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Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate
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For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the
dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper,
we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any
of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a
dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the
quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit)
since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally
suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach
is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally
accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test
beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the
immiscibility critical point, finding good agreement with our numerics.
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I. INTRODUCTION

Quantum fluctuations are ubiquitous in nature, lying at
the heart of a wide variety of physical phenomena ranging
from, for example, the van der Waals force and the Casimir
effect, through to Hawking radiation of black holes and the
theory of cosmic inflation, providing the initial seed for
the large-scale structure of the universe today. Despite their
importance, quantum fluctuations are notoriously difficult to
describe theoretically and many important questions remain
unanswered [1,2].

Focusing on quantum fluids with short-range interactions,
the role of quantum fluctuations becomes important in several
qualitatively distinct regimes. Among the most dramatic of
these are the one-dimensional systems, for which quantum
fluctuations are so large that long-range order is destroyed
[3,4]. Another well-known regime is that of high density (and
strong interactions) where, for example, in the superfluid phase
of liquid 4He, quantum fluctuations cause a depletion of the un-
derlying Bose-Einstein condensate (BEC) of around 90% [5].

Dilute quantum gases have accelerated quantum-fluctuation
research in recent years, offering a clean and highly control-
lable test bed in which nearly all aspects are tunable, such as the
interaction strength, confinement, mass, and particle number
[5,6]. This has allowed a series of innovative experiments to
probe the emergence of quantum fluctuations by approaching
the high-density regime from the dilute limit [7–15]. More
recently, experimental groups were able to create dilute, self-
bound droplets with liquid properties using dipolar [16,17]
and two-component condensates [18,19]. Remarkably, these
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are stabilized against collapse by quantum fluctuations thanks
to an almost complete cancellation of the various mean-field
contributions [20–24].

Quantum fluctuations can also be important for the regime
of very small particle number N , typically when N ∼ 10. Sev-
eral groups have proposed using ultradilute quantum gases to
investigate these in different ways, including vortex nucleation
in slowly rotating traps [25,26]; the transition between Rabi
oscillation and self-trapped regimes in double-well potentials
[27]; the generation of macroscopic state superpositions in
rotating ring superlattices [28]; as well as few-boson systems
in one dimension [29,30]. Furthermore, the enhancement
of quantum fluctuations near the superfluid-to-Mott-insulator
phase transition occurs for small atom number per lattice site
[31,32].

In this paper, we propose an alternative regime for enhanc-
ing quantum fluctuations that does not require low dimension-
ality, high density, strong interactions, or small N . Our scheme
instead relies on the engineering of effectively attractive
interactions for the spin excitations of two-component (binary)
BECs in the ground state, while the actual intracomponent and
intercomponent contact interactions remain repulsive. By spin
excitations, we mean the out-of-phase excitations of the two
components. The interactions are effectively attractive in the
sense that spin fluctuations act to decrease the interaction en-
ergy. Contrary to the case of true attractive contact interactions
[33,34], the proposed regime is not vulnerable to collapse of
the underlying BEC.

Numerous groups have experimentally realized binary
BECs by combining different elements [35–40], isotopes
[41–43], hyperfine states [44–47], and even different spin states
[48]. There has also been considerable theoretical attention,
e.g.. see [49–62]. In the thermodynamic (TD) limit, a binary
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condensate is miscible for small intercomponent scattering
length a12, up until a

c,TD
12 ≡ √

a11a22, above which it phase
separates and becomes immiscible.1 Interestingly, at finite
temperature (T ), long-wavelength spin fluctuations tend to
diverge on approach to the immiscibility phase transition, while
at T = 0 they do not [63,64]. In fact, they instead approach
the noninteracting, quantum shot-noise limit [65,66]. This
occurs because at the transition a

c,TD
12 the interactions have no

preference for miscibility over immiscibility, and so the spin
fluctuations behave as if the BEC was noninteracting.

We demonstrate that the situation changes dramatically,
however, if one enters the regime in which quantum pressure
becomes important. Here, the critical point ac

12 is shifted
higher than the thermodynamic-limit prediction, i.e., ac

12 >

a
c,TD
12 , thus opening a gap [67,68]. For such a system, if the

intercomponent scattering length lies within this gap, i.e.,
a

c,TD
12 < a12 < ac

12, then quantum spin excitations experience
an effective attractive interaction, in the sense that they act
to decrease the interaction energy. We show that the resulting
spin fluctuations are then greatly enhanced. An intuitive picture
for the physics at play: the trap pins the two components
together, forcing miscibility of the ground-state solution within
the regime where the interactions would otherwise prefer
immiscibility. Quantum spin fluctuations are then enhanced
as a reward for lowering the interaction energy.

By numerically solving the Gross-Pitaevskii equations
(GPE) and Bogoliubov–de Gennes (BdG) equations, we
demonstrate that such quantum spin fluctuations should be
experimentally observable via either spin or single-component
Bragg spectroscopy. The advantage of Bragg spectroscopy is
that thermal contributions cancel, to first order [69,70], result-
ing in the observation of the quantum fluctuations. Moreover,
we develop a variational model and use this to analytically
predict the shift of the critical point, providing a simple
means for finding suitable regimes of enhanced quantum spin
fluctuations. We find good agreement between the predictions
of the variational model and the numerical results.

.

II. FORMALISM

A. System and parameters

We investigate a binary condensate for which interspecies
interconversion is prohibited and the populations are fixed.
The trapping potential is harmonic V (x) = m(ω2

xx
2 + ω2

yy
2 +

ω2
zz

2)/2, where ωj represents the trapping frequencies and m

is the mass, which we take to be the same for both components.
We consider a cylindrically symmetric trap ωx = ωy ≡ ωρ

in the quasi-two-dimensional (quasi-2D) regime ωz � ωρ ,
where the z direction is well described by the harmonic
oscillator ground state. Scattering is still three dimensional, i.e.,
aαβ � az, where aαβ is the s-wave scattering length between
components α and β, and az = √

h̄/mωz. From here on we
work with the planar coordinate ρ = {x,y}, and results will be
given in terms of the radial length aρ = √

h̄/mωρ .

1We have assumed that the particles of both components have the
same mass.

The solutions for each component ψα(ρ) (where α = {1,2})
are obtained by solving the coupled GPEs [49,50,71]⎡

⎣Hsp(ρ) + h̄2

m

∑
β

gαβnβ(ρ) − μα

⎤
⎦ψα(ρ) = 0, (1)

where the condensate densities nα = |ψα(ρ)|2 are individually
unit normalized, μα are the corresponding chemical potentials,
and the single-particle Hamiltonian is Hsp(ρ) = −h̄2∇2/2m +
V (ρ,z = 0). The dimensionless interactions are described by
gαβ = Nβ

√
8πaαβ/az, where Nβ is the number of atoms in

component β. In this work, we restrict our attention to balanced
populations N1 = N2 ≡ N/2 and intracomponent interactions
g11 = g22 ≡ g. However, more general mixtures, along with a
physical example, are discussed in Sec. IV.

B. Variational model

In addition to numerically solving the GPEs, we derive ana-
lytical predictions for the stationary-state solutions, including
a prediction for the miscible-to-immiscible phase transition.
To achieve this, motivated by the one-dimensional work of
[67], we implement a chirped Gaussian ansatz (superscript V)
to approximate the wave functions

ψV
α (ρ) = A exp

[−(x ∓ B)2 − y2

2W 2

]
exp[i(C±Dx + Ex2)],

(2)

where variational parameters describe the amplitude A, com-
ponent separation 2B, phase C, wave number D, chirp E, and
width W . The phase is a product of the chemical potential and
time, i.e., C = −μV

α t/h̄.
As detailed in Appendix A, we use the Euler-Lagrange

equations to derive equations of motion for the ansatz pa-
rameters. We then go on to derive analytical stationary-state
predictions for the density nV

α = |ψV
α |2 in the miscible regime

[Eqs. (A14)–(A16)] and a set of transcendental equations for
the immiscible regime [Eqs. (A17)–(A20)], both of which we
will compare to our numerical results. Finally, the variational
prediction for the critical value of the intercomponent inter-
action strength, above which the system becomes immiscible,
takes the form

g
c,V
12 = g + 2π. (3)

The thermodynamic-limit result g
c,TD
12 = √

g11g22 = g is re-
covered for large particle number or intracomponent scattering
length (recall that gαβ = Nβ

√
8πaαβ/az).

C. Two-component structure factor

Bragg spectroscopy furnishes a means by which to se-
lectively probe the T = 0 component of the structure factor.
Naturally, this provides a useful avenue for the study of quan-
tum fluctuations by seeing through the thermal fluctuations.
More specifically, Bragg spectroscopy measures the imaginary
part of the response function and this relates to the dynamic
structure factor (which will be defined shortly) as

Im[χ (kρ,ω)] = −π

h̄
[S(kρ,ω) − S(−kρ, − ω)], (4)
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where the finite-temperature contributions cancel to leading
order [69,70]. Several groups have proposed schemes for the
implementation of spin (and density) Bragg spectroscopy in
binary condensates [72–75]. The general idea is to engineer a
different coupling of the Bragg lasers to each component. This
has been experimentally realized recently by the Vale group
[47].

We find the excitations of the BEC by linearizing about
the ground state using a small parameter η. This amounts to
inserting the time-dependent ansatz


α(ρ) = {ψα(ρ) + η[uα(ρ)e−iωt + v∗
α(ρ)eiω∗t ]}e−iμαt/h̄ (5)

into the GPE [Eq. (1)] and solving the resulting BdG equa-
tions. Further details are provided in Appendix B (also see
Refs. [76–79]).

The T = 0 component of the density SD [80] and spin
SS [81,82] structure factors are calculated from the BdG
excitations, with each excitation labeled with superscript κ .
Explicitly, we evaluate

S{D,S}(kρ,ω) =
∑

κ

∣∣∣∣
∫

d2ρ eikρ ·ρ{[uκ
1(ρ) + vκ

1 (ρ)
]
ψ1(ρ)

± [
uκ

2(ρ) + vκ
2 (ρ)

]
ψ2(ρ)

}∣∣∣∣
2

δ(ω − ωκ ), (6)

where the + (−) indicates SD (SS ), ωκ = εκ/h̄ (for BdG
energy εκ ), and we have used the planar momentum coordinate
kρ = {kx,ky}. The corresponding static structure factors relate
as S{D,S}(kρ) = ∫

dω S{D,S}(kρ,ω).

III. RESULTS

A. Immiscibility phase transition

In this section we investigate how the immiscible critical
value gc

12 shifts to higher values than the thermodynamic-limit
prediction g

c,TD
12 = g. As will be shown in Sec. III B, when the

intercomponent interaction strength lies within the resulting
gap, i.e., gc,TD

12 < g12 < gc
12, then the quantum spin fluctuations

become greatly enhanced.
In Fig. 1, we compare our numerical and variational pre-

dictions for the density, using two intracomponent coupling
strengths g = {4,500} and three intercomponent couplings
g12/g

c
12 = (a) 0.9, (b) 1.1, and (c) 1.5.2 For the stronger

coupling, g = 500, the density is represented by the flatter,
broader distribution in each subplot. In the miscible phase
[Fig. 1(a)], the average density of both components is identical,
while in the immiscible phase, Figs. 1(b) and 1(c) show that
the two components phase separate, forming a domain wall
[52], with a sharper separation for g = 500. As can be seen
for g = 4, the variational prediction agrees well with the full
numerics for weak interactions, which is the regime of primary
interest to this work. For larger interactions, e.g., g = 500, the
system enters the Thomas-Fermi regime where the Gaussian
ansatz is less appropriate: this is most apparent in the top-down
views in the immiscible phase [Figs. 1(b2) and 1(c2)]. While in

2Note that for the numerical results we numerically determine gc
12,

whereas for the variational results we take gc
12 = g

c,V
12 [Eq. (3)].
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FIG. 1. Density profiles for (a) the miscible phase for g12/g
c
12 =

0.9, and the immiscible phase for (b) g12/g
c
12 = 1.1 and (c) g12/g

c
12 =

1.5, where gc
12 is the immiscibility critical point. The first component

(α = 1) is shown in red (gray) while the second component (α = 2) is
black. Column 1 offers a side view (y = 0) while column 2 consists
of top-down views, each exhibiting a single contour at 1/e of the
peak density. The same two intracomponent interaction strengths are
compared in all panels, i.e., g = {4,500}. The variational predictions
nV

α , shown as thin blue lines, are only plotted for the second component
to avoid cluttering. The mixture is balanced, i.e., g11 = g22 ≡ g and
N1 = N2, where gαβ = Nβ

√
8πaαβ/az, with Nβ being the number of

atoms in component β, aαβ is the s-wave scattering length between
components α and β, and a{ρ,z} = √

h̄/mω{ρ,z}.

this regime a variational formulation based on Thomas-Fermi
clouds may provide a better approximation, we will not pursue
this avenue here.

To better characterize the onset of immiscibility, in Fig. 2
we plot the component separation as a function of g12. Here,
it can be seen that the separation begins at a well-defined
critical value gc

12 that increases with decreasing g. Overall,
there is good qualitative agreement of the variational model
[blue (gray)] with the numerical results (black) for all cases.
Deep within the immiscible phase, g12 � gc

12, and for small g,
the variational model does a particularly good job. However, as
previously discussed, the quantitative agreement for the spatial
condensate profiles deteriorates for large coupling (g = 500)
where the variational model is unable to capture the plateau
seen for the numerical solution. This can be understood by
noting from Figs. 1(b) and 1(c) that the components are better
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FIG. 2. Component separation (indicative of immiscibility) ver-
sus intercomponent coupling strength g12 for various intracomponent
couplings: g = 4 (dashed), g = 8 (solid), and g = 500 (dotted). Full
numerical results are displayed in black while the variational results
are in blue (gray). The position of componentα is calculated according
to 〈xα〉 = ∫

x nα(ρ)dρ, where we assume that the components always
separate along the x direction. For the variational model, |〈x2〉 −
〈x1〉| = 2B.

able to avoid each other for the numerical solution, making it
less sensitive to the precise value of g12.

The immiscibility boundary is summarized by a phase
diagram in Fig. 3, with the numerical result in black and
the variational one in blue (gray). For large g, the boundary
levels off to the thermodynamic-limit prediction g

c,TD
12 /g = 1.

At the other extreme, where g becomes small, the size of
the miscible region grows as the role of quantum pressure
increases and acts to stabilize the mixed phase. The small-g
regime is precisely where the variational model is appropriate.
This explains why it captures the increasing trend of gc

12/g,
yet the curve is qualitatively accurate throughout the region of
parameters used.

B. Enhanced quantum spin fluctuations

As we saw in Fig. 3, the regime of small intracomponent
interactions shifts the immiscibility phase transition higher

than the thermodynamic-limit prediction, i.e., gc
12 > g

c,TD
12 =

g. This opens up a region of forced miscibility, g < g12 <

gc
12, within which quantum spin fluctuations are greatly en-

hanced thanks to an effective attractive interaction.3 Bragg
spectroscopy provides an especially useful tool for observing
quantum fluctuations since it provides access to the T = 0
component of the structure factor, even at finite T . Thus, in this
section, we numerically calculate the T = 0 spin and density
structure factors to show how the enhanced quantum fluctua-
tions can be studied in experimentally accessible settings.

3The interactions are effectively attractive in the sense that spin
fluctuations act to decrease the interaction energy.
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FIG. 3. Phase diagram for the immiscibility boundary. The critical
intercomponent interaction strength gc

12 is plotted as a function of
the intracomponent interaction strength g, where the miscible phase
exists in the lower region. Full numerical results are in black, while the
analytical prediction [Eq. (3)] is blue (gray). The vertical dashed lines
represent the three interaction strengths that are the focus throughout
the paper, i.e., g = {4,8,500}. Inset: magnification of the region
where the immiscibility boundary begins to significantly rise above
the thermodynamic-limit result g

c,TD
12 /g = 1.

1. Dynamic structure factor

For reference, we first consider a BEC in the Thomas-Fermi
regime g � 1, where the immiscibility transition occurs near
the thermodynamic-limit prediction gc

12 ≈ g, and the effective
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FIG. 4. Spin SS (kx,ky = 0,ω) and density SD(kx,ky = 0,ω) dy-
namic structure factor for the case of (a), (b) uncoupled condensates
(g12 = 0), and (c), (d) balanced intercomponent and intracomponent
interactions (g12/g = 1), where g = 500.
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FIG. 5. Bogoliubov–de Gennes energies versus intercomponent interaction strength (column 1), and spin (column 2) and density (column
3) static structure factors versus momentum for the miscible phase. The nonlinearities considered are (a) g = 500, (b) 8, and (c) 4. The vertical
lines in column 1 correspond, with the same line styles, to the values of g12 plotted in columns 2 and 3. The structure factors are normalized by
the total condensate number N = N1 + N2, where N1 = N2. In the first column, the immiscibility transition occurs where an excitation energy
softens to zero. The shading schematically indicates the region of enhanced quantum fluctuations.

interactions experienced by the spin excitations are always
repulsive. When the two components are uncoupled, g12 = 0,
Figs. 4(a) and 4(b) show that the spin (left) and density (right)
dynamic structure factors are identical, as expected. On the
other hand, a remarkable phenomenon emerges at the phase
transition, where g12 = g. While here the density structure
factor [Fig. 4(d)] is much the same as it was for g12 = 0, apart
from a slight hardening of the phonon excitations, the spin
structure factor [Fig. 4(c)] is qualitatively different. In fact,
the spin dispersion relation becomes parabolic. This happens
because the spin excitations become effectively noninteracting
when g12 = g since there is no preference for miscibility over
immiscibility.

2. BdG energies and the shifted phase transition

We now extend the discussion to beyond the Thomas-
Fermi regime to include small g, where spin excitations may
now experience an effective attractive interaction. The lowest
BdG energies as a function of g12 are plotted in the first
column of Fig. 5, for g = {500,8,4}, from top to bottom.
The phase transition can be identified as where the energy
of at least one excitation softens to zero. This occurs at the
same point when approaching from either side, consistent
with the second-order nature of the phase transition. While

in the Thomas-Fermi regime [Fig. 5(a1)] the transition occurs
at gc

12/g ≈ 1, a considerable shift to gc
12/g > 1 can be seen

for small g in Figs. 5(b1) and 5(c1). The region of effective
attractive interactions and enhanced quantum spin fluctuations
g < g12 < gc

12 is schematically shaded with blue (darker in
gray scale) color.

3. Static structure factor: Enhanced quantum fluctuations

Before proceeding, it is worth discussing the relationship
between the structure factor and the sign of the interaction
for a single-component, uniform system. Consider the Bijl-
Feynman formula S(k) = ε0(k)/εB(k), where ε0 is the nonin-
teracting dispersion relation and εB is the BdG energy [69]. If
an excitation with some k experiences an effective attractive
interaction, then the energy lies below its noninteracting
counterpart, thus lifting S(k) above unity as a result of atom
bunching with respect to the noninteracting limit.

We present the numerical results for the spin (Fig. 5, column
2) and density (Fig. 5, column 3) static structure factors,
restricting our attention to the miscible phase. Consistent with
the energy results of the first column, each row in Fig. 5
considers one of g = {500,8,4}, from top to bottom. The
different curves are for various g12 and the line styles are
chosen to match (within each row) the values marked by
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vertical lines in column 1. As a benchmark, consider the
uncoupled case g12 = 0, indicated by the green dashed lines.
Here, as expected, the spin SS and density SD structure factors
are identical for a given g. Increasing g12 from zero has the
opposite effect on SD as it does on SS . The density structure
factor exhibits a reduction, indicating a further suppression
of the density fluctuations and an increase of the overall
effective interaction. The spin structure factor, on the other
hand, markedly increases with increasing g12, signaling an
increase of the spin fluctuations and a reduction of the effective
interaction. In fact, once the intracomponent interaction has
reached g12 = g (red solid line), SS becomes a flat line at
unity for all three values of g. This indicates that the spin
fluctuations are in the shot-noise regime and that the effective
interactions have vanished (recall the Bijl-Feynman formula),
as we already saw in Fig. 4(c) for g12 = g. Note that the dip
to zero at small momentum is due to the finite size of the
system. For g = {8,4}, a remarkable thing happens since we
can have g12/g > 1 while still being in the miscible phase. In
this special regime [see shading in Figs. 5(b1) and 5(c1)] the
effective interaction becomes attractive and spin fluctuations
cause bunching with respect to the noninteracting limit, as
indicated by the large peak of SS in Figs. 5(b2) and 5(c2)
(solid black lines). This constitutes an important result of the
paper.

It is worth noting that even though quantum fluctuations are
large, the condensate depletion need not be, unless of course
the system is very close to the immiscibility transition. This
can be understood by the following. When interactions are
effectively repulsive for a given excitation, the vκ

α [see Eq. (6)]
is approximately equal to uκ

α , but with opposite sign. The
ensuing cancellation within Eq. (6) results in a suppressed
structure factor, implying antibunching with respect to the
noninteracting limit. For attractive interactions, on the other
hand, both vi and ui have the same sign, resulting in enhanced
fluctuations (bunching). This sign reversal of vi is reminiscent
of the weakly interacting dipolar roton [83], for which the
effective interaction is momentum dependent, switching from
repulsive to attractive near the roton wavelength [84,85].

4. Single-component Bragg spectroscopy

While spin Bragg spectroscopy should provide the most-
direct signal of quantum spin fluctuations, this may not always
be the easiest option in experiments. We now demonstrate
that it is also possible to study quantum spin fluctuations with
single-component Bragg spectroscopy of a binary condensate.
The single-component Bragg spectroscopy, corresponding to
the single-component structure factor, can be calculated by
restricting the integral of Eq. (6) to the appropriate component,
giving, for example,

S1(kρ,ω)

=
∑

κ

∣∣∣∣
∫

d2ρ eikρ ·ρ[uκ
1(ρ) + vκ

1 (ρ)
]
ψ1(ρ)

∣∣∣∣
2

δ(ω − ωκ ).

(7)

The one-component static structure factor then can be ob-
tained as S1(kρ) = ∫

dω S1(kρ,ω). The spin (solid), single-
component (dotted-dashed), and density (dashed) static struc-
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FIG. 6. (a) Density SD, spin SS , and one-component static struc-
ture factor S1 for g12/g = 1.51. The horizontal dashed lines indicate
the structure factor peaks. (b) Spin and one-component static structure
factor peaks as a function of g12/g. The vertical dashed line indicates
the interaction strength considered in (a). Note that gc

12/g = 1.55 and
g = 8.

ture factors are plotted in Fig. 6(a) for g12/g = 1.51 and g = 8.
As expected, S1 provides an intermediate measure between the
spin and density structure factors; while the peak is somewhat
subdued it is still clearly visible. Figure 6(b) presents the
spin (solid) and single-component (dotted-dashed) structure
factor peaks [indicated by horizontal lines in Fig. 6(a)] as
a function of g12. Here, it can be seen that close to the
immiscibility phase transition, which is at gc

12 = 1.55, the spin
contribution dominates and S1 provides an effective measure
of the enhanced quantum spin fluctuations.

IV. EXPERIMENTAL CONSIDERATIONS

From a qualitative perspective, we expect our results to be
quite general. Binary condensates can be constructed from
a wide variety of mixtures, such as by combining different
elements, isotopes, hyperfine states, or even spin states. To
realize enhanced quantum spin fluctuations, the key ingredients
are for both components to be miscible while, at the same
time, g12 >

√
g11g22. This is possible if the immiscibility

critical point is shifted higher than the thermodynamic-limit
prediction g

c,TD
12 = √

g11g22 (recall Fig. 3). Our proposal relies
on achieving this by enhancing the role of quantum pressure.

To give a flavor for the different kinds of experimental
regimes that could realize enhanced quantum spin fluctuations,
consider 87Rb, for which a mixture can be constructed from
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the hyperfine states |F,mF 〉 = |2, − 1〉 and |1,1〉. For these,
there is a Feshbach resonance that can control the interspecies
scattering length [86–89]. Let us then take g = 8 as a rep-
resentative example for the results in this paper. Since the
intraspecies scattering lengths are a11 = a22 = 100a0, then
choosing a trap with frequencies {ωρ,ωz} = 2π × {1,10} Hz
would correspond to Nα = 1030 atoms per component.

To increase the atom number, one can consider species
with smaller scattering lengths and/or masses. Furthermore,
it is not necessary for both intraspecies scattering lengths,
or even masses, to be equal. A possible complication for
the imbalanced case, though, is that inhomogeneous trapping
potentials can cause the binary mixture to become immiscible
even when g12 <

√
g11g22 [90], hence shifting gc

12 in the wrong
direction. Fortunately, this negative gc

12 shift can be reversed by
imbalancing the atom numbers in favor of the component with
the strongest interactions. In any case, the enhanced quantum
pressure in the regime of interest will act to raise gc

12 as
required.

Although the flattened trap geometry considered in this
paper has some advantages, such as for in situ imaging of the
fluctuations and numerical tractability, our results should be
qualitatively extendible to more spherical geometries. In fact,
loosening the trap along the tight direction should allow the
regime of enhanced quantum fluctuations to extend to larger
atom numbers.

Not only are quantum spin fluctuations enhanced on ap-
proach to the transition, but so too are thermal fluctuations
[63]. Fortunately, though, Bragg spectroscopy provides a win-
dow through which one can selectively observe the quantum
contribution, even at finite T . To appreciate this, we estimate
the temperature that would otherwise be required for quantum
fluctuations to dominate. The excitations primarily responsible
for enhanced fluctuations have energies that soften on approach
to the transition and, as can be seen in Figs. 5(b1) and 5(c1),
these typically have energies of the same order as the radial
confinement energy h̄ωρ . Again choosing ωρ = 2π × 1 Hz
means that without Bragg spectroscopy, for quantum fluctu-
ations to dominate, experiments would otherwise need to be
in the very-low-temperature regime T < 0.1 nK. Concerning
the validity of the quasi-2D approximation for the candidate
regime above, we note that for g = 8 the chemical potential
relative to that of the noninteracting ground state is μ/h̄ωz =
0.149, where μ1 = μ2 ≡ μ, thus satisfying the requirement
that μ/h̄ωz � 1.

V. CONCLUSIONS

In quantum fluids, quantum fluctuations are typically not
important unless the dimensionality is low, the density is
high, or the particle number is very low. We have proposed
an alternative scheme for enhanced quantum fluctuations that
does not require any of these conditions to be satisfied, but
instead relies on engineering an effective attractive interaction
for the spin excitations of a two-component BEC. A strength
of this approach is that the BEC is not vulnerable to dynamic
instability, as would be the case for true attractive interactions.

In addition to numerical calculations, we developed a vari-
ational model to corroborate the phase diagram of the shifted
immiscibility phase transition. Such a shift of gc

12 is crucial

for reaching the regime of enhanced quantum fluctuations.
We find excellent qualitative and good quantitative agreement
between the numerical findings and the variational model, and
the latter should be useful when scouting for experimentally
relevant regimes. We numerically performed BdG calculations
to show that the enhanced quantum spin fluctuations should
be observable using either spin or single-component Bragg
spectroscopy for two-component BECs.

This work opens a number of possibilities for future re-
search. An obvious direction is for experiments to quantita-
tively test beyond-mean-field theories. Since the size of the
quantum fluctuations is tunable, by adjusting g12 to approach
the immiscibility transition, it would be interesting to see at
which point, for example, BdG theory breaks down. It is also
an open question as to how quantum fluctuations might shift
the immiscibility transition. Moreover, the proposed regime
could be useful for quantitative comparisons between beyond-
mean-field theories with Monte Carlo simulations. Another
intriguing direction would be to go beyond BdG theory to study
the quantum critical physics on approach to the immiscibility
phase transition.

As a final note, the enhanced fluctuations should also be
directly observable via in situ imaging of the spin density
(n1 − n2). Such a scheme was theoretically investigated for
thermal spin fluctuations in Ref. [63]. However, in this case the
quantum and thermal fluctuations will both contribute, and the
temperature will need to be quite low to suppress the thermal
contribution.
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APPENDIX A: TWO-COMPONENT GAUSSIAN ANSATZ

To gain a theoretical handle on the miscibility transition
in the quasi-2D setting, we apply a chirped Gaussian ansatz
(superscript V) as an approximation to the wave functions
(similar to what was done in 1D by [67]), i.e.,

ψV
α (ρ) = A exp

[−(x ∓ B)2 − y2

2W 2

]

× exp[i(C ± Dx + Ex2)], (A1)

where A is the amplitude, B is the component separation, and
W determines the width. The phase C is related to the chemical
potential and time according to C = −μV

α t/h̄, while D and E

represent the wave number and chirp, respectively. The upper
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of ∓ and ± are for component α = 1 while the lower are for
α = 2.

We utilize the Euler-Lagrange equations

∂L
∂Pj

− d

dt

(
∂L
∂Ṗj

)
= 0, (A2)

with Pj = {A, B, C, D, E, W }. The Lagrangian takes the
form

L =
∫ ∞

−∞
(L1 + L2 + L12)d2ρ, (A3)

where

Lα = h̄2

2m

(∣∣∣∣∂ψV
α

∂x

∣∣∣∣
2

+
∣∣∣∣∂ψV

α

∂y

∣∣∣∣
2
)

(A4)

+ mω2
ρ

2
(x2 + y2)

∣∣ψV
α

∣∣2 + h̄2g

2m

∣∣ψV
α

∣∣4
(A5)

+ ih̄

2

(
ψV

α

∂ψV
α

∗

∂t
− ψV

α

∗ ∂ψV
α

∂t

)
, (A6)

and the intercomponent coupling is given by

L12 = h̄2g12

m

∣∣ψV
1

∣∣2∣∣ψV
2

∣∣2
. (A7)

Recall that we have taken the symmetric situation g11 =
g22 ≡ g (and also μ1 = μ2 ≡ μ), where gαβ = Nβ

√
8πaαβ/az

with Nβ being the number of atoms in component β, aij

is the scattering length between component α and β, and
az = √

h̄/mωz is the confinement length in the tight direction.

1. Equations of motion

For clarity, we now switch to dimensionless form: μ̃ =
μ/h̄ωρ ; t̃ = tωρ ; Ã = aρA; B̃ = B/aρ ; C̃ = C; D̃ = aρD;
Ẽ = a2

ρE; W̃ = W/aρ , where aρ = √
h̄/mωρ . Simultane-

ously solving the Euler-Lagrange equations we obtain the
equations of motion for the ansatz parameters:

dÃ

dt̃
= −2ÃẼ, (A8)

dB̃

dt̃
= D̃ + 2B̃Ẽ, (A9)

dC̃

dt̃
= B̃2

W̃ 4
− D̃2

2
− 1

W̃ 2
− B̃2

2
− 3Ã2g

4
+ Ã2B̃2g

2W̃ 2

− Ã2e−2B̃2/W̃ 2
g12

(
3

4
+ B̃4

W̃ 4

)
, (A10)

dD̃

dt̃
= B̃ − 2D̃Ẽ − 2B̃

W̃ 4
− Ã2B̃g

W̃ 2
+ 2Ã2B̃3g12

W̃ 4
e−2B̃2/W̃ 2

,

(A11)

dẼ

dt̃
= 1

W̃ 4
− 1 − 2Ẽ2 + Ã2g

2W̃ 2

+ Ã2g12

2W̃ 4
e−2B̃2/W̃ 2

(W̃ 2 − 2B̃2), (A12)

dW̃

dt̃
= 2ẼW̃ . (A13)

2. Stationary-state solutions for the miscible phase

We look for stationary-state solutions by setting the left-
hand side of the equations of motion [(A8)–(A13)] to zero,
with the exception of Eq. (A10) for which the phase continues
to evolve steadily according to the chemical potential dC̃/dt̃ =
−μ̃. For such a state, one can immediately see that the wave
number and chirp are zero, i.e., D0 = E0 = 0.

By definition, the miscible phase has B0 = 0, and solving
the resulting equations produces analytic expressions for the
equilibrium amplitude and width, respectively:

Ã2
0 = 4

3(g + g12)

(
2μ̃0 −

√
μ̃2

0 + 3
)
, (A14)

W̃ 2
0 = 1

3

(
μ̃0 +

√
μ̃2

0 + 3
)
, (A15)

where the chemical potential is

μ̃0 = 1√
8π

(3g + 3g12 + 4π )√
g + g12 + 2π

. (A16)

3. Stationary-state solutions for the immiscible phase

Finding stationary-state solutions for the immiscible phase
(B0 �= 0) is not so straightforward and the equations of motion
(A8)–(A13) reduce to a set of transcendental equations that we
solve numerically:

0 = 1

W̃ 2
0

+ 3Ã2
0g

4
+ B̃2

0

2
− B̃2

0

W̃ 4
0

− Ã2
0B̃

2
0g

2W̃ 2
0

+ Ã2
0g12e

−2B̃2
0 /W̃ 2

0

(
3

4
+ B̃4

0

W̃ 4
0

)
− μ̃0, (A17)

0 = B̃0 − 2B̃0

W̃ 4
0

− Ã2
0B̃0g

W̃ 2
0

+ 2Ã2
0B̃

3
0g12

W̃ 4
0

e−2B̃2
0 /W̃ 2

0 , (A18)

0 = 1

W̃ 4
0

+ Ã2
0g

2W̃ 2
0

− 1 + Ã2
0g12

2W̃ 4
0

e−2B̃2
0 /W̃ 2

0
(
W̃ 2

0 − 2B̃2
0

)
,

(A19)

where the chemical potential is given by

μ̃0 = πÃ2
0W̃

2
0

2

(
1

W̃ 2
0

+ Ã2
0g + B̃2

0 + W̃ 2
0

+ Ã2
0g12e

−2B̃2
0 /W̃ 2

0

)
. (A20)

4. Critical interaction strength

To find the transition point between miscible and immiscible
phases, we construct the Jacobian matrix Jjk = ∂Fj /∂Pk ,
where Fj = dPj /dt are the equations of motion given (in
dimensionless form) by Eqs. (A8)–(A13). The stationary-
state solution for the miscible phase, Eqs. (A14)–(A16), is
substituted into the Jacobian matrix and we subsequently
calculate its eigenvalues. Finding the interaction strengths
at which the appropriate eigenvalue vanishes then gives an
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analytic prediction for the critical value of g12, i.e.,

g
c,V
12 = g + 2π. (A21)

APPENDIX B: TWO-COMPONENT BOGOLIUBOV–DE
GENNES THEORY

For continuity of notation, we continue to work in the
quasi-2D regime with planar coordinates ρ = {x,y}, although
the generalization to 3D is straightforward. Recall that in the
weakly interacting limit, the condensate components ψα(ρ)
(with α = {1,2}) are computed by solving the coupled GPEs,

HGP
α ψα(ρ) ≡ [Hsp(ρ) + Cα(ρ) − μα]ψα(ρ) = 0, (B1)

with the single-particle Hamiltonian Hsp(ρ) = −h̄2∇2/2m +
V (ρ), where V (ρ) is the trap potential. The interactions are
described by

Cα(ρ) =
∑

β

∫
d2ρ ′Uαβ(ρ − ρ ′)nβ(ρ ′) (B2)

= h̄2

m

∑
β

gαβnβ(ρ), (B3)

where the condensate density nα is unit normalized∫
nα(ρ)d2ρ = ∫ |ψα(ρ)|2d2ρ = 1 and we consider the case

of contact interactions, i.e., Uαβ(ρ − ρ ′) = δ(ρ − ρ ′)h̄2gαβ/m

with gαβ = Nβ

√
8πaαβ/az and Nβ is the number of atoms in

condensate β.
Excitations are found by linearizing about the ground state.

Using the ansatz,


α(ρ) = {ψα(ρ) + η[uα(ρ)e−iωt − v∗
α(ρ)eiω∗t ]}e−iμαt/h̄,

(B4)

and keeping terms up to first order in the small parame-
ter η, results in the two-component Bogoliubov–de Gennes

equations [76–78](
HGP

α 0
0 −HGP

α

)(
uκ

α

vκ
α

)
+

∑
β=1,2

(
Xa

αβ −Xb
αβ

Xb
αβ

∗ −Xa
αβ

)(
uκ

β

vκ
β

)

= εκ

(
uκ

α

vκ
α

)
, (B5)

where the superscript index κ labels each excitation. The
condensate exchange operators act on a test function f

according to

(
Xa

αβf
)
(ρ) = ψα(ρ)

∫
d2ρ ′Uαβ(ρ − ρ ′)ψ∗

β (ρ ′)f (ρ ′)

= h̄2

m
ψα(ρ)ψ∗

β (ρ)f (ρ)gαβ, (B6)

(
Xb

αβf
)
(ρ) = ψα(ρ)

∫
d2ρ ′Uαβ(ρ − ρ ′)ψβ(ρ ′)f (ρ ′)

= h̄2

m
ψα(ρ)ψβ(ρ)f (ρ)gαβ, (B7)

(
Xb

αβ

∗
f

)
(ρ) = ψ∗

α (ρ)
∫

d2ρ ′Uαβ(ρ − ρ ′)ψ∗
β (ρ ′)f (ρ ′)

= h̄2

m
ψ∗

α (ρ)ψ∗
β (ρ)f (ρ)gαβ. (B8)

Finally, quasiparticle modes are normalized according to∑
α=1,2

∫
d2ρ

[∣∣uκ
α(ρ)

∣∣2 − ∣∣vκ
α(ρ)

∣∣2] = 1. (B9)

We note that it is important to ensure that all excitations are
orthogonal to the ground state [91]; to achieve this, we apply a
condensate projector before and after the exchange operators.
We solve Eqs. (B5) using a spectral basis of noninteracting
harmonic oscillator modes, and utilize the Gauss-Hermite
quadrature.
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