 for all these ETH indicators for the
aforementioned case. The extracted scaling exponent of the
support Eq. (11) clearly indicates in the thermodynamic limit
all of the eigenstates in the energy interval contribute the same
amount to the expectation value. Furthermore the rest of the
ETH indicators, Eqs. (10) and (12), reveal that all of the EEVs
in the energy interval converge to the microcanonical energy
prediction 〈N0〉mc,δE as N → ∞. Also note that N−1 scaling
is not surprising, since the dimension of the Hilbert space is in
the order of N for our model.

The observation that all of the ETH indicators vanish in
the thermodynamic limit for the linear regions of the spectrum
implies that ETH holds, even in the strong sense because of the
shrinking support [23]. However, this is not the case when the
energy interval contains the kink region as seen in scaling plots
for qf = 0.65 in Fig. 8. The scaling relation for the support
shows that the support still exists in the thermodynamic limit
when the kink region appears in the window. Therefore, we
conclude that the kink region is composed of nonthermal states
that do not vanish in the thermodynamic limit. Hence when
the spectrum contains the kink region, the whole spectrum
will never have a shrinking support, violating the strong form
of ETH. Similarly, we observe a nonvanishing ETH noise
when the kink exists in the energy interval (dashed line in
Fig. 8). In literature, the fluctuations are expected to vanish
away in the thermodynamic limit for the weak form of ETH
to hold [23]. However, we see that they do not disappear when
the interval includes the kink eigenstates. This matches with
the fact that we do not see thermalization when the initial
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FIG. 8. The system size scaling of the support χδE = sN0 =
0.07 + 48N−0.71 (solid blue) with R2 = 0.9997, RMSE = 10−3,
SSE = 10−5, the fluctuations (or the ETH noise) χδE = σN0 =
0.02 + 15.5N−0.77 (dashed red) with R2 = 0.9994, RMSE = 10−4,
SSE = 10−6, the maximum divergence of EEV differences from
the MC prediction χδE = rmax = 0.04 + 5.4N−0.5 (dashed-dotted
orange) with R2 = 0.998, RMSE = 10−3, SSE = 10−5, and the
average EEV difference χδE = 〈rn〉δE = 10−3 + 0.1N−0.55 (dotted
purple) with R2 = 0.9996, RMSE = 10−6, SSE = 10−10 for a fixed
energy interval when the interval is chosen right at the middle of the
spectrum for qf = 0.65. Here χδE(∞) stands for the offset value of
the fitting. The RMSE and SSE stand for root mean square error and
sum of squares of error, respectively.

state overlaps with the kink eigenstates. Therefore, we can
clearly conclude that the kink eigenstates are nonthermal states
that cause nonthermalization when the initial state is chosen
carefully to overlap with them (regions II and III on sudden
quench maps). As a result, we argue that when the kink region
exists in the spectrum (|q| < 4) not all initial states can lead
the system to thermalization even in the thermodynamic limit.
However, due to the rarity of these nonthermal states, most
of the initial states will result in thermalization (region 1 on
sudden quench map Fig. 3. Therefore, the weak form of ETH
holds for |q| < 4, and otherwise ETH holds in the strong sense
(based on the shrinking support for all the spectrum) since the
kink region disappears when we choose |q| > 4.

In order to understand why there is a nonlinear struc-
ture in the EEV plot, which basically results in a non-
thermal behavior in the dynamics, we compute other quan-
tities which can provide more information on the eigen-
spectrum structure of the model. The spinor Hamilto-
nian in Eq. (4) can actually be mapped to a single
quantum-particle Hamiltonian with nearest-neighbor hop-
ping and onsite potentials on a finite lattice. The Fock ba-
sis |N−1,N0,N1〉 = {|0,N,0〉,|1,N − 2,1〉, . . . ,|N/2,0,N/2〉}
with zero total magnetization in our spinor Hamiltonian can
be mapped to a basis of different lattice sites in the language
of a single hopping particle in one-dimensional (1D) lattice.
Then the interaction terms a

†
0a

†
0a1a−1 and a

†
1a

†
−1a0a0 realize the

nearest-neighbor hopping as can be seen when we do the oper-
ation a

†
1a

†
−1a0a0|0,N,0〉 = √

N (N − 1)|1,N − 2,1〉. The rest
of the terms in Eq. (4) impose an onsite potential. The tight-
binding Hamiltonian for the mapping could be stated as

Hm =
N/2−1∑

i=1

J (i)(c†i+1ci + H.c.) +
N/2∑
i=1

η(i)c†i ci , (13)

α
0 2000 4000 6000

P
R

0

500

1000

1500

α
0 2000 4000 6000

P
R

(a) (b)

0

200

400

600

800

1000

FIG. 9. The participation ratio values of the eigenspectrum for
a ferromagnetic Hamiltonian with (a) qf = 0.5 and (b) qf = 2 for
a particle number of 104. The eigenstates are ordered ascending in
energy from the ground state (α = 1) to the most excited state.

where J (i) are real hopping coefficients that are a function
of site position and η(i) are the onsite potentials that depend
on the site positions as well. The lattice size N/2 is the
dimension of the Fock space. Here the exact dependence
of J and η parameters on the positions of the sites in our
imagined lattice is determined through the terms in the spinor
BEC Hamiltonian Eq. (4). See Appendix B for how a spinor
Hamiltonian engineers the lattice parameters for the mapped
Hamiltonian Eq. (13). This mapping reminds us of the physics
of Anderson localization [31], albeit the onsite potentials η(i)
are not random. Hence, we study the participation ratio (PR),

Pα =
(∑

n=1

|ψαn|4
)−1

, (14)

to analyze the localization properties of the eigenstates
[29,30,55]; here, α denotes each eigenstate and n is the Fock
basis vector. As seen in Fig. 9, PR has a dip around the
eigenstate corresponding to the nonthermal kink eigenstate in
its corresponding EEV plot, which points to lower PR values of
the nonthermal states in the Fock basis when compared to other
eigenstates in the spectrum. This result hints at a link between
the nonthermal behavior that we observe in the system and the
Anderson-like localization [31] of the eigenstates in the Fock
space. In other words, the nonthermal states of the system also
seem to be the most localized states in the spectrum (excluding
the edges).

In order to make this point stronger, we analyze the system
size PR scaling of eigenstates with high- and low-PR values.
To target the low-PR region of the spectrum, we utilize two
different methods. We emphasize that the low-PR region of
the spectrum in Fig. 9 (excluding the edges of the spectrum)
is also the nonthermal region as already shown with the ETH
indicators. There is a rapid change around the kink state which
is always the extremum point of the EEV [Figs. 2(c)–2(d)]
and the level spacings [Fig. 12(c)]. Additionally the kink state
slightly shifts in the spectrum as we increase the system size
up to the thermodynamic limit. So, even though we are able to
detect the kink state in the spectrum with all these observations,
we note that the kink state shows consistently low PR values
for each system size but its scaling is not well defined possibly
due to finite-size effects. Therefore, the first method we apply
is averaging over low-PR states around the most outlier (kink)
state for each system size with a fixed energy interval. The solid
line in Fig. 10(a) is the scaling behavior that we observe for
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FIG. 10. System size scaling of (a) averaged participation ratio
of low-PR eigenstates with a fixed energy interval of ∼25[c1] around
the most outlier (kink) eigenstate (solid blue), the ground-state par-
ticipation ratio at q = −4 (dashed red), and at q = 4 (dotted-dashed
orange); (b) averaged participation ratio of high-PR eigenstates with
a fixed energy interval of ∼60[c1] around the center of the spectrum
(solid blue) when q = 3 is chosen, PR of ground state (dashed red),
and of the most-excited state (dotted-dashed orange) when the system
is not going through one of its phase transition points, e.g., q = 1.

this method when q = −0.65 is chosen, which is also a q value
that keeps the kink state around the center of the spectrum. The
extracted scaling exponent is γ ∝ 0.22 with R2 = 0.997. The
second method employs the phase transition points. We know
that the ground state is the kink eigenstate at phase transition
points when q = 4 or q = −4 is taken in the thermodynamic
limit. Even though for a finite-size condensate the phase
transition points are slightly off from q = 4 and q = −4 and
hence the ground state is not exactly the kink eigenstate, the
region around the ground state is the nonthermal kink region.
This observation can be made through the difference in the
PR scaling exponents of the ground state when we have q = 4
(or q = −4) and q is away from the phase transition points.
Figure 10(b), dashed line, shows the scaling of the ground
state when q = 1 which we extract P ∝ N0.5 (R2 = 1). The
exponent γ ∝ 0.5 is obtained for any q sufficiently far from
q = 4 or q = −4. On the other hand, we obtain a scaling
of P ∝ N0.32(R2 = 1) and P ∝ N0.24(R2 = 0.999) for q = 4
and q = −4, respectively. Thus, clearly the ground state is
neither localized nor extended completely when the system is
not at its phase transition points. However, when the system
goes through its phase transitions, the ground state coincides
with the low-PR region states and this provides us a way to
estimate the scaling exponent of states at the low-PR region.

We note that extracting a well-defined scaling only for the
most outlier (kink) state in a finite-size system is difficult,
but still averaging over a couple of states around it gives
an idea about the localization properties of the nonthermal
region. Overall the extracted scaling exponents point out that
the low-PR nonthermal kink region is not completely localized
region with a scaling exponent of γ = 0, however, it is the
most localized region of the spectrum. The high-PR eigenstates
that are also responsible for thermalization observed in the
system show a scaling of Pδ ∝ N0.91 (R2 = 1), when we
choose a fixed energy interval in the middle of the spectrum
for Zeeman field strength q = 3 [solid line in Fig. 10(b)]. We
observe almost the same PR scaling with exponent γ = 0.9
for single eigenstates chosen at the high-PR section of the
spectrum and for different q values. Even though such an
eigenstate is not completely extended with a scaling exponent
of γ = 1, it is the most extended region of the spectrum. All
in all, the previous analysis of the ETH indicators clearly
distinguishes the thermal and nonthermal states in the system
and PR analysis demonstrates a link between localization
and thermalization properties of our system, even though the
thermal and nonthermal states are not completely delocalized
and localized, respectively.

Finally, we note the difference between the behaviors seen
in regions I and IV. Although the equilibrium behavior in region
IV can be predicted by the microcanonical ensemble as seen
in Fig. 6, its cause is not related to the eigenstate localization
properties. We observe almost constant dynamic evolution
(or almost-no nonequilibrium evolution) for the simulations
at this section, which implies that one of the eigenstates
dominates the evolution. In the case seen in Fig. 6, it is the
most-excited state that governs the dynamics for negative qf

values. The most-excited state shows a constant PR scaling
with an exponent of 0 [dashed-dotted line in Fig. 10(b)]. So,
even though the eigenstate is perfectly localized, the initial
state is already in equilibrium with the quench Hamiltonian,
which leads to the thermalization. In Fig. 6, also note that we
observe thermalization for values at qf > 4 because now the
initial state mostly resembles the ground state of the quench
Hamiltonian instead of the most-excited state. Finally, even
though we show the PDE values at region III in Fig. 6, we
should remind the reader that the dynamics of region III does
not equilibrate but shows large fluctuations around its PDE
value (which will be discussed in the next section as a special
case).

An important difference between the spinor BEC model and
the single quantum-particle hopping model is that even though
the observable 〈N0〉 is local in the spinor BEC case, it is a
nonlocal observable when it is mapped onto the particle lattice.
However, more importantly, our model does not translate to an
Anderson model with random potentials. The single quantum-
particle hopping model with random potentials leads to sites
with very low PR values. It is also analytically known that such
a model cannot cause thermalization and satisfy ETH [56].
Therefore, based on our results with spinor BECs, we argue that
engineering the potential of a single quantum-particle model
should prevent the localization in the particle lattice and give
rise to thermalization for global observables defined for this
model.

023603-7
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IV. EXISTENCE AND ABSENCE OF QUANTUM
COLLAPSE AND REVIVALS

In this section, we analyze the cases that demonstrate quan-
tum collapse and revivals and derive an analytical expression
to predict their time scales. Further we examine the scaling of
collapse and revival times with the number of particles in the
condensate to be able to present realistic predictions for the
experiment. Finally we discuss “the special cases,” where we
do not observe a revival or even equilibration.

Now we choose a point on the ferromagnetic sudden quench
map Fig. 3 that thermalizes which can be detected via Figs. 5
and 6. So then, if we quench from qi = −3 to qf = −0.5,
we observe a series of collapse and revivals in Fig. 11, and
the equilibration value in between matches both diagonal and
microcanonical ensembles. A collapse before equilibration
is what mostly observed in experiments. We also intuitively
expect to see a series of revivals due to the finite-size effects.
However, in order to understand how collapse and revivals
emerge in our model, let us go back to the sudden quench
procedure given in the previous section and modify Eq. (6).
Notice that c∗

αcβ = c∗
βcα when the coefficients are real, which

is the case in our problem. Also N0,αβ = N0,βα in our model.
Then we can regroup Eq. (6) as

〈N0(t)〉 =
∑
α�β

c∗
αcβ(ei(Eα−Eβ )t + e−i(Eα−Eβ )t )N0,αβ,

= 2
∑
α�β

c∗
αcβ cos ((Eα − Eβ)t)N0,αβ . (15)

Equation (15) tells us that dynamics we observe in a sudden
quench is the interference of sinusoidal functions weighted
with some overlap. We can write Eq. (15) more clearly as

〈N0(t)〉 =
∑
α�β

Aαβ cos(
αβt), (16)

where 
αβ = Eα − Eβ is the energy gaps, Fig. 12(c), and
Aαβ = 2c∗

αcβN0,αβ is the overlap matrix, Fig. 12(a). We note
that the diagonal terms are the most populated terms in the
overlap matrix and they correspond to the diagonal ensemble
prediction. In fact it is important that the off-diagonal terms
vanish for thermalization to happen or they should be much

FIG. 11. The sudden quench dynamics in the short time scale
showing the collapse in detail when there is N = 2 × 103 particles in
the condensate and x axis is scaled with the number of particles when
we quench from qi = −3 to qf = −0.5 for the ferromagnetic case.
The inset plot shows the revivals in the long time scale.

α
180 200 220 240 260

β

180

200

220

240

260

×10 -3

0

5

10

α
0 200 400 600 800 1000

Δ
α
−

Δ
α
+

1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(a) (b)

(c) (d)

FIG. 12. (a) The overlap matrix with respect to eigenstates α and
β, (b) the first off-diagonal terms of the overlap matrix, (c) the nearest-
neighbor (NN) energy gaps, and (d) the difference or derivative plot of
the NN energy gaps with N = 2 × 103 particles in the ferromagnetic
condensate for the quench from qi = −3 to qf = −0.5. The x axis is
the eigenstates α ordered ascending in energy from the ground state
α = 1 to the most-excited state.

smaller compared to diagonal terms. We observe this is almost
the case in Fig. 12(a), except the first and second off-diagonals
still contribute to the dynamics even though they are much
smaller than the diagonal terms. Figure 12(b) shows the first
off-diagonals of the overlap matrix (which we call overlap
distribution in the following). This Poisson-like overlap exists
when the dynamics demonstrate a series of collapse and
revivals and it turns out to be important in determining the
time scales of collapse and revivals in spinor condensates under
SMA.

The time scale of a collapse is related to the time when the
oscillating terms with an energy gap argument in Eq. (16) start
to become uncorrelated. The terms corresponding to the far-
thest ends of the distribution are also the farthest in oscillation
frequency. They become uncorrelated after all the other terms
get uncorrelated. From that point on, all the oscillating terms
will be destructively interfering. We estimate these elements
with the root mean square of the overlap distribution as is
also done for the collapses in Jaynes-Cummings model [32].
Reference [10] predicts the collapse time for the Ising model as
inversely proportional to the energy spread of the initial state,
which is similar to our criteria and expression. The following
collapse time expression produces a value of c1tc/N ∼ 0.02
for the quench simulation depicted in Fig. 11:

tc = 2π∣∣
m+σ
α,α+1 − 
m−σ

α,α+1

∣∣ , (17)

where 
m
α,α+1 denotes the nearest-neighbor energy gap [level

spacing, Fig. 12(c)] corresponding to the maximum value in
the overlap distribution [Fig. 12(b)] and hence 
m+σ

α,α+1 is the
nearest-neighbor energy gap corresponding to the value which
is σ farther from the mean in the distribution [cf. inset of
Fig. 12(b)]. It is possible to fine-tune the predicted collapse
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time by taking more than 1σ of the overlap distribution. Also
note that we find c1tc ∼ N1/2 as the scaling of the collapse time
scale.

A quantum revival happens when all the oscillating terms
become correlated with each other again. This can be measured
through the difference between nearest-neighbor energy gaps
corresponding to the mean 
m

α,α+1 and the closest point to mean

m−1

α,α+1 in the overlap distribution [cf. inset of Fig. 12(b)],

tr = 2π∣∣
m
α,α+1 − 
m−1

α,α+1

∣∣ . (18)

Figure 12(d) shows the differences between nearest-neighbor
energy gaps. Note that 
α − 
α+1 are mostly flat around
where the overlap distribution is nonzero. This is vital for a
collective revival to occur, since otherwise terms in Eq. (16)
will never constructively interfere at a fixed time, namely the
revival time. When we have tr (
α − 
α+1) = 2π , all oscil-
lating terms interfere constructively, creating the first revival.
Both the analytical expression and the data analysis give a
revival time c1tr/N ∼ 0.735. Since the scaling of the revival
time scale turns out to be c1tr ∼ N , this value can be obtained
for all sizes for the parameters depicted in Fig. 11. Also note
that the linearly growing recurrence time is well known in
the literature [57]. The small peaks between the collapse and
revivals seen in Fig. 11(a) are the small revivals contributed by
the second off-diagonal terms in the overlap matrix, Fig. 12(a).
We can also predict the oscillation frequency,

tosc = 2π


m
α,α+1

, (19)

by using the nearest-neighbor energy gap at the maximum
point of the overlap distribution 
m

α,α+1. There is an another
interesting quantity that can be predicted in a collapse-revival
picture. We observe how revivals are suppressed in a very long
time scale in the inset of Fig. 11(a). This “randomizing time”
is where the initial memory of the system irreversibly gets lost.
Even though a typical randomizing time is out of experimental
reach, it is interesting to note that an isolated, unitary, and
finite-size quantum system will be eventually randomized and
hence completely thermalized at the randomizing time which
can be estimated via

trz = 2π

|
′
m+σ − 
′

m−σ | , (20)

where 
′ = 
α − 
α+1 denotes the difference between
nearest-neighbor energy gaps [Fig. 12(d)] and the rest of the
notation is the same with the previous definitions where we
use the overlap distribution for m ± σ .

In order to give a sense of these time scales, let us fix the
particle density in our condensate to 5 × 1014 cm−3. Then the
coefficient reads c1 ∼ −2π × 9 Hz, which gives a realistic col-
lapse time of ∼0.5 s and a revival time of ∼25 s for a condensate
particle number of 2 × 103. This sudden quench experiment
corresponds to a data point in Fig. 5, where ETH can explain
the match between the thermal relaxation values predicted
by the diagonal ensemble and the microcanonical ensemble.
Therefore we can conclude that there is thermalization until
the initial memory of the system comes back with a quantum
revival. Then it is important to see how the times of the collapse

(a)

(b)

FIG. 13. The sudden quench dynamics in the short time scale (a)
from qi = −3 to qf = 0.5 and (b) from qi = 4.1 to qf = 2 with insets
of long time scales for ferromagnetic condensates and N = 2 × 103

particles.

and the first revival scale with the number of particles in the
condensate. Reminding the reader of c1tc ∼ N1/2 and c1tr ∼ N

and using the estimations done for the Thomas-Fermi limit in
Ref. [38], we figure out that c1 ∼ N2/3 in one dimension, hence
tc ∼ N−1/6 and tr ∼ N1/3. Although SMA breaks down in the
large condensate limit [38] and the experiments always have
finite sizes, it is still insightful to imagine the thermodynamic
limit N → ∞. In the thermodynamic limit, a 1D spinor BEC
system has a diverging revival time and a vanishing collapse
time, which implies thermalization described by ETH for our
model.

Now let us choose a point on the map, Fig. 3, that does not
thermalize to illustrate one of the special cases. If we quench
from qi = −3 to qf = 0.5 [corresponding to the parameters
in Figs. 2(a) and 2(c)], we observe the dynamical behavior in
Fig. 13(a). There is a well-defined collapse whose time scale
can be predicted with the collapse criterion and the system
seems to equilibrate right after the collapse. However looking
at the dynamics for a longer time [inset of Fig. 13(a)] reveals
that the revivals attempt to happen at different times resulting
in no collective recurrence for a finite system. This is due to the
broad shape of the EON window [Fig. 2(a)]. One can calculate
the so-called effective dimension of the system [58,59] under
this specific quench, which is the participation ratio of the
initial state in the eigenstate reference basis instead of the Fock
basis,

de =
(∑

α

|cα|4
)−1

, (21)
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CEREN B. DAĞ, SHENG-TAO WANG, AND L.-M. DUAN PHYSICAL REVIEW A 97, 023603 (2018)

N
10 3 10 4 10 5

d
e

10 1

10 2

10 3

de,I

de,II

N
10 3 10 4 10 5

d
e
(∞

)

(a) (b)

−
d

e

10

15

20

30

FIG. 14. The effective dimension scaling for a quench (a) from
qi = −3 to qf = 0.5 (region II) (dashed red) with de ∝ N 0.57, from
qi = −3 to qf = −0.5 (region I) (solid blue) with de ∝ N 0.5, and (b)
from qi = 4.1 to qf = 2 (region III) with de = 28.3 − 36.3N−0.092

with respect to system size. The correlation coefficient is R2 = 1 for
subfigures (a) and (b). de(∞) stands for the offset value of the fitting
in (b).

where |cα|2 is the eigenstate occupation number as in Eq. (5).
The effective dimension is a measure of how broad the
EON window is. In order to determine if a quantum system
equilibrates, one needs to look at the scaling of the effective
dimension with the system size. We find a scaling of de ∝ N0.57

(R2 = 1) for this quench [Fig. 14(a)] and in fact almost the
same exponent for any other quench in region II of the sudden
quench map. Therefore, we argue that in the thermodynamic
limit the effective dimension diverges de → ∞ as N → ∞,
which leads the system to equilibration. For a comparison with
region I, we calculated the effective dimension of a region I
quench from qi = −3 to qf = −0.5 which is already shown
to thermalize and hence equilibrate. As seen in Fig. 14(b),
the effective dimension is found to be de ∝ N0.5 (R2 = 1)
and this scaling exponent is universal for all the quenches
in region I. Hence, the previous argument follows. If we
return to the discussion on region II dynamical behavior, the
overlap distribution (first off-diagonals in the overlap matrix)
is similar in shape with Fig. 2(a). Further computations show
that the energy gap differences between neighboring terms
in the overlap distribution are different and hence they give
rise to different revival times [see Eq. (18) and Fig. 12(d)
around the kink region] confirming the dynamical response.
Also clearly the EON for this point on the map [Fig. 2(a)] is
not narrow enough to avoid the kink nonthermal states, which
causes nonthermalization for the system. As a result, the system
only equilibrates with no collective recurrence for any finite
dimensions of the system. Also note that as we increase the
system size, the time scale of the revival attempts diverges
which leaves us with the equilibrated section seen right after
the decay. This is the behavior that we observe for region II on
the sudden quench map, Fig. 3.

The second special point on the map, Fig. 3, is a quench
from qi = 4.1 to qf = 2, which demonstrates the behavior for
region III in Fig. 3. Figure 13(b) shows oscillatory behavior
around the system’s PDE value for all times without any
collapse or revival. The overlap distribution looks like Fig. 2(b),
however, differently the first off-diagonal terms are not really
smaller than the diagonal terms (EON of the system) and in
fact the second and third off-diagonal terms in the overlap
matrix Aαβ substantially contribute to the dynamics, too.
This is in fact why we observe large fluctuations [Eq. (16)].

The scaling of the effective dimension for this quench turns
out to be de ∝ 28.3 − 36.3N−0.092 (R2 = 1), which implies
that in thermodynamic limit de → 28.3 while N → ∞ and
the effective dimension is going to saturate at a constant
value [Fig. 14(b)]. This will lead to nonequilibration since
the effective dimension will be so much smaller than the
dimension of the Hilbert space, de 
 dH = ∞. We note that
all quenches in region III show a universal scaling exponent
with slightly different scaling parameters. As a final remark,
the EON window is narrow enough to coincide only with the
nonthermal kink states implying that the PDE of the system is
not the thermal prediction.

V. CONCLUSIONS AND DISCUSSION

The spinor BEC model with SMA has an eigenstate ex-
pectation value spectrum for the observable 〈N0〉 (the number
of particles with the spin-0 component in the condensate)
that shows thermalization in the context of the eigenstate
thermalization hypothesis in the weak form when the quadratic
Zeeman term is |q| < 4 due to the “rare” nonthermal states
and in the strong form, otherwise. We adopted widely used
ETH indicators to obtain our results, e.g., support, ETH noise
(fluctuations), maximum divergence from the microcanonical
prediction for an eigenstate in a fixed energy interval, and the
EEV differences. We studied the effect of these nonthermal
states in the spectrum by driving the system out of equilibrium
via a sudden quench from the ground state of an initial Hamil-
tonian with qi to a final Hamiltonian with qf . Even though this
procedure allowed us to study certain initial conditions, we are
able to generalize the results and predict the behavior of the
system with an arbitrary initial condition. On the other hand,
such a procedure is experimentally realizable and we have
shown that it leads to a classification scheme of the system
dynamics: the sudden quench maps, Figs. 3 and 4. Sudden
quench maps give us the prediction of the diagonal ensemble
in the long-time limit or the long-time average of the dynamical
response. For a region when the system does not equilibrate
(e.g. region III), the value on the map is the average of the
response.

We observed that ETH is satisfied in region I with well-
defined collapse and revivals where the revival time scale is
out of reach for realistic condensate sizes. For region II, the
dynamics equilibrate around a nonthermal value right after a
collapse (shown via the scaling of effective dimension) due
to the effect of nonthermal rare states in the spectrum. Even
though dynamics at region II shows attempts for a quantum
revival, not all the oscillating terms become correlated at the
same time, implying the lack of a clear quantum revival. We
interpreted the thermalization seen for region I as weak ETH,
because even though the initial state does not overlap with
the rare nonthermal states (kink region), these states still exist
in the spectrum, even in the thermodynamic limit. Therefore,
clearly not all initial states are able to thermalize the system.
In fact, region II is an example of these cases. However, for the
Hamiltonians with |q| > 4, the kink region does not exist in the
spectrum even for finite-size condensates. Thus, we conclude
that ETH holds in the strong sense for this set of Hamiltonians.

The system for region III does not equilibrate or show any
collapse-revival phenomena and instead oscillates, because
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the effective dimension saturates at a finite value whereas
the Hilbert space dimension diverges in the thermodynamic
limit and the main contribution to the dynamics comes from
nonthermal states which also have low participation ratio
values in the Fock basis. We explicitly showed that the thermal
and nonthermal states in the spectrum have high and low PR
values with system-size scaling exponents of ∼0.9 and ∼0.2,
respectively. In the end, thermalization seems to be linked to
the localization properties of the eigenstates. In region IV,
the system thermalizes with very small amplitude collapse
and revivals either at 0 or 1. The initial state is already in
almost equilibrium with the quench Hamiltonian, leading to
almost-no nonequilibrium evolution for the system to pursue.
For the antiferromagnetic sudden quench map, Fig. 4, we
always observe only regions III and IV given that the initial
state is a ground state of an antiferromagnetic Hamiltonian.
Finally, we note that the region around qf ∼ 0 on both sudden
quench maps is special in terms of how the thermalization
value is independent of the initial state chosen. This behavior is
expected, because almost all of the eigenstates in the spectrum
contribute to the observable expectation value in the same
amount regardless of the system size.

Interpretation of sudden quench maps as nonequilibrium
phase diagrams and the transitions between regions as the
dynamical phase transitions seems possible given that these
dynamical transition points originate from the equilibrium
quantum phase transitions of the system. We leave the question
if these transitions can be related to dynamical quantum phase
transitions (DQPTs) [60] as an investigation for future.

Spinor Bose-Einstein condensates are relatively more con-
venient to experiment with [39,43,46–48] and numerically less
costly (when SMA is applied), compared to more popular
models such as the Bose-Hubbard model or Ising models. Here,
we showed that spinor BECs can also be used as a test bench
to test the ideas on the thermalization of isolated quantum
systems.
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APPENDIX A: MICROCANONICAL WINDOW
SELECTION

The microcanonical ensemble (MC) prediction should not
depend on the size of the energy window. This constraint
prevents us from calculating the MC prediction for the cases
where the kink structure exists in the spectrum and the initial
state is chosen in such a way that it overlaps with the kink. See
Figs. 5 and 6 for these regions where the MC energy interval
cannot be well defined. This result is consistent with the
condition Eq. (8) which does not hold for the aforementioned
cases above. However, the typical eigenstates of a spinor BEC
system are thermal with high PR values and therefore we can
compare the prediction of the diagonal ensemble (PDE) (or
the long-time average of the dynamical response) with the
MC prediction for almost any initial state. For these cases,
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FIG. 15. The microcanonical ensemble thermal prediction with
respect to different energy intervals for [Eo − δE,Eo] (red dashed),
[Eo − δE,Eo + δE] (blue solid), and [Eo,Eo + δE] (black dotted)
when a sudden quench is applied from qi = −3 to qf = −0.5 for a
condensate size of N = 104.

we calculate the mean energy of the system according to

Eo =
∑

α

|Cα|2Eα, (A1)

where Eα is the energy associated with each eigenstate. Keep-
ing in mind that the energy window should be much smaller
than the mean energy δE 
 Eo, we look for the threshold
window size δEth that starts to affect the MC prediction. Then
any δE < δEth gives a well-defined MC energy window. We
also compare three different possibilities for the window size
as [Eo − δE,Eo], [Eo − δE,Eo + δE], and [Eo,Eo + δE].
Figure 15 shows an example of this procedure.

APPENDIX B: MAPPING OF A SPINOR HAMILTONIAN
ONTO A SINGLE QUANTUM-PARTICLE

HOPPING MODEL

Here we show how the parameters of the single quantum-
particle model [Eq. (13)] depend on the sites of the lattice. Upon
comparing with the spinor Hamiltonian Eq. (4), we observe that
the Zeeman field strength q modifies only the diagonal terms
and hence the onsite potential terms η. Therefore, the single-
particle Hamiltonian family that can produce the dynamics in
this paper consists of only different onsite potential configura-
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FIG. 16. (a) The hopping parameter J for the mapped single-
particle model, (b) the onsite potential parameter η for a condensate
model with Zeeman field strength q = 4.5 (blue lower curve), q =
−0.5 (black middle curve), and q = −4.5 (red upper curve) with
respect to site position i for a condensate of size N = 104.
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tions. Figure 16(a) shows the hopping coefficients with respect
to single-particle lattice positions. This functional dependence
of J onto the site positions is fixed for each spin-1 BEC
Hamiltonian. Figure 16(b) shows different onsite potential
configurations depending on the Zeeman field strength. The

most important observation is that onsite potentials for all cases
are not random; instead they are engineered potentials with
respect to site positions. This property breaks the localization
of the single-particle hopping model and hence we observe the
thermalization of an observable that is nonlocal for the model.
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