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Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems
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We study theoretically and experimentally the competing blockade and antiblockade effects induced by
spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms
provide a source of strong dipole-dipole interactions and play a crucial role in the system’s behavior. We study
this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in
which we ignore third-order and higher connected correlations. Using this approach for the case of resonant
drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental
results. We further predict that as the atomic density is increased, the Rydberg population’s dependence on Rabi
frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior
experimentally by observing this crossover at two different atomic densities. We confirm that the larger density
system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach
is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model
to the experimental observations [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016)] and find that
these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both
resonant and off-resonant drives.
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I. INTRODUCTION

Ultracold atomic systems are an ideal setting for study-
ing many-body quantum systems due to their large degree
of control and tunability. Rydberg atoms in particular are
a key ingredient in many of these systems, primarily for
their strong, long-range interactions and long lifetimes [1,2].
Because of these features, the possibilities Rydberg atoms
provide are incredibly diverse, including simulating many-
body driven-dissipative systems [3–7], simulating topological
states of matter [8,9], and applications in quantum information
[1,10,11]. One aspect of several of these systems is Rydberg
dressing [8,9,12–17], which provides a means of creating
soft-core potentials and is achieved by weakly dressing a
ground state with a Rydberg state [18–21]. However, recently it
has been found that through spontaneous decay and blackbody
radiation, nearby contaminant Rydberg states can become
populated and can drastically modify the system’s behavior
via the resultant dipole-dipole interactions [22–24]. While
Rydberg dressing has been achieved with up to 200 atoms [25],
the possible appearance of contaminant states necessitates a
form of post-selection, with far more post-selection required
to increase the strength and range of the dressed potentials or
to increase the system size. On the other hand, the manner
in which the dipole-dipole interactions arise is unique. Rather
than coherent processes (e.g., drive) leading to interactions, we
instead have a system in which a dissipative process leads to
interactions. As a result, this provides an interesting platform

for studying driven-dissipative systems in which coherent
processes both compete with and rely on dissipation, whereas
they typically only compete in most Rydberg systems.

There are two primary mechanisms which lead to the broad-
ening induced by the dipole-dipole interactions: blockade and
antiblockade. Blockading is the process in which a nominally
resonant excitation becomes off resonant due to interactions
[26], which can lead to the formation of superatoms with
collectively enhanced Rabi frequencies [18,27,28]. Comple-
mentary to this, antiblockading (also known as facilitated
resonance) is the process in which a nominally off-resonant
excitation becomes resonant due to interactions and plays an
important role in phenomena such as Rydberg aggregation
[29–31]. Both of these mechanisms play a crucial role in all
Rydberg systems, but most investigations have focused on 1/r6

diagonal van der Waals interactions. In such systems, when the
drive is resonant, blockading dominates, while when the drive
is off resonant, antiblockade often dominates. However, we
are interested in 1/r3 off-diagonal (“flip-flop”) dipole-dipole
interactions. As a result of the off-diagonal nature and angular
dependence of dipole-dipole interactions, blockading and an-
tiblockading will behave qualitatively differently than for van
der Waals interactions, with both effects competing with one
another in complicated ways. This complicates any attempt to
truncate the Hilbert space via blockading or dephasing, which
has been successful in studying Rydberg systems with diagonal
interactions [32–34].
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FIG. 1. Theoretical three-level system. The g and s states are
coupled via a classical laser with Rabi frequency � and detuning
δ, while the s and p states interact via a dipole-dipole interaction∑

i �=j σ
sp

i σ
ps

j . There are three decay processes: s → g, p → g, and
s → p, with decay rates of γs, γp, γR , respectively.

In this paper, we study the steady states of a driven-
dissipative model in which Rydberg dipole-dipole interactions
are induced via dissipation as in Refs. [22–24]. In all three
references, a ground state is driven to a Rydberg s state with
Rabi frequency � and detuning δ. Through spontaneous decay
and blackbody stimulated transitions, nearby (in principal
quantum number) contaminant p states are populated. These
p states interact strongly with subsequently driven s states
via dipole-dipole interactions, leading to strong dephasing. A
simplified model of this is illustrated in Fig. 1.

We approach this system theoretically in two different ways.
The first is by considering evolution under the full master
equation and applying a cumulant expansion approximation,
which allows for two-atom correlations but ignores higher-
order correlations. This is motivated by the presence of dissipa-
tion, which causes high-order correlations to decay faster than
low-order correlations, and allows the many-body problem to
be treated numerically. This approach has previously been used
in a variety of systems, including nonlinear optics [35], cavity
quantum electrodynamics [36,37], and other driven-dissipative
systems with similar interactions [38,39]. The second is a
set of phenomenological inhomogeneous rate equations in
which the decoherence strength for a given atom is determined
by the population and interaction strength of neighboring
contaminant states. Similar types of rate equations have been
considered previously in other Rydberg systems [23,34,40,41].

For the cumulant expansion approach, we restrict our focus
to the case of resonant drive (δ = 0), and we consider both one-
dimensional (1D) and three-dimensional (3D) systems. We find
that in spite of the angular dependence and flip-flop nature
of dipole-dipole interactions, a blockade radius interpretation
still arises. However, the many-body blockade radius is found
to be smaller than, and to behave qualitatively differently
from, the two-body blockade radius. This occurs due to an
interplay between both blockade and antiblockade effects.
Additionally, the steady-state Rydberg population exhibits
power-law decay over several orders of magnitude as a function
of interaction strength, although the decrease in population is
not as pronounced as observed experimentally in Ref. [22],
which is possibly due to the importance of higher-order

correlations and many-body effects. Finally, we observe at high
Rabi frequencies a trend away from the expected quadratic
dependence of the Rydberg population on Rabi frequency.
For higher atomic densities, this trend occurs at lower Rabi
frequencies. One reason to expect this is that at sufficiently
low Rabi frequency, the density of Rydberg atoms becomes
small and dipole-dipole interactions become irrelevant. We
verify this experimentally by studying the low Rabi frequency
behavior at two different densities. While there are still a
number of qualitative and quantitative differences with theory,
we find that the crossover occurs at lower Rabi frequencies
for higher densities as expected. Furthermore, even when the
scaling behavior is quadratic, the experimentally observed
Rydberg populations are still much smaller than expected from
single-particle physics, indicating that interactions still play an
important role in this regime.

For the rate-equation approach, we consider both resonant
(δ = 0) and off-resonant (δ �= 0) drive in 3D. While van der
Waals interactions are diagonal and can be thought of as leading
to an effective detuning, dipole-dipole interactions are off
diagonal and cannot be thought of in the same way. Therefore,
we treat them as a source of decoherence, as the contribution
to an effective detuning will depend strongly on the spatial
configuration of the atoms and cannot be simply represented
by a single value. Since stronger interactions will have a larger
effect, we make this decoherence strength proportional to the
interaction strength and population of the contaminant states.
Finally, we focus on inhomogeneous rate equations to reflect
the inherent inhomogeneity in the system due to spontaneous
decay. We find that such an approach accurately captures the
experimentally observed behavior of the Rydberg population
in Ref. [22], both on resonance and off resonance. Furthermore,
the exact details of how the decoherence is implemented
primarily affects the Rydberg population line shapes, while
the qualitative scaling behavior remains unchanged. However,
this model fails to accurately capture both the early time and
low Rabi frequency behavior. In these regimes, the number of
contaminant atoms is small and individual Rydberg atoms can
affect the system more easily, so the spatial configuration of
the atoms, and thus their correlations, play a more important
role.

The remainder of the paper is organized in the following
manner. In Sec. II, we describe our theoretical approaches to
this system, including the details of the cumulant expansion
approximation and our phenomenological inhomogeneous rate
equations. In Sec. III, we present the theoretical results of the
cumulant expansion approximation as well as an experimental
examination of the crossover from quadratic to linear depen-
dence of the Rydberg population on Rabi frequency. In Sec. IV,
we present the theoretical results of our phenomenological
inhomogeneous rate equations and compare them to the ex-
perimental results of Ref. [22]. Finally, in the Appendices, we
include several details omitted from the main text.

II. THEORETICAL MODELS

In order to study the effect of contaminant p states on
driven-dissipative Rydberg systems, we consider a three-level
system composed of states |g〉, |s〉, and |p〉, corresponding
to the ground, ns, and mp states, where n and m are the
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principal quantum numbers of the s and p Rydberg states,
respectively. Although there are generally multiple mp states
with large enough dipole matrix elements with the ns state to
affect the dynamics of the system, we consider here only one
contaminant p state for simplicity. We also assume a nonzero
magnetic field, as is the case in Refs. [22–24]. Our effective
three-level model is illustrated in Fig. 1.

The transition between |g〉 and |s〉 is driven via a classical
laser with Rabi frequency � and detuning δ, where we have
chosen to define our Rabi frequency as half of the traditional
definition to avoid carrying around extra factors of 2. Addition-
ally, the |s〉 and |p〉 states will interact according to a flip-flop
dipole-dipole interaction. While van der Waals interactions are
typically present, we ignore them here since they are weak
compared to the dipole-dipole interactions that we want to
study. Together, these result in the following Hamiltonian:

H =
∑

i

[−δσ ss
i + �

(
σ

gs

i + σ
sg

i

)] +
∑
i �=j

Vijσ
sp

i σ
ps

j , (1)

where we define operators σ
αβ

i = |α〉i〈β|i . The last sum is over
both i and j . The interaction strength between atoms i and j

is given by

Vij = C3

r3
ij

(1 − 3 cos2 θij ), (2)

where C3 defines the strength of the dipole-dipole interactions,
rij is the separation between atoms i and j , and θij is the
angle the displacement vector rij makes with the quantization
axis, which is determined by the magnetic field. While there
are dipole-dipole interactions which have a different angular
dependence, they are off resonant due to Zeeman shifts from
the magnetic field and are less relevant as a result. However,
for sufficiently strong interactions relative to the Zeeman shifts,
these interactions could potentially play a more important role.

In addition to Hamiltonian dynamics, decay also plays a
crucial role as the source of the contaminant p states. We treat
both aspects according to a master-equation description

ρ̇ = −i[H,ρ] + γsLs[ρ] + γpLp[ρ] + γRLR[ρ], (3)

where γs, γp, and γR are the decay rates from |s〉 to |g〉, |p〉
to |g〉, and |s〉 to |p〉, respectively. We ignore blackbody
radiation from the p state back to the s state since most of
the corresponding blackbody radiation goes to other s and
d states. Throughout this paper, we will take γs = γp = 1
and γR = 0.3, which provides comparable branching ratios
to Ref. [22], although this comparison is complicated by the
fact that there are many relevant p states as well as decay
to nonparticipating ground states. The associated Lindblad
operators for decay Ls , Lp, and LR are given below:

Ls[ρ] =
∑

i

[
σ

gs

i ρσ
sg

i − 1

2

{
ρ,σ ss

i

}]
, (4a)

Lp[ρ] =
∑

i

[
σ

gp

i ρσ
pg

i − 1

2

{
ρ,σ

pp

i

}]
, (4b)

LR[ρ] =
∑

i

[
σ

ps

i ρσ
sp

i − 1

2

{
ρ,σ ss

i

}]
. (4c)

We are most interested in the steady state of the above master
equation. However, this can only be determined numerically
for up to approximately 10 atoms, far from any sort of long-
range many-body behavior we are interested in. One common
approach to this problem is to use Gutzwiller mean field
theory, which ignores the effects of correlations and assumes
the steady-state density matrix is a product state [42,43]. In
Appendix A, we explain why this technique fails to capture the
behavior of our model. Instead, we will approach the problem
via a cumulant expansion approximation, which we discuss
below.

A. Cumulant expansion

Rather than truncate the hierarchy of differential equations
at the level of single-atom operators as in Gutzwiller mean
field theory, we instead use a second-order cumulant expansion
approximation, which continues one step further and allows for
correlations between pairs of atoms [35–38]. Formally, this
amounts to making the following approximation:

〈AiBjCk〉 = 〈AiBj 〉〈Ck〉 + 〈CkAi〉〈Bj 〉
+ 〈BjCk〉〈Ai〉 − 2〈Ai〉〈Bj 〉〈Ck〉, (5)

where i,j,k correspond to distinct atoms and A,B,C are
single-atom operators (σαβ in our model). This is equivalent
to setting all three-atom and higher connected correlations
to zero. The nth-order connected correlation accounts for
inherently n-body correlations which cannot be understood
in terms of lower-order correlations. This truncation reduces
a set of ∼9N equations to a set of O(N2) equations, where N

is the number of atoms. This is justified under the assumption
that two-atom correlations will dominate, which is often the
case when dissipation and decoherence are involved. However,
higher densities and interaction strengths mean a given atom
will interact with a larger number of atoms, which leads to more
relevant many-body effects, and the approximation is less valid
in this limit.

Restricting our focus to a lattice with unit filling, we
may use translational symmetry and truncate correlations past
a certain distance (where they are negligible) in order to
reduce this further to a set of O(M) equations, where M

is the number of displacement vectors considered. For 3D,
we take all correlations involving distances greater than 16
times the lattice spacing to be zero. For 1D, we choose
this distance to be 100 times the lattice spacing. Furthermore,
we take advantage of the four different reflection symmetries
present in the dipole interaction in 3D, reducing the number of
nonlinear coupled ordinary differential equations by a further
factor of 16. Finally, there is also a U(1) symmetry present
in the form of |p〉 → eiφ|p〉, which forces some terms in the
density matrix to be zero in steady state. Since we are assuming
correlations past a certain distance to be negligible, we restrict
the strength of C3 so that the interaction strengths beyond this
distance are not large compared to the decay rates. By using
these symmetries, we are able to consider large system sizes
and, correspondingly, large interaction strengths. Steady-state
behavior is found by numerically integrating the resultant
effective equations of motion using a fourth-order Runge-
Kutta method. Examples of the resultant effective nonlinear
equations of motion are given in Appendix B.
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To understand whether we can expect the cumulant expan-
sion to give reasonably accurate results, we use a quantum
trajectories approach [44–47]. We compare the results of the
approximate cumulant expansion with the exact numerics of
quantum trajectories for small system sizes. We find that both
approaches produce results that are similar in this limit, with
Rydberg populations generally differing by no more than 5%.
While the rest of this paper focuses on parameter regimes well
outside this limit, this demonstrates that this approximation
can capture the effects of the interactions. The results of this
comparison are covered in detail in Appendix C.

B. Inhomogeneous rate equations

In addition to the cumulant expansion approach on reso-
nance, we also study a set of phenomenological inhomoge-
neous rate equations. The fundamental assumption we make
in forming these rate equations is that rather than an effective
shift in the detuning of individual sites, nearby p atoms cause
dephasing proportional to their interaction strength. This is
motivated by the fact that the dipole-dipole interactions are
off diagonal, so their effect cannot be strictly understood in
terms of effective detunings. Additionally, we take these rate
equations to be spatially inhomogeneous by considering atoms
which are independently and identically distributed according
to a 3D Gaussian probability distribution. This is done to
capture the fact that in a real system, the spontaneous decay
will lead to a spatially inhomogeneous distribution of p atoms.
These assumptions lead to the following set of rate equations:

ṡi = Ri(gi − si) − (γs + γR)si, (6a)

ṗi = γRsi − γppi, (6b)

ġi = −Ri(gi − si) + γssi + γppi, (6c)

where the pumping rate Ri is given by

Ri = �2

δ2 + �2
i /4

�i, (7)

and the dephasing rate �i is given by

�i = γs + γR + C3

∣∣∣∣∣∣
∑
j �=i

Vijpj

∣∣∣∣∣∣. (8)

The variables si,pi,gi refer, respectively, to the s,p,g popula-
tions at site i.

One important feature of these rate equations is that the
scaling behavior of the steady-state population is generally
insensitive to the exact manner in which the interactions are
included in the dephasing rate, and several different choices
produce the observed experimental scaling. They primarily
differ in the coefficient of the linewidth and of the resonant
Rydberg population scaling as well as the resultant line shapes.
For example, Ref. [24] considers a set of homogeneous rate
equations with � = γs + γR + n3DC3p, where n3D (n1D) is
the density of atoms in 3D (1D). This model captures many
features of the width behavior, but it predicts domelike line
shapes rather than the experimentally observed Lorentzian line
shapes. Similarly, the spatial distribution of atoms in these
types of models can also affect the line shape, with a lattice
distribution often leading to more domelike line shapes in

general. Our choice of effective dephasing is the simplest
choice we have found which results in near-Lorentzian line
shapes. We compare the line shapes of these other approaches
in more detail in Appendix D.

III. CUMULANT EXPANSION RESULTS

A. Divergences

In this section, we discuss the results of the cumulant
expansion approximation, which takes third-order and higher
connected correlations to be zero. As mentioned previously,
we will set γs = γp = 1 and γR = 0.3 throughout this section,
which produces similar branching ratios to the experimental
setup in this paper and in Ref. [22].

One issue that can arise under this approximation is the
presence of unphysical divergences. Although we focus our
attention on resonance, these divergences generally occur
at intermediate detunings and Rabi frequencies. Rather than
divergences due to numerical error, these divergences appear
to be fundamental instabilities of the nonlinear differential
equations, where there is only a single, unstable steady state.
Furthermore, these divergences are less present in 1D systems,
but they are very relevant in 3D systems. The origin of these
instabilities is most likely the importance of the higher-order
correlations that we have ignored [35], although finite-size
effects could play a role as well.

In Fig. 2, we plot a diagram showing the approximate
parameter regimes where the cumulant expansion leads to a
divergence. The regions where one would expect high-order
correlations to be more important are exactly those where
the divergences are present. The vast majority of the data in
Ref. [22] are well into these divergent regions, with C3n3D/γs

often an order of magnitude larger than what we can treat
numerically. Interestingly, the outer edge of the divergent
region appears to grow approximately as δ ∝ √

C3n3D/γs . This
is exactly the experimentally observed scaling behavior of the
linewidth as a function of interaction strength, so the observed
scaling of the linewidths may be reflected in the behavior of
the divergences. As the interaction strength is increased, the
linewidth increases, expanding the region where high-order
correlations are important. Additionally, if we increase γR or
decreaseγp, the size of these divergent regions tends to increase
due to the increase in the number of p atoms relative to the
number of s atoms. Thus, if high-order correlations are the
origin of the divergences, we would expect these divergences
to grow in the same manner as the line shapes themselves,
which is exactly what we find.

In order to determine the Rydberg populations in divergent
parameter regimes, we further consider two more terms in the
master equation that represent decoherence on the |s〉 and |p〉
states:

Ls
d [ρ] = γ s

d

∑
i

[
σ ss

i ρσ ss
i − 1

2

{
ρ,σ ss

i

}]
, (9a)

Lp

d [ρ] = γ
p

d

∑
i

[
σ

pp

i ρσ
pp

i − 1

2

{
ρ,σ

pp

i

}]
, (9b)

where γ s
d and γ

p

d correspond to the strength of decoherence on
|s〉 and |p〉, respectively. We set γ s

d = γ
p

d = γd for simplicity.
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FIG. 2. Approximate divergence diagrams for cumulant expansion in 3D. (a) Divergence diagram on resonance (δ = 0). Most of the low
Rabi frequencies on resonance are convergent, although they become less stable as the interactions are increased. Sufficiently large Rabi
frequencies are also convergent, where steady-state populations begin to saturate. (b) Divergence diagram for �/γs = 0.4. A very narrow
region near resonance is convergent for sufficiently small interaction strengths. The outer edges of the divergent region grow approximately
quadratically in detuning in this parameter regime.

In terms of the differential equations themselves, this amounts
to including extra decay on the coherences but not on the
populations. When a sufficient amount of decoherence is
included, parameter regimes which were formerly divergent
become convergent. This is consistent with the understanding
that the instabilities are a result of the importance of higher-
order correlations since decoherence decreases correlations.
We focus on the cases of resonant drive because they only
require a small amount of extra decoherence to become conver-
gent. The amount of decoherence necessary for convergence
(γd/γs ≈ 0.1) is small compared to the decay rates and certainly
smaller than any potential experimental source of decoherence
which we have not included in our model.

More importantly, the effect of increasing decoherence
modifies the steady-state population in a simple way. As one
crosses from the convergent region to the divergent region,
the convergent steady state continuously becomes a divergent
steady state. This provides a way to estimate the expected
population when no decoherence is included. We achieve
this by fitting the numerics for different decoherences and

extrapolating the population at γd = 0 according to the fit.
The accuracy of this technique is illustrated in Fig. 3, where
we apply it to several choices of parameters just outside of
the divergent region. The populations we extrapolate from the
fits differ from the actual populations at γd by at most one
tenth of a percent. However, as one moves far into the diver-
gent regime, this method becomes increasingly less accurate
because stronger decoherence is necessary for convergence.

B. Blockade radius reduction

A concept that is often useful to consider in Rydberg
systems is the blockade radius [26–28]. Although in this case
we are not considering the usual 1/r6 diagonal van der Waals
interactions, the general effect of interactions suppressing
excitations will occur in a similar fashion. However, due to the
off-diagonal nature of the interactions, the effect of blockading
will be modified in a nontrivial way in many-body systems.

The blockade radius rb is often defined as the distance
at which the interaction strength is equal to the effective

γd/γs

0 0.05 0.1 0.15 0.2

σ
ss

0.0365

0.037

0.0375

0.038
(a)

Unfitted Data
Fitted Data
Quartic Fit

(b)

FIG. 3. Illustration of how fitting the Rydberg population as a function of decoherence is used to approximate the Rydberg population in
divergent regions. (a) n3DC3/γs = 1250,�/γs = 0.4. The orange line corresponds to a quartic fit of the blue circles where γd/γs > 0.1. The
purple square denotes the population for γd = 0, which is convergent for these parameters. (b) Relative error of Rydberg population extracted
from a γd/γs > 0.1 fit compared to actual Rydbeg population at γd = 0, denoted 〈σ ss〉F and 〈σ ss〉0, respectively, for several choices of parameters
just outside of the divergent region. The inset shows the parameters used in the divergence diagram on resonance, where the orange ×’s denote
the parameters used and the blue line separates the convergent and divergent regions, with the top right corresponding to the divergent region.
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FIG. 4. Correlations between s and p atoms for �/γs = 0.4. The blue dots are from the cumulant expansion while the orange line corresponds
to exact calculations for just two atoms separated a distance r . These are plotted in (a) 1D for n3

1DC3/γs = 800 and (b) 3D for n3DC3/γs = 800.

Rabi frequency V (rb) = �eff. The effective Rabi frequency
is defined self-consistently as �eff = √

Nb�, where Nb is the
number of atoms in a blockade volume. In this limit, where
only one excitation is possible within a blockade volume,
a superatom picture arises in which many atoms behave
as an effective two-level atom [28,48]. Since each Rydberg
superatom blockades a volume of Vb ∝ r3

b , the total number
of Rydberg atoms is proportional to 1/Vb. One might naively
expect to apply a similar analysis in the case of the contaminant
p states, with each producing a large blockade volume in which
s atoms can no longer be excited or deexcited. However, were
this the case, the Rydberg populations in Ref. [22] would be
much lower than observed because the long-range behavior of
the dipole-dipole interaction corresponds to blockade volumes
that are on the order of the system size, while the corresponding
populations of Rydberg states can be in the hundreds. As a
result, the size of the blockade volume due to the contaminant
states, if one exists, must be significantly smaller in order to
account for the observed Rydberg populations.

In a many-body Rydberg system, individual atoms are
affected by interactions due to multiple atoms. In the case of
diagonal van der Waals blockading, these interactions will only
serve to further blockade any given excitation. On the other
hand, in the case of off-diagonal dipole-dipole interactions,
this will not be the case, even when all matrix elements Vij

are positive. This can be understood by considering two atoms
whose dipole-dipole interaction has a strength of V . Because
the interactions are off diagonal, the corresponding eigenvalues
are ±V . As a result, if two p atoms are each blockading
an atom in the ground state, then it becomes possible for
the blockade effects to interfere and effectively cancel each
other out, allowing the ground-state atom to be excited. In
a many-body system, this becomes more complicated, with
many different atoms taking part in a given excitation.

In order to observe this effect, we will consider both 1D
systems, whose matrix elements Vij are all the same sign,
and 3D systems, whose matrix elements Vij may be positive
or negative. Additionally, the blockade radius will be defined
according to the connected correlations between s and p states:〈

σ
pp

0 σ ss
r

〉
c
= 〈

σ
pp

0 σ ss
r

〉 − 〈
σ

pp

0

〉〈
σ ss

r

〉
. (10)

These correlations describe how a p atom at the origin affects
the likelihood there is an s atom at r. When the strength
of the dipole-dipole interaction between two atoms is strong

compared to the Rabi frequency, the connected correlation will
be negative and approximately constant. A negative connected
correlation corresponds to the effect of blockade, as it indicates
a decreased likelihood for an s atom to be present near a
p atom. It is constant for large interaction strengths because
increasing the interaction strength further only serves to move
a far off-resonant excitation further away from resonance, so
the s state will be strongly blockaded in either case.

Unlike in the case of the 1D system, the 3D system can
have small interactions for short distances because of the
dipole-dipole interaction’s angular dependence. As a result,
the concept of a blockade radius is slightly modified, so we
will instead consider an effective distance

reff = r/|1 − 3 cos2 θ |1/3. (11)

Under this definition, sites which do not interact with each other
are considered as being infinitely far apart. While in reality
these nearby sites will affect each other due to higher-order
processes even if they do not interact, this effective distance
reduces the effects of the anisotropic nature of the dipole-dipole
interactions, providing a useful way to understand how the
effect of blockading is modified in many-body systems.

In Fig. 4, we plot examples of the connected correlations
for a 1D system and a 3D system. As expected, we see that
for small distances the connected correlations are negative
and approximately constant, with the 3D system showing
more fluctuations due to many-body effects and the angular
dependence of the interactions. As the distance is increased,
these correlations drop off to zero, indicating a lack of any
correlation due to negligible interaction strength. In 1D, there
is some oscillation in the correlations after r = 7. This likely
arises in a similar manner to the emergence of staggered
order in other driven-dissipative Rydberg systems, in which
the blockading of nearby atoms prevents further atoms from
being similarly blockaded [3–5]. There are also some outliers
in the 3D correlations, which likely arise via a combination
of many-body effects, the use of reff, and artifacts from the
cumulant expansion approximation. Finally, we note that the
many-body blockade radius is clearly smaller than the two-
body blockade radius in both cases, illustrating the presence
of antiblockade effects.

In order to extract an effective blockade radius from
these connected correlations, we will consider the distance or
effective distance at which the connected correlations decrease
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FIG. 5. Ratio of the many-body blockade radius rb to the two-
body blockade radius r

(2)
b as a function of interaction strength. (a) 1D

system with γd = 0 for all points. (b) 3D system with examples of
both γd = 0 and γd �= 0.

by a factor of 1/2. To reduce the effect of the fluctuations in
the 3D system, the correlation at an arbitrary effective distance
is defined by an average of the correlations from the cumulant
expansion in a range of �reff = 1, effectively smoothing out
the numerics.

In Fig. 5, we consider the ratio of the many-body blockade
radius to the two-body blockade radius r

(2)
b , which is defined

as the value of r at which the connected correlations decrease
by a factor of 1/2 relative to the short distance connected
correlations in a system of only two atoms. At small densities
and interaction strengths, this ratio approaches one, as is
expected. However, once we consider larger densities and inter-
action strengths, the ratio begins to decrease, demonstrating the
effect of the competition between blockade and antiblockade
effects.

Remarkably, the trend is qualitatively similar for both small
and large Rabi frequency, regardless of whether the system is
in 1D or 3D. Furthermore, including decoherence does not
drastically change the quantitative behavior in 3D. However,
this similarity in behavior does not appear to hold for arbitrary
�. By solving the cumulant expansion equations of motion
perturbatively in �, it can be shown that to lowest order in �,
the ratio of the many-body blockade radius to the two-body
blockade radius is one. This result reflects the fact that when
one goes to sufficiently small Rabi frequencies, the Rydberg
population becomes small, so it is rare to have two or more
nearby p atoms to give rise to many-body effects.
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FIG. 6. Steady-state s state population dependence on interaction
strength for �/γs = 0.4. (a) 1D system with best fit power-law with
exponent of −0.055. (b) 3D system with best fit power-law exponent
of −1/5.

C. Rydberg population scaling

Next, we are interested in understanding how the Rydberg
population is affected by dipole-dipole interactions. Although
the many-body blockade radius is smaller than the two-body
blockade radius at large interaction strengths, both increase
as the interaction strength is increased, so we should expect
to see a corresponding decrease in the Rydberg population.
Figure 6 illustrates the steady-state population’s dependence
on interaction strength for both 1D and 3D systems. The
population appears to decrease according to a power law with
a fitted exponent of −0.055 for 1D and −1/5 for 3D, observed
over four and two orders of magnitude, respectively. These
exponents appear to be relatively insensitive to changes in
the decay rates. For example, if we double γp in 1D, the
corresponding exponent remains close to −0.055.

Particularly in 3D, there is some deviation from purely
power-law behavior, with a faster falloff at small interaction
strengths compared to large interaction strengths. This is the
opposite of what one might normally expect for power-law
behavior. When there are no interactions, the population is
given by some constant, so we would expect a slower falloff
at small interaction strengths. Since the cumulant expansion
is more accurate for weak interactions, the fact that we do
not see this indicates that if we were to solve the full master
equation, we would probably see a faster falloff at large
interactions than what we see here. As a result, we expect
the full master equation to result in a scaling behavior much
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FIG. 7. Scaling exponent b from fit of 〈σ ss〉 = a�b for �/γs =
0.05,0.1 as a function of interaction strength. (a) 1D system. (b) 3D
system with data only up to n3DC3/γs = 200 due to finite-size effects.

closer to the experimentally observed exponent of −1/2 [22].
A likely source of this behavior is that at higher interaction
strengths, higher-order correlations become more important,
and ignoring these correlations ignores relevant blockading
effects. However, in order to confirm this hypothesis theoret-
ically, it is important to account for higher-order correlations,
which is difficult to achieve in practice.

We are also interested in understanding the population’s
dependence on the Rabi frequency, which was originally
observed to be closer to linear dependence rather than the
quadratic behavior of a noninteracting system [22]. However,
at sufficiently small Rabi frequencies, the density of s excita-
tions will be so small that interactions will become irrelevant, at
which point quadratic behavior should be restored. This can be
seen by treating the system perturbatively in �, which results in
〈σ ss〉 ≈ 4�2

(γs+γR )2 to lowest order. This is the same perturbative
result as for a noninteracting system.

We observe this effect in Fig. 7, where we find the fit of the
population for two points � = 0.05γs,0.1γs using the function
〈σ ss〉 = a�b. The value of b is essentially an approximation
of the slope on a log-log plot for � ≈ 0.05γs . As the Rabi
frequency is increased, this slope will decrease, transitioning
from quadratic behavior towards linear behavior. As the inter-
action strength is increased, this exponent decreases, indicating
that the departure from quadratic behavior is happening at
lower Rabi frequencies, allowing for a possible linear be-
havior over a large range of Rabi frequencies. Additionally,
since the Rydberg population is suppressed more for larger
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FIG. 8. Resonant pumping rate as a function of Rabi frequency
for two atomic densities, where f corresponds to the fractional
density of atoms initially in the driven ground state and f = 100%
corresponds to a density of 57 μm−3. Blue circles (red squares) are
from experimental data for f = 25% (f = 100%) and lines are from
fits of Eq. (12). The empty blue circle and red square correspond to
the fitted crossover Rabi frequency �c for each density, denoting the
crossover from quadratic to linear scaling in Rabi frequency. Error
bars represent the one standard deviation from exponential fits to
extract the pumping rates.

interactions, reaching saturation will require stronger Rabi
frequencies, expanding the possible range of linear behavior
even further. For 3D, we only consider a maximum interaction
strength of n3DC3/γs = 200. This is because past this point,
the interactions at the furthest distances we allow become
comparable to the small Rabi frequencies considered and the
numerics become less accurate. In spite of this restriction on
the range of interaction strengths we can consider, we see that
the extracted exponent decreases at a much faster rate in the
higher-dimensional system.

In order to determine whether this behavior corresponds to
a real effect or simply an artifact of the cumulant expansion
approximation, we study this change in scaling behavior
experimentally. Using the same experimental setup as in
Ref. [22], we consider the scaling behavior for two different
densities which differ by a factor of 4. In Fig. 8, we plot the
resonant pumping rate as a function of Rabi frequency for
the two different densities. The pumping rate gives the rate
at which atoms are pumped out of the relevant three-level
system of Fig. 1 once a quasi-steady state has been reached.
Further experimental details can be found in Appendix E.
This pumping rate provides a good approximation of the
steady-state population of Rydberg atoms 〈σ ss〉 ≈ R0

γ ′ , where
γ ′ is the total decay rate from the s state, including decay which
takes an atom to an undriven ground state. For both densities,
we have determined a best fit using the function

R0 =
{
a�2, � < �c

a�c(2� − �c), � � �c.
(12)

This describes a continuous, smooth function which changes
from quadratic scaling to linear scaling at a critical value of
Rabi frequency �c. While in reality the change in scaling
behavior may be more gradual, this gives a useful way of deter-
mining where the scaling behavior change occurs. We find that
�c

2π
= 31 ± 1 MHz for the higher density and �c

2π
= 55 ± 2.5
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MHz for the lower density, where the uncertainty corresponds
to one standard deviation from the fits. This clearly illustrates
that the scaling behavior changes at smaller Rabi frequencies
for higher density samples. We further note that although
the quadratic regime is visible at low Rabi frequencies, the
corresponding populations are still well below the single-
particle limit. This indicates that the quadratic behavior extends
beyond the single-particle physics considered above. While
this crossover is fairly clear in the experiment, theoretically
we see a much more gradual crossover. This could be due to
finite-size effects or van der Waals interactions, which we have
ignored in our model.

IV. RATE-EQUATION RESULTS

In this section, we will discuss the results of our phe-
nomenological rate-equation approach in Eqs. (6)–(8) with
the aim of comparing the line shapes, scaling behavior of
the resonant Rydberg population, and the scaling behavior
of the linewidths to the experimental results in Ref. [22].
Due to computational constraints, we will restrict ourselves
to considering 1080 atoms independently and identically dis-
tributed according to a 3D Gaussian probability distribution
with relative spatial dimensions of 2×4×5, which is similar
to the experimental setup. The density n3D will be taken to be
the density at the center of the distribution. Using a uniform
probability distribution gives similar results. Although we
will vary n3DC3 rather than the total number of atoms, both
approaches result in quantitatively similar behavior.

While the experiment takes place in a lattice, we consider
a random distribution to help capture the fact that at any given
time, the distribution of the p atoms themselves will be random
due to dissipation and will not fully exhibit the structure of the
lattice. Additionally, when a lattice distribution is used instead
of a random, inhomogeneous distribution, this tends to make
the resulting line shapes highly non-Lorentzian. Further details
about this may be found in Appendix D.

The existence of a steady state can be influenced by the
manner in which interactions are included in the dephasing.
For the choice we are considering here, there are some regions
in which no steady-state solution exists. At the edges of such
regions, the long-time behavior is periodic, exhibiting limit
cycles. Further into these parameter regimes, this periodic
behavior likely continues, although the time to reach the limit
cycles becomes prohibitive due to the number of atoms in
the system. However, in either case the average population
of all atoms approaches an approximate steady-state value
relatively quickly, with only small deviations from this value
as a function of time. This is illustrated in Fig. 9, where 〈σ ss〉ave

denotes the time-dependent ensemble average of the Rydberg
s population. Thus, we may take a time average of the s state
ensemble average in order to find a good approximation of the s

population. From here on out, we will write the time average of
the s state ensemble average as 〈σ ss〉 for simplicity. We find that
our phenomenological rate equations produce scaling behavior
which is remarkably similar to the experimentally observed
scaling behavior as well as very Lorentzian line shapes.

As mentioned before, the exact manner in which the
interactions are included in the decoherence can have an effect
on the behavior of the steady-state populations. For example,
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FIG. 9. Example of the time dependence of the s population
ensemble average 〈σ ss〉ave on resonance in units of γ −1

s . While neither
a steady state nor a limit cycle is reached quickly, 〈σ ss〉ave very quickly
approaches an approximate steady-state value, whose time average we
will denote by 〈σ ss〉 for simplicity.

if a homogeneous set of rate equations is used in which the
decoherence is merely proportional to n3DC3 times the average
p population, this will give reasonable scaling behavior, but it
will also result in dome-shaped line shapes which drop off
much faster than a Lorentzian. However, this homogeneous
approach ignores the importance of the spatial distribution
of the p atoms, which influences the strength and nature of
the interactions and thus the decoherence. In order to capture
this behavior, some form of inhomogeneity should be included
in the rate equations. Our choice of decoherence and atomic
distribution provides a simple way of capturing these features
and results in more accurate line shapes.

In Fig. 10, we plot the resulting line shapes for several
different Rabi frequencies. We find that aside from the sharper
behavior near resonance, the line shapes appear to be quite
Lorentzian, even at very large linewidths. Another simple
choice of decoherence we might make is �i = γs + γR +
C3

∑
j �=i |Vij |pj , which only allows decoherence from dif-

ferent sites to add constructively. The resulting line shapes
from this choice would be similar, but they would be more
Lorentzian near resonance and drop off faster than a Lorentzian
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FIG. 10. Examples of near-Lorentzian line shapes from inho-
mogeneous rate equations at n3DC3/γs = 5000 for several Rabi
frequencies. Error bars indicate standard error from five random
distributions of atoms and the lines are best-fit Lorentzians.
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FIG. 11. Resonant steady-state s population scaling as a function of Rabi frequency and interaction strength. Different points of the same
color and symbol correspond to different Rabi frequencies and error bars represent one standard deviation from the Lorentzian fits. (a) Theoretical
rate-equation results, where f = 100% corresponds to n3DC3/γs = 5000. The solid line is a linear fit with a slope of 3. (b) Experimental resonant
pumping rate results from Ref. [22] where f = 100% corresponds to n3Dβ3 = 6612. The solid line is a linear fit with a slope of 3. Note that
our definition of � differs from the reference by a factor of 2.

in the wings. Additionally, a steady state is present in all
parameter regimes, in contrast to our choice of decoherence.

In Fig. 11, we compare the resonant population scaling
behavior of the rate-equation model to the scaling behavior
observed experimentally. As before, we can relate the steady-
state Rydberg population to the pumping rate via 〈σ ss〉 ≈ R0

γ ′ ,
where γ ′ corresponds to the total decay rate from the s

state, including decay which takes the atom to an undriven
ground state. Note that β3 = ∑ |C(np)

3 |bnp/�np, where C
(np)
3

is the corresponding value of C3 for a p state times the
root-mean-squared average of the angular dependence, bnp are
the branching ratios from the driven s state to various p states,
and �np are their corresponding decay rates. This means that
n3Dβ3 will be comparable to n3DC3/γs . Because γ ′ is the same
order of magnitude as γs , we should expect similar dependence
on � and n3DC3 or n3Dβ3 up to some constant factor. This
is in fact the case, with the constant coefficient differing by
less than a factor of 2. Additionally, the change in behavior
between smaller Rabi frequencies and larger Rabi frequencies
is quantitatively similar as well, with both exhibiting a slight
jump.

In Fig. 12, we compare the linewidth scaling behavior of
our model to the scaling behavior observed experimentally. At
the lowest Rabi frequencies, the linewidth approaches 1.3γs ,
which is the bare linewidth due to γs and γR . Above these lower
Rabi frequencies, we find that the general scaling behavior is
again the same for theory and experiment, differing only by a
constant factor, which in this case is approximately 4. While
this is not as consistent as for the resonant scaling behavior,
it is remarkably consistent considering the simplicity of our
model.

Furthermore, we also consider how the scaling coefficients
change as γp and γR are varied between 0.4γs and 2γs ,
which is comparable to the range possible for 87Rb at T =
300 K. These scaling coefficients are plotted in Fig. 13. We
find that the scaling coefficient for the resonant population
and linewidth are approximately proportional to

√
γp/γR and√

γR/γp, respectively, which is consistent with the definition
of β3. This is natural since γp/γR corresponds to the ratio
of s atoms to p atoms, so a higher ratio results in stronger
dephasing in the same way that an increase in the interaction
strength results in stronger dephasing. However, if we were to
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FIG. 12. Steady-state linewidth scaling as a function of Rabi frequency and interaction strength. Different points of the same color and
symbol correspond to different Rabi frequencies and error bars represent one standard deviation from the Lorentzian fits. (a) Theoretical
rate-equation results, where f = 100% corresponds to n3DC3/γs = 5000. The solid line is a linear fit with a slope of 0.5 and y intercept of
1.3 (the bare linewidth). (b) Experimental linewidth results from Ref. [22] where f = 100% corresponds to n3Dβ3 = 6612. The solid line is a
linear fit with a slope of 1.8. Note that our definition of � differs from the reference by a factor of 2.
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FIG. 13. (a) Scaling coefficient for resonant population as a function of (γp/γR)1/2. The coefficient αr is extracted from fitting the resonant
population according to 〈σ ss〉 = αr (�/γs)/(n3DC3/γs)1/2 for fixed γR,γp , where error bars correspond to one standard deviation from the fits.
The solid line is a linear fit with a slope of 1.5. (b) Scaling coefficient for the widths as a function of (γR/γp)1/2. The coefficient αw is extracted
from fitting the widths according to �/γs = αw(�/γs)(n3DC3/γs)1/2 for fixed γR,γp , where error bars (not visible) correspond to one standard
deviation from the fits. The solid line is a linear fit with a slope of 0.7.

extend the range of possible γp and γR further, this behavior
will eventually start to break down.

While the general scaling behavior of Ref. [22] is captured
very well, there are two areas in which the rate equations fail
qualitatively. The first qualitative failure is in the transition
from quadratic to linear scaling in Rabi frequency. This model
predicts the resonant linear behavior to continue into much
smaller Rabi frequencies than observed experimentally in
Fig. 8 (theory not shown). A possible reason for this is
that at low Rabi frequencies, there are a small number of
Rydberg atoms, so that the exact details of their interactions
and correlations become more important and cannot be treated
simply as dephasing. Another possible reason is that we have
neglected van der Waals interactions, which may be more
important in this regime. The second qualitative failure is the
time required to reach steady state, which the model predicts to
be much longer than observed experimentally, as noted for the
homogeneous rate equations in Ref. [24]. This is most likely
because the exact details of the interactions and correlations
are more important when there are a small number of Rydberg
atoms. Rather than a diffuse population of p atoms slowly
increasing the excitation rate, there is initially a single p

atom which immediately brings directly into resonance many
other possible excitations, leading to highly correlated growth
dynamics.

V. CONCLUSION AND OUTLOOK

We have investigated the effect that dissipation-induced
dipole-dipole interactions have in a driven-dissipative Rydberg
system using a cumulant expansion approach and phenomeno-
logical inhomogeneous rate equations. For the cumulant ex-
pansion approach, we showed that a modified many-body
blockade radius picture arises, leading to steady-state popula-
tions which scale with the interaction strength like a power law.
Additionally, we demonstrated a trend away from quadratic
scaling in Rabi frequency at low Rabi frequencies for strong
interactions. We theoretically predicted and experimentally
observed that this transition occurs earliest for high densities.
While the cumulant expansion behaves qualitatively similar
to experimental observations, it is insufficient for quantitative

agreement. This is because in spite of the large amount of
dissipation, the strong, long-range nature of the dipole-dipole
interaction gives rise to important many-body correlations
which need to be taken into account. However, with a simple
choice of phenomenological inhomogeneous rate equations in
which decoherence is proportional to the interaction strength of
nearby p atoms, we found remarkable quantitative agreement
with the experimental results of Ref. [22], although the rate
equations fail to properly capture low Rabi frequency behavior
and early time dynamics, where the actual structure of the
correlations is particularly important.

In order to fully understand the underlying physics which
gives rise to the anomalous Rydberg broadening, further
theoretical and experimental study is necessary. While we
have gone beyond mean field theory by including second-
order connected correlations, there are other possible routes
as well, such as Keldysh field theory [49,50] or cluster mean
field approaches [51]. If one can determine which high-order
correlations are likely to be important with a reasonable degree
of accuracy, this could provide a better way to reduce the
exponential number of equations of motion while still captur-
ing the effects of high-order correlations. The success of our
phenomenological rate equations may also provide insight into
other systems involving dipole-dipole interactions or a path
towards a more rigorous derivation of similar rate equations, as
has been done for the case of diagonal interactions in Ref. [34].
Furthermore, the regimes where the rate equations performed
poorly were where the Rydberg population was smaller, so they
may be amenable to methods which take advantage of this.
This regime is also where there is likely to be an interesting
interplay between dipole-dipole interactions and van der Waals
interactions, which we have neglected here. So far, both theory
and experiment have been primarily focused on the effect of the
interactions on the total Rydberg population, so determining
the details of the many-body correlations theoretically and
experimentally remains an interesting open problem.
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APPENDIX A: GUTZWILLER MEAN FIELD THEORY

In Sec. II, we motivated our use of a cumulant expansion
approximation due to the fact that Gutzwiller mean field theory
fails to provide any insight into our model. In this Appendix, we
provide the reasons for this failure. Using an inhomogeneous
Gutzwiller mean field approximation, we assume the density
matrix has the form

ρ =
⊗

i

ρi, (A1)

which assumes there are no correlations between different
atoms [42,43]. The method is inhomogeneous in the sense that
each atom has its own density matrix, whereas in homogeneous
Gutzwiller mean field theory all atoms have the same density
matrix. This results in an effective local Hamiltonian

H eff
i = −δσ ss

i + �
(
σ

sg

i + σ
gs

i

) +
∑

j

[
Vijσ

ps

i

〈
σ

sp

j

〉 + H.c.
]
.

(A2)
Under this approximation, the interactions behave as an

effective driving term between the s and p states whose
strength and phase are determined by the 〈σ sp〉 coherences of
the surrounding atoms. This explicitly assumes a breaking of
the U(1) symmetry |p〉 → eiφ|p〉. If it is not broken, then the
system behaves as if there are no interactions. Additionally,
in the full master equation’s steady state, the ratio of s to p

atoms is fixed because the number of p atoms only changes
due to single-site decay processes. However, under the mean
field approximation, the effective drive between s and p states
will inevitably change this ratio in steady state.

If we want to keep the ratio of s to p atoms reasonably
close to the true value, the effective Rabi frequency must be
small. In this limit, we can easily solve perturbatively for the
steady-state value of 〈σ sp〉 as a function of the effective Rabi
frequency �eff = ∑

j Vij 〈σ sp

j 〉:
〈
σ

sp

i

〉 ≈ i
(〈
σ ss

V =0

〉 − 〈
σ

pp

V =0

〉)
iδ − γs+γp+γR

2

�eff, (A3)

where 〈σ ss
V =0〉 and 〈σpp

V =0〉 are the s and p populations with no
interactions. In this limit, the coherence depends linearly on
the effective Rabi frequency, which can be written as a matrix
equation 〈

σ
sp

i

〉 ≈ C
∑

j

Vij

〈
σ

sp

j

〉
, (A4)

where C is some complex constant with nonzero imaginary
part. Equation (A4) may be thought of in terms of finding
the eigenvector associated with an eigenvalue 1/C of the
matrix defined by Vij where Vii = 0. However, since Vij is
a symmetric, real matrix, it has only real eigenvalues, so 1/C

cannot be an eigenvalue and the only solution to Eq. (A4) is
〈σ sp

i 〉 = 0. Thus, the only possibility of a low effective Rabi

frequency mean field solution with nonzero coherences is one
which is not constant in time, such as a limit cycle.

In order to determine whether other nontrivial solutions are
possible, we initialize a cubic lattice of randomized density
matrices for each lattice site and evolve the system according to
the mean field equations of motion. This was done for a variety
of numerically feasible parameters, while the nearest-neighbor
interaction strength remained at least two orders of magnitude
above � and all decay rates.

In all cases, including those with large initial �eff, we found
that the 〈σ sp〉 coherences all decay to zero in steady state, in
which case the system behaves as if there are no interactions.
This would not occur if the interactions were of the form∑

i �=j

Vijσ
ss
i σ

pp

j . (A5)

Collective decay between the s and p states does result
in nonzero 〈σ sp〉 coherences in steady state, but we find
numerically that the effect of interactions when collective
decay is included is small. Furthermore, the experimental
results in Refs. [22,24] indicate that collective decay is not
the source of the observed broadening and is suppressed by
the dipole-dipole interactions. For these reasons, we do not
consider collective decay in the above mean field analysis.

APPENDIX B: CUMULANT EXPANSION
EQUATIONS OF MOTION

In this Appendix, in order to illustrate how the cumulant
expansion approximation truncates the hierarchy of differential
equations, we will present example derivations for a single-
atom expectation value 〈σ sg

i 〉 as well as a two-atom expectation
value 〈σ sp

i σ
pg

j 〉 while taking advantage of the symmetries
mentioned in Sec. II A. In the full master equation, we can
consider the evolution of the expectation value of an operator
O via ∂t 〈O〉 = Tr(ρ̇O). Thus, the corresponding differential
equations for the two operators are

∂t

〈
σ

sg

i

〉 = i�
(〈
σ

gg

i

〉 − 〈
σ ss

i

〉) + i
∑
k �=i

Vki

〈
σ

sp

k σ
pg

i

〉

− γs + γR + 2γd

2

〈
σ

sg

i

〉
, (B1)

∂t

〈
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sp

i σ
pg

j

〉 = i�
(〈
σ

gp

i σ
pg

j

〉 − 〈
σ

sp

i σ
ps

j

〉)

− γs + γR + 2γp + 3γd

2

〈
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i σ
pg

j

〉

+ i
∑
k �=i

Vki

(〈
σ

pp

i σ
sp

k σ
pg

j

〉 − 〈
σ ss

i σ
sp

k σ
pg

j

〉)

+ i
∑
k �=j

Vkj

〈
σ

sp

i σ
sg

j σ
ps

k

〉
, (B2)

where the sums are only over k. Note that some of the three-
atom operators may sometimes be two-atom operators if two
of the indices are the same, in which case no approximation is
necessary and they are treated exactly.

In the above equations of motion, only the interaction terms
couple operators involving a different number of atoms. The
driving terms and decay terms always couple to the same
sites. Additionally, since the interaction is composed of only
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two-atom terms, n-atom operators can only couple to operators
involving n or n ± 1 sites. As a result, assuming three-atom
connected correlations to be zero implies all higher-order
connected correlations are zero, truncating the hierarchy of
equations that results from the interactions.

Once we apply translational invariance, single-atom ex-
pectation values are site independent, e.g., 〈σ sg

i 〉 = 〈σ sg〉,
and two-atom expectation values depend only on their dis-
placement vector, e.g., 〈σ sp

i σ
pg

j 〉 = 〈σ sp

0 σ
pg

j−i〉. Furthermore,
the U(1) symmetry of |p〉 → |p〉eiφ implies terms like 〈σ sp

i 〉
or 〈σpg

i σ ss
j 〉 are zero in steady state. Applying the cumulant

expansion approximation, the terms in the equations of motion
due solely to the interactions become

∂t 〈σ sg〉 = · · · + i
∑
j �=0

V0j

〈
σ

sp

0 σ
pg

j

〉
, (B3)

∂t

〈
σ

sp

0 σ
pg

i

〉 = · · · + iV0i

〈
σ

pp

0 σ
sg

i

〉 + i
∑
j �=0,i

Vji

〈
σ

sp

0 σ
pg

j

〉

× (〈σpp〉 − 〈σ ss〉) + i
∑
j �=0,i

Vji

〈
σ

sp

0 σ
ps

j

〉〈σ sg〉.

(B4)

Note that there are two types of interaction terms present
above. The first involves terms whose interaction strength and
two-atom operator correspond to the same atoms, while in the
second only one index matches.

APPENDIX C: QUANTUM TRAJECTORIES

In this Appendix, we verify that the cumulant expansion
approach is a reasonable approach by comparing it to the exact
numerical approach of quantum trajectories [44–47]. However,
the quantum trajectories approach can be applied for at most 10
atoms due to computational constraints, which puts a limit on
the range of C3 we can consider if we want to keep boundary
effects to a minimum. Here, we focus on a 1D lattice of atoms
with periodic boundary conditions. To take this into account,
the interaction between two given atoms is taken to be

Vij = C3

r3
1

+ C3

r3
2

, (C1)

where r1,2 are the two smallest distances between atoms i and j .
We can consider in general a quantum master equation of

the following form:

ρ̇ = −i[H,ρ] +
∑

i

γi

(
OiρO†

i − 1

2
{O†

iOi ,ρ}
)

, (C2)

which may be rewritten in terms of an effective non-Hermitian
Hamiltonian and recycling terms

ρ̇ = −i(Heffρ − ρH
†
eff) +

∑
i

γiOiρO†
i , (C3a)

Heff = H − i

2

∑
i

γiO†
iOi . (C3b)

Rather than considering the evolution of the density matrix,
we will instead consider stochastic evolution of a normalized
state |ψ(t)〉 according to Heff. As a result of the non-Hermitian

n3
1DC3/γs
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FIG. 14. Relative error of cumulant expansion (CE) with respect
to quantum trajectories (QT). Error bars denote standard error from
quantum trajectories sampling. The total sampling time is 4500 γ −1

s .

part of the effective Hamiltonian, the norm of |ψ(t)〉 is
not conserved, and after a time dt it will have a norm of
〈ψ̃(t + dt)|ψ̃(t + dt)〉 = 1 − p. The deviation p corresponds
directly to the probability that a quantum jump has occurred
due to the Lindbladian. In the case where several possible types
of quantum jumps are possible, as is the case here, each process
is weighted according to

pi = wip, (C4a)

wi = γi〈ψ(t)|O†
iOi |ψ(t)〉∑

i γi〈ψ(t)|O†
iOi |ψ(t)〉

. (C4b)

Thus, with probability pi the new state is

|ψ(t + dt)〉 = Oi |ψ(t)〉/
√

〈O†
iOi〉, (C5)

and with probability 1 − p the new state is

|ψ(t + dt)〉 = |ψ̃(t + dt)〉/
√

1 − p. (C6)

In contrast to a density-matrix approach, there is no specific
steady state |ψ〉 which is constant in time. Instead, we extract
the corresponding steady-state density matrix by considering
time averages of |ψ〉 once it has evolved sufficiently long
to exhibit steady-state behavior. This is effectively equiva-
lent to averaging over many runs to a specific time which
is large compared to the steady-state relaxation time. In
Fig. 14, we compare the results from quantum trajectories
to the results from cumulant expansion. We see that at least
in the limit of small interaction strengths and densities,
the steady-state error due to the cumulant expansion is not
too large.

APPENDIX D: COMPARISON OF DIFFERENT
RATE-EQUATION APPROACHES

In this Appendix, we compare the different implementations
of the decoherence in the rate-equation model. In particular, we
will consider how the distribution of atoms and the summation
of the interaction terms in the decoherence affect the line shapes
and scaling behavior of the populations. The two distributions
we consider will be a Gaussian distribution, as in the main
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FIG. 15. Example line shapes for several implementations of
decoherence, where lines correspond to Lorentzian fits. (a) Lattice
implementations of the rate equations. (b) Gaussian distribution
implementation of the rate equations.

text, and a lattice distribution. The two methods of summing
the interaction terms are expressed below:

�i = γs + γR + C3

∣∣∣∣∣∣
∑
j �=i

Vijpj

∣∣∣∣∣∣, (D1a)

�i = γs + γR + C3

∑
j �=i

∣∣Vijpj

∣∣. (D1b)

The first of these two methods is used in the main text and
allows for the decoherence due to some p atoms to reduce
the decoherence due to other p atoms when the interactions
are of a different sign. The second of these two methods only
allows different sources of decoherence to add together. As a
shorthand, we will refer to the former as the subtraction method
and the latter as the addition method.

We will focus on how the different approaches affect the line
shapes of the Rydberg populations. Since the experimentally
observed line shapes are quite Lorentzian [22,24], we should
hope to reproduce this behavior as well. Example line shapes
are shown for each implementation of decoherence in Fig. 15.

In both of the lattice distribution approaches, we see that al-
though there is clear broadening evident, the population drops
off in the wings too fast to be considered Lorentzian, although
this is less extreme for the subtraction method. Additionally,
the dome line shapes of the lattice addition method are nearly
identical to the uniform approach of Ref. [24]. This occurs
because the rate equations for the internal lattice sites are all

FIG. 16. Experimental excitation and measurement scheme. The
ground-state manifold is initially populated with a fraction f in the
|g〉 = |F = 2,mF = −2〉 state and 1 − f in the |F = 2,mF = 2〉
state using three applications of microwave rapid adiabatic passage.
The |F = 2,mF = −2〉 state is then driven via an off-resonant two-
photon transition through the 5p1/2 state to the 18s1/2 state with
intermediate detuning �, two-photon detuning δ, and lower and upper
Rabi frequencies �1 and �2.

nearly identical. Since each atom behaves identically, if there
is a particular detuning at which a given atom’s population is
no longer drastically enhanced, then this will be the case for
the entire sample, leading to a sharp cutoff. By introducing
more inhomogeneity, different atoms experience this cutoff
at different detunings, leading to a more gradual decline in
population.

The line shapes produced by the Gaussian distributions
are fairly Lorentzian for both choices of implementing the
decoherence. We find that the populations from the addition
method tend to fall off slightly faster than Lorentzian at large
detunings, while the populations from the subtraction method
tend to have a sharper peak on resonance than a Lorentzian.

Additionally, in spite of the fact that these approaches
result in quite different line shapes, their scaling behavior
is qualitatively the same. For example, if the parameters are
changed such that either the width or the resonant population
doubles for one approach, the width or the resonant pop-
ulation of the other approaches will approximately double
as well.

APPENDIX E: EXPERIMENTAL METHODS

In this Appendix, we describe the experimental methods
used in the main text. The details of the experimental setup
are described in Refs. [22,52]. In a nutshell, the basis for
the apparatus is a 87Rb Bose-Einstein condensate (BEC)
machine producing a BEC composed of N ≈ 4 × 104 atoms
every 16 s. We excite the atoms to the 18s1/2 state using a
two-photon transition via the 5p1/2 state with intermediate
detuning �/2π ≈ 240 MHz. The lower and upper Rabi fre-
quencies are independently calibrated to �1/2π = 0 MHz to
5 MHz and �2/2π ≈ 12.5 MHz. In keeping with the notation
of the main text, these are both half the typical definition
of the Rabi frequency. The two lasers are locked to the
same high-finesse optical cavity with <10 kHz linewidth and
are tuned for the transition |g〉 = |5s,F = 2,mF = −2〉 →
|s〉 = |18s,F = 2,mF = −2〉. The BEC is created in the
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|F = 1,mF = −1〉 state, and we control the fraction f trans-
ferred to |5s,F = 2,mF = −2〉 via microwave rapid adia-
batic passage. The remaining atoms are then transferred to
the shelving state |F = 2,mF = 2〉. This offers control over
the fractional density of atoms participating to the Rydberg
excitation. This process is shown in Fig. 16.

The post-excitation populations in the ground hyperfine
manifold are separated in time of flight with a Stern-Gerlach
magnetic field gradient and measured via absorption imaging.
Experiments are done in a 3D optical lattice made with 812-nm
light, resulting in a lattice spacing of 406 nm. This distance

is comparable to the 18s van der Waals blockade radius.
We measure the resonant Rydberg pumping rate R0 as a
function of the two-photon Rabi frequency � = �1�2/� for
two fractional densities f . This is achieved by measuring the
post-excitation population in the |5s,F = 2,mF = −2〉 initial
state as a function of the excitation time, to which we fit
an exponential to extract the pumping rate. We obtain the
resonant rate R0 due to the Rydberg s state by subtracting the
off-resonant 5s − 5p optical pumping rate. The measurements
presented in the main text are done with two different fractional
densities: f = 25% and 100%.
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