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Atomic spectroscopy with twisted photons: Separation of M1-E2 mixed multipoles
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We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital
angular momentum along their direction of propagation. From the angular momentum and parity considerations,
we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of
the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity
E2-M1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our
theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar
contributions by measuring the photoexcitation rate as a function of the atom’s position (or impact parameter)
with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented
if the target’s atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical
examples are presented for Boron-like highly charged ions.
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I. INTRODUCTION

Twisted photons, or topological states of light, carrying
extra orbital angular momentum (OAM) along their prop-
agation direction, have been one of the trends in optics,
photonics, and related studies of light-matter interaction for
more than 20 years. The seminal paper by Allen et al. [1]
triggered major development in the field of optical control and
manipulation, microscopy, telecommunication, information
security, etc. In atomic photoexcitation by twisted photons, the
terms responsible for vortex behavior can often be conveniently
factorized from the conventional plane-wave contribution [2].
Modified atomic selection rules were worked out for Bessel
beams (BBs) [2–4]. Later, the formalism was extended to
Laguerre–Gaussian (LG) beams [5]. The fact that total angular
momentum of twisted photons can be passed to the internal
degrees of freedom of an atom was confirmed experimentally
for quadrupole transitions with trapped ions [6,7] and agreed
with theoretical predictions. Atomic photoexcitation by vortex
beams as a local probe of the beam’s topological structure was
discussed in Ref. [8]. A physics argument for varied strengths
for different multipole transitions across the twisted-light
wavefront can be found in Ref. [9]: While dipole transitions
are driven by the electromagnetic field intensity, the quadrupole
transitions are caused by the field gradients. For a recent review
of interactions between the twisted photons and atoms, see
Ref. [10].

The phenomena for the trapped ions interacting with twisted
photons have potential applications in quantum computing and
quantum storage [11,12] due to extra photon-OAM degrees of
freedom. Long lifetimes of forbidden states and abundance
of nearly degenerate transitions are important benefits for
optical-clock candidates [13]. Since even a moderate, 3%–5%,
increase in lifetime is important, twisted light can be used as a
tool for local high-precision control and tuning of the transition

rates. It would allow development of temporal, as well as
spatial, measurement techniques based on the knowledge of
transition rates with high multipolarity.

Dipole-forbidden transitions are important for measure-
ments of uncertainties in atomic structure and for probing
physics beyond the standard model [14] as well as astrophysics
[15], and many other related fields; see Ref. [16] for review.
Transitions forbidden by E1 selection rules recently received
a lot of attention in precision spectroscopy [17–20]. In this
respect, we are particularly interested in studying an interplay
of topological properties of the incoming radiation and the
atomic system.

The content of the transitions with mixed multipolarity can
be extracted from independent measurements of the transition
rates excited by the photons of opposite helicity. Search and
tabulation of atomic transitions with mixed multipolarity goes
back to the 1920s. The technique of using the Zeeman effect to
separate different multipolar contributions in such processes
is laid out in Ref. [21]. The particular transitions with M1-E2
multipolarity in Bi I, and Pb I and II were studied extensively
in Refs. [22–24], where separation of multipolar contributions
was analyzed both theoretically and experimentally. The tech-
niques for numerical analysis with extraction of the hyperfine
structure for the cases of both integer and half-integer spin
were discussed, for instance, in Ref. [25].

A theoretical description of the photon-atom interaction in
a total-angular-momentum (TAM) basis is the main focus of
this paper. The convenient separation of the TAM into orbital
and spin parts violates gauge invariance [26], which motivates
us to work in the TAM basis instead of the conventional linear
momentum representation. In the Sec. II we briefly review
the quantum-mechanical formalism of photoabsorption of the
BB and Bessel–Gauss (BG) light beams by atoms. Section III
is dedicated to revisiting the QED description of the photon
vector potential in the TAM basis. In Sec. IV we use this
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formalism to derive the photoabsorption amplitude in terms of
spherical multipoles for the case of twisted light and discuss
the distinct features in the photoabsorption cross section of
ions caused by the topology of the incoming beam and OAM
transfer to the atomic degrees of freedom. In Sec. V the results
are summarized.

II. ABSORPTION OF TWISTED PHOTONS BY ATOMS

In this section we consider two modes of twisted-light
beams: BB and BG. Even though all of them represent
optical beam-like fields, they belong to fundamentally different
families. BB is an example of nonparaxial mode, structurally
stable under propagation. BG is the Helmholtz-type beam
which satisfies the paraxial wave equation and is characterized
by BB-like behavior close to the beam axis and Gaussian-like
decay on the periphery.

The fundamental difference between the nonparaxial BB,
and paraxial BG modes is that the former one satisfies
Maxwell’s equations, while the latter ones, strictly speaking, do
not. However, one can still apply conventional QED methods to
BG modes for the case of not-tightly focused paraxial beams.

Photoexcitation by BB is the convenient place to start
due to the elegance of mathematical representation and the
property of Bessel functions to form a complete orthonormal
basis. These allow us to simply expand the other beam-like
solutions in terms of Bessel modes with further application of
the developed formalism.

A. Bessel mode

As is well known (see, e.g., Ref. [27]), when solving the
scalar Helmholtz equation in cylindrical coordinates (ρ,φ,z),
one obtains Bessel modes

u(BB)(ρ,φ,z; t) = AJmγ
(κρ)ei(mγ φ−kzz)eiωt + c.c., (1)

where mγ is the projection twisted photon’s TAM on the
direction of propagation; Jmγ

(x) is the Bessel function of the
first kind, and kz and κ are respectively longitudinal and trans-
verse components of the photon’s wave vector with respect to
the propagation direction z. The normalization constant A =√

κ/2π . Following the conventional quantization procedure
requires the plane-wave expansion of the mode. We use the
angular spectrum representation (see, e.g., Ref. [28]), so that
the vector solution can be written as

Âkzκmγ �(rrr,t) = A

√
2π

ω

∑
k

∑
�=−1,1

∫
d2k⊥
(2π )2

aκmγ

×{âk�eeekkk�ei(kkk·rrr−ωt) + â
†
k�eee

†
kkk�e−i(kkk·rrr−ωt)}.

(2)

Here aκmγ
is the component of the two-dimensional (2D)

Fourier transform [2,29]; � = ±1 is (spin) helicity of the
plane-wave photons forming the Bessel mode, and eeekkk� is the
basis state of the twisted-photon polarization, which relates
to the plane photon polarization vectors by an SO(3) rotation
group transformation R̂z(−φk)R̂y(−θk) to the linear polariza-

tion basis [30,31]:

eeekkk� = e−i�φk cos2 θk

2
η

μ
� + ei�φk sin2 θk

2
η

μ
−� + �√

2
sin θkη

μ
0 ,

(3)

where θk is commonly called a pitch angle and φk is the
azimuthal angle [2]. Note that � = 1 (−1) corresponds to
right-circular (left-circular) polarization (RCP and LCP, re-
spectively). The corresponding local (e.g., at atom’s center)
photon flux is

f (bbb) = cos(θk)(|E|2 + |B|2)/4

= cos(θk)
A2ω2

2

{
cos4 θk

2
J 2

mγ −�(κb)

+ sin4 θk

2
J 2

mγ +�(κb) + sin2 θk

2
J 2

mγ
(κb)

}
, (4)

where bbb is an impact parameter, or the atom’s transverse
location with respect to the optical vortex axis. Note that
the use of impact-parameter representation for the absorption
of twisted light by atoms was demonstrated to be especially
practical in Ref. [32].

Proceeding with this approach, the convenient factoriza-
tion property of the twisted photo-absorption amplitude was
obtained [2–4]:

∣∣M (BB)
mf ,mi

(b)
∣∣ = A

2π

∣∣∣∣∣∣Jmf −mi−mγ
(κb)

∑
m′

f m′
i

d
jf

mf ,m′
f

× (θk)dji

mi ,m
′
i
(θk)M (pw)

m′
f m′

i
(θk = 0)

∣∣∣∣∣, (5)

where ji(f ) andmi(f ) are TAM of initial (and final) atomic levels
and their projections, respectively. The two terms responsible
for the modification of the selection rules are Wigner d

functions and Bessel function of the first kind Jmf −mi−mγ
(κb),

which in the limiting case of a small impact parameter b → 0
results in the constraint specific for the twisted light: mγ =
mf − mi . It implies that at the center of the optical vortex,
the TAM projection mγ of the incoming photon precisely
matches the difference in magnetic quantum numbers of initial
and final Zeeman levels, while other transitions are forced
to zero by angular-momentum conservation. This behavior
of twisted-light absorption was demonstrated experimentally
with 40Ca+ ions in a Paul trap [6,7].

B. Bessel–Gauss mode

The BG mode, first discussed in Ref. [33], is known to
be a reliable mathematical representation of real photon laser
modes both on the periphery and at the central region. It
satisfies the paraxial equation [34] and carries a well-defined
TAM:

u(BG)(ρ,φρ,z; t) = AJmγ
(κρ)e−ρ2/w2

0eimγ φρ e−i(kzz−ωt) + c.c.

(6)
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Making use of the angular spectrum representation, the corre-
sponding photoexcitation amplitude can be expressed as

∣∣M (BG)
mf ,mi

(b)
∣∣ = e−b2/ω2

0
A

2π

∣∣∣∣∣∣Jmf −mi−mγ
(κb)

∑
m′

f m′
i

d
jf

mf ,m′
f

× (θk)dji

mi ,m
′
i
(θk)M (pw)

m′
f m′

i
(θk = 0)

∣∣∣∣∣, (7)

For details of these derivations we refer the reader to the recent
paper by Afanasev et al. [7].

III. EXPANSION IN SPHERICAL HARMONICS

As was argued in Ref. [35], quantum states of nonparaxial
beams, such as BB, are not well defined in the linear momentum
basis. Instead, the photon’s TAM (j ) basis is used, with
minimum 6 � 2(2j + 1) possible states. The vector potential
in terms of spherical multipoles can be defined as

AAAM
jm(k,rrr) = jj (kr)YYY jjm(�), (8)

AAAE
jm(k,rrr) =

(√
j + 1

2j + 1
jj−1(kr)YYY j,j−1,m(�)

−
√

j

2j + 1
jj+1(kr)YYY j,j+1,m(�)

)
, (9)

where M and E stand for vector fields of the magnetic and
electric type, correspondingly; jm(x) is the spherical Bessel
function; and YYY j,�,m(�) are vector spherical harmonics (see,
e.g., Refs. [36]).

In the Coulomb gauge, the nonrelativistic quantum-
mechanical photoabsorption matrix element can be written as

Sf i = −i

∫
dt 〈nf jf mf |Hint|nijimi ; k�〉, (10)

where the Hamiltonian operator Hint includes both charge- and
spin-dependent parts. For the incoming plane-wave state with
well-defined (LCP or RCP) helicity, the corresponding matrix
element is

M (pw)
mf mi

(rrr) =
∫

drrr 〈nf jf mf |(p̂ · eeekkk�)eikkk·rrr |nijimi ; k�〉.
(11)

To express the plane-wave photoabsorption amplitude in terms
of Eqs. (8) and (9) we use the known expansion:

eeekkk�eikkk·rrr =
√

4π

∞∑
j=1

j+1∑
�=j−1

i�
√

2� + 1j�(kr)Cj�

�01�YYY j,�,�(�).

(12)

After writing out the sum over the projections � of the
TAM of the system and using the following Clebsch–Gordan

coefficients:

C
j,�

j−1,0,1,� =
√

j + 1

2(2j − 1)
,

C
j,�

j+1,0,1,� =
√

j

2(2j + 3)
,

C
j,�

j,0,1,� = − �√
2
,

one arrives at

eeekkk�eikkk·rrr = −
√

4π

∞∑
j=1

√
(2j + 1)

2
ij

× {
iAAAE

jm(k,rrr) + �AAAM
jm(k,rrr)

}
. (13)

This expansion now can be used in Eq. (11):

M (pw)
mf mi

(0) = −
√

4π

∞∑
j=1

ij+μ
√

(2j+1)
(2jf +1)�

μ+1C
jf ,mf

ji ,mi ,j,�
Mjμ,

(14)

such that μ = 1 stands for electric multipolarity, and μ = 0
stands for magnetic multipolarity. Here Mjμ stands for the
spherical amplitudes of multipolarity μ and order j . Substitut-
ing this transition amplitude into the factorization formulas (5),
and (7), we express the photoabsorption amplitude in terms of
electric and magnetic multipoles.

IV. PHOTOEXCITATIONS IN HIGHLY CHARGED IONS

According to recent theoretical and experimental studies,
Boron-like and Sn-like highly charged ions (HCIs) are among
the best candidates for the next generation of atomic clocks.
At the same time, spectral lines of HCIs are commonly
characterized by mixed multipolarity. In this section we use
HCIs to demonstrate distinctive features arising from the OAM
transfer from the photon and analyze a possibility of separation
of multipoles with OAM light.

The photoexcitation rate 
 and cross section σ can be
obtained from the above formulas for the transition matrix
elements, cf. Refs. [2,37], as



(tw)
Mjμ

(b) = 2πδ(Ef − Ei − ω)
∑
mf mi

∣∣M (tw)
mf mi

∣∣2
,

σ
(tw)
Mjμ

(b) = 

(tw)
Mjμ

(b)/f (bbb). (15)

where f (bbb) is the local (bbb-dependent) flux, as in Eq. (4) for
Bessel modes.

Analyzing Eq. (5) or (7), one can see that the cross section
in the case of an arbitrary transition driven by BB is

σ
(tw)
Mjμ

(bbb) = 2πδ(Ef − Ei − ω)
A2

f (bbb)

×
∑
mf mi

∑
m′

f m′
i j

∣∣Jmf −mγ −mi
(κb)d

jf

mf m′
f
d

ji

mim
′
i

× Cjjf ji
Mjμ

∣∣2
, (16)
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where Cjjf ji
is the coefficient in Eq. (14):

Cjjf ji
= −

√
4π ij+μ

√
(2j+1)
(2jf +1)�

μ+1C
jf ,mf

ji ,mi ,j,�
. (17)

We start from the low-level transitions with definite multi-
polarity and initial atomic TAM ji = 0. One can verify that a
distinctive feature of the twisted light photoabsorption is that
it relaxes the plane-wave selection rules: instead of having
only one allowed amplitude for �m = mf − mi�, we get
2�j + 1 amplitudes possible per process, where δj = jf − ji .
The photoabsorption cross section for BB (16) takes the form
(cf. Refs. [3,4] that neglected electron’s spin):

σ
(tw)
Mjμ

(bbb) = 2πδ(Ef − Ei − ω)
A2

f (bbb)

×
∑
mf

∣∣Cjf mf

00jf �Jmf −mγ
(κb)d

jf

mf �(θk)Mjf μ

∣∣2
, (18)

which, for the case of jf = 1, can be shown to be proportional
to incoming photon flux σmf

(bbb) ∝ |M (pw)
10 |2. Clebsch–Gordan

coefficients are coming from coupling of the electromagnetic-
field topological charge and helicity to the internal degrees
of freedom of the HCI. The multipolarity is determined by
the TAM exchange �j and the parity of the final state. This
leads to the conclusion that E1 and M1 transition rates with
the twisted photons are factorizable and proportional to the
intensity of the incoming radiation. For the case of multipoles
of higher �j , the characteristic factorization is also present,
but the excitation rates acquire extra terms, proportional to
J 2

mγ ±c(κb), where 1 < c � �j .
As an example, let us consider transitions from the ground

level in Sn-like Pr9+: (1) 351 nm M1 transition 3P0 → 3P1; (2)
426 nm E2 transition 3P0 → 3F2. Corresponding amplitudes
for the twisted photons for both M1 and E2 transitions are
shown in Fig. 1 for the BB profile. The use of the BG profile
suppresses the amplitudes at the beam periphery depending on
the choice of the waist parameter. The rate of M1 transition



(tw)
M1 = f σ

(tw)
M1 (bbb) appears to be proportional to the electro-

magnetic flux at the given impact parameter b, making the
cross section independent of the atom’s position. However,
the electric-quadrupole cross section shows the characteristic
periodic pattern of peaks dependent on the impact parameter of
the system and the pitch angle θk . Formally, the cross section for
the E2 transition becomes singular in the optical vortex center,
a phenomenon that can be related to “excitation in the dark”
demonstrated experimentally in Refs. [6]; see also Ref. [4] for
a discussion of the theory. The photoexcitation cross section
for the E2 transition as a function of impact parameter b is
illustrated in Fig. 2.

Next, we considered transitions with mixed multipolarity,
such as 2P1/2 → 2D3/2 (142 nm) in Boron-like atoms, where
the overall local transition amplitude comes from both E2- and
M1-type contributions, while E1 transitions are parity forbid-
den. It was calculated by Rynkun et al. [38] that the magnetic-
dipole contribution is slightly larger than that of the electric-
quadrupole contribution in these transitions, M1/E2 ≈ 1.1.
This makes it especially convenient for studying the effects
coming from photon topology in mixed-multipolarity states.
For the plane-wave case we get two allowed transitions, where
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FIG. 1. Dependence of photoabsorption amplitudes of (a) M1
(λ = 351 nm) for mγ = 1, and (b) E2 (λ = 426 nm) for mγ = 2
transitions in Pr9+ HCI of OAM photons with Bessel profile for
�m = 2 (dashed blue curve), �m = 1 (black solid curve), �m = 0
(dotted green curve), �m = −1 (dot-dashed red curve), �m = −2
(long-dashed purple curve). � = 1 (RCP) in both plots.

relative normalization of the multipoles follows from Eq. (16):

M
(pw)
3/2,1/2(0) = i

√
π (E2 −

√
3M1),

M
(pw)
1/2,−1/2(0) = −i

√
π (

√
3E2 + M1). (19)

For the twisted photons, one can check that the plane-wave
amplitudes do not factorize out in this case. However, the
whole expression for the OAM cross section remains free of the
interference terms. This allows us to use the following equation
for the local photoabsorption cross section:

σ
(tw)
Mjμ

(bbb) = 2πδ(Ef − Ei − ω)
A2

f (bbb)

×
∑
mf mi

∑
m′

f m′
i j

∣∣Jmf −mγ −mi
(κb)d3/2

mf m′
f
d

1/2
mim

′
i

× Cj3/2 1/2|2|Mjμ

∣∣2
, (20)

where Mjμ are the multipoles from Eq. (19).
Treating the θk as a small parameter θk → 0, one can expand

the expression (16) with local flux f (bbb), Eq. (4), and get the
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FIG. 2. Photoabsorption cross section for E2 in Pr9+ HCI by
twisted photons with Bessel profile for pitch angle θk = 0.2, � = 1
(RCP) and different TAM projections mγ . The black solid line is the
plane-wave cross section normalized to unity; see Ref. [13] for actual
lifetimes.

leading terms of the expansion as

σ
(tw)
mγ =1 → 4π (E22 + M12) + O

(
θ2
k

)
, (21)

σ
(tw)
mγ =2 →

(
4π (E22 + M12) + 4E22

(b/λ)2π

)
+ O

(
θ2
k

)
, (22)

σ
(tw)
mγ =3 →

(
4π (E22 + M12) + 16E22

(b/λ)2π

)
+ O

(
θ2
k

)
, (23)

σ (pw) = 4π (E22 + M12), (24)

where the leading multipole contribution 4π (E22 + M12)
corresponds to the plane-wave cross section σ (pw). Due to
the factorization property of BG amplitudes, the derived
expression for cross sections apply both for BB and BG modes.

In Fig. 3 the photoexcitation rates for these transitions is
plotted as a function of the impact parameter b, where the
individual contributions from E2 and M1 transitions, and their
total, are shown for BB profile. Comparing results for two
different values of the pitch angle θk we find that the rate is
smaller for smaller θk , which can be understood as the effect
of Wigner functions in Eqs. (16), and (20). The use of BG
profile suppresses the rate on beam periphery but does not
affect relative contributions of M1 and E2 multipoles. One
can see the strong domination of the electric quadrupole over
the magnetic dipole in the center of the beam. The effect
becomes noticeable for the distances b � λ/3, which for the
considered case of λ = 142 nm is about 50 nm. It imposes
position-resolution requirements on the possible experimental
observation of the predicted effect.

V. SUMMARY AND OUTLOOK

In this paper we present a theoretical description of the
multipolar structure of the twisted light based on the funda-
mental representation of the photon in its TAM basis. The
atomic photoexcitation amplitude is obtained in the form of
the multipole expansion.

We analyzed the photoabsorption cross sections of mixed
E2-M1 transitions in ionized atoms interacting with OAM

(a)

(b)

FIG. 3. Log plots of photoabsorption rates in Boron-like HCI for
pitch angles (a) θk = 0.1 and (b) 0.2. The transitions are excited
by twisted photons with Bessel profile, mγ = 2, and right-handed
helicity (� = 1).

photons, which revealed fundamental differences coming from
the photon topology. Two distinct features of the twisted-
photon photoexcitation are observed: (a) The magnetic levels
population is strongly affected by the topological charge of
the photons and (b) the relative contributions of the M1 and
E2 amplitudes into the mixed-multipole transitions depend
on the atom’s location with respect to the optical vortex axis.
According to our theoretical analysis, it is possible to extract
the relative transition rates of different multipolar contributions
by measuring the photoexcitation rate as a function of the
atom’s position (or the impact parameter) with respect to
the optical vortex center. In this case, only the E2 transition
survives at the vortex center for the incoming photons carrying
two units of angular momentum along the propagation direc-
tion. On the other hand, the rates at the beam’s periphery are
driven by the same relative contribution of multipoles as in the
plane-wave case. The proposed method of multipole separation
with twisted light requires high position resolution of the target
atom’s position that can be provided, for example, by Paul
traps, as in the recent experiments with 40Ca+ ions [6,7].

In addition, experimental implementation of the proposed
technique for HCI would require a source of the twisted light
in UV range. Presently, generation of the twisted light up to
the extreme UV range (with 99 eV photons) was demonstrated
at the synchrotron light source BESSY II [39] and is feasible
with new-generation light sources.
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[15] R. Smitt, L. Å. Svensson, and M. Outred, Phys. Scr. 13, 293
(1976).

[16] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Rev. Mod. Phys. 87, 637 (2015).

[17] E. Träbert, A. Calamai, G. Gwinner, E. Knystautas, E. Pinning-
ton, and A. Wolf, J. Phys. B: At., Mol. Opt. Phys. 36, 1129
(2003).

[18] P. Beiersdorfer, Phys. Scr. 2009, 014010 (2009).

[19] A. Windberger, J. C. López-Urrutia, H. Bekker, N. Oreshkina,
J. Berengut, V. Bock, A. Borschevsky, V. Dzuba, E. Eliav, Z.
Harman et al., Phys. Rev. Lett. 114, 150801 (2015).

[20] U. I. Safronova, M. S. Safronova, and W. R. Johnson, Phys. Rev.
A 95, 042507 (2017).

[21] S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[22] J. Kwela, A. Kowalski, and J. Heldt, J. Opt. Soc. Am. 72, 1550

(1982).
[23] L. Augustyniak, J. Heldt, and J. Bronowski, Phys. Scr. 12, 157

(1975).
[24] S. Werbowy and J. Kwela, J. Phys. B: At., Mol. Opt. Phys. 42,

065002 (2009).
[25] T. Waşowicz, Phys. Scr. 76, 294 (2007).
[26] S. Van Enk and G. Nienhuis, Europhys. Lett. 25, 497 (1994).
[27] J. Durnin, J. J. Miceli Jr., and J. H. Eberly, Phys. Rev. Lett. 58,

1499 (1987).
[28] M. Born and E. Wolf, Principles of Optics: Electromagnetic

Theory of Propagation, Interference and Diffraction of Light
(Cambridge University Press, Cambridge, 2013).

[29] U. D. Jentschura and V. G. Serbo, Phys. Rev. Lett. 106, 013001
(2011).

[30] K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello,
Phys. Rev. A 82, 063825 (2010).

[31] K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-
Herrera, D. Lara, and C. Dainty, Opt. Express 19, 26132 (2011).

[32] L. Kaplan and J. H. McGuire, Phys. Rev. A 92, 032702 (2015).
[33] C. Sheppard and T. Wilson, IEE J. Microwaves, Opt. Acoust. 2,

105 (1978).
[34] A. Kiselev, Opt. Spectrosc. 96, 479 (2004).
[35] D. L. Andrews and M. Babiker, The Angular Momentum of Light

(Cambridge University Press, Cambridge, 2012).
[36] A. Akhiezer and V. Berestetskii, Quantum Electrodynamics,

1965 (Interscience, New York, 1959).
[37] A. Afanasev, C. E. Carlson, and M. Solyanik, J. Opt. 19, 105401

(2017).
[38] P. Rynkun, P. Jönsson, G. Gaigalas, and C. F. Fischer, At. Data

Nucl. Data Tables 98, 481 (2012).
[39] J. Bahrdt, K. Holldack, P. Kuske, R. Müller, M. Scheer, and P.

Schmid, Phys. Rev. Lett. 111, 034801 (2013).

023422-6

https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.88.033841
https://doi.org/10.1103/PhysRevA.88.033841
https://doi.org/10.1103/PhysRevA.88.033841
https://doi.org/10.1103/PhysRevA.88.033841
https://doi.org/10.1103/PhysRevA.90.013425
https://doi.org/10.1103/PhysRevA.90.013425
https://doi.org/10.1103/PhysRevA.90.013425
https://doi.org/10.1103/PhysRevA.90.013425
https://doi.org/10.1088/2040-8978/18/7/074013
https://doi.org/10.1088/2040-8978/18/7/074013
https://doi.org/10.1088/2040-8978/18/7/074013
https://doi.org/10.1088/2040-8978/18/7/074013
https://doi.org/10.1103/PhysRevA.96.023407
https://doi.org/10.1103/PhysRevA.96.023407
https://doi.org/10.1103/PhysRevA.96.023407
https://doi.org/10.1103/PhysRevA.96.023407
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1088/1367-2630/aaa63d
https://doi.org/10.1088/1367-2630/aaa63d
https://doi.org/10.1088/1367-2630/aaa63d
https://doi.org/10.1088/1367-2630/aaa63d
https://doi.org/10.1103/PhysRevA.85.053834
https://doi.org/10.1103/PhysRevA.85.053834
https://doi.org/10.1103/PhysRevA.85.053834
https://doi.org/10.1103/PhysRevA.85.053834
https://doi.org/10.1140/epjd/e2012-20730-4
https://doi.org/10.1140/epjd/e2012-20730-4
https://doi.org/10.1140/epjd/e2012-20730-4
https://doi.org/10.1140/epjd/e2012-20730-4
https://doi.org/10.1098/rsta.2015.0435
https://doi.org/10.1098/rsta.2015.0435
https://doi.org/10.1098/rsta.2015.0435
https://doi.org/10.1098/rsta.2015.0435
https://doi.org/10.1038/nphoton.2014.53
https://doi.org/10.1038/nphoton.2014.53
https://doi.org/10.1038/nphoton.2014.53
https://doi.org/10.1038/nphoton.2014.53
https://doi.org/10.1103/PhysRevX.7.031050
https://doi.org/10.1103/PhysRevX.7.031050
https://doi.org/10.1103/PhysRevX.7.031050
https://doi.org/10.1103/PhysRevX.7.031050
https://doi.org/10.1103/PhysRevLett.113.030801
https://doi.org/10.1103/PhysRevLett.113.030801
https://doi.org/10.1103/PhysRevLett.113.030801
https://doi.org/10.1103/PhysRevLett.113.030801
https://doi.org/10.1103/PhysRevLett.105.120801
https://doi.org/10.1103/PhysRevLett.105.120801
https://doi.org/10.1103/PhysRevLett.105.120801
https://doi.org/10.1103/PhysRevLett.105.120801
https://doi.org/10.1088/0031-8949/13/5/006
https://doi.org/10.1088/0031-8949/13/5/006
https://doi.org/10.1088/0031-8949/13/5/006
https://doi.org/10.1088/0031-8949/13/5/006
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1088/0953-4075/36/6/305
https://doi.org/10.1088/0953-4075/36/6/305
https://doi.org/10.1088/0953-4075/36/6/305
https://doi.org/10.1088/0953-4075/36/6/305
https://doi.org/10.1088/0031-8949/2009/T134/014010
https://doi.org/10.1088/0031-8949/2009/T134/014010
https://doi.org/10.1088/0031-8949/2009/T134/014010
https://doi.org/10.1088/0031-8949/2009/T134/014010
https://doi.org/10.1103/PhysRevLett.114.150801
https://doi.org/10.1103/PhysRevLett.114.150801
https://doi.org/10.1103/PhysRevLett.114.150801
https://doi.org/10.1103/PhysRevLett.114.150801
https://doi.org/10.1103/PhysRevA.95.042507
https://doi.org/10.1103/PhysRevA.95.042507
https://doi.org/10.1103/PhysRevA.95.042507
https://doi.org/10.1103/PhysRevA.95.042507
https://doi.org/10.1103/RevModPhys.16.153
https://doi.org/10.1103/RevModPhys.16.153
https://doi.org/10.1103/RevModPhys.16.153
https://doi.org/10.1103/RevModPhys.16.153
https://doi.org/10.1364/JOSA.72.001550
https://doi.org/10.1364/JOSA.72.001550
https://doi.org/10.1364/JOSA.72.001550
https://doi.org/10.1364/JOSA.72.001550
https://doi.org/10.1088/0031-8949/12/3/007
https://doi.org/10.1088/0031-8949/12/3/007
https://doi.org/10.1088/0031-8949/12/3/007
https://doi.org/10.1088/0031-8949/12/3/007
https://doi.org/10.1088/0953-4075/42/6/065002
https://doi.org/10.1088/0953-4075/42/6/065002
https://doi.org/10.1088/0953-4075/42/6/065002
https://doi.org/10.1088/0953-4075/42/6/065002
https://doi.org/10.1088/0031-8949/76/4/003
https://doi.org/10.1088/0031-8949/76/4/003
https://doi.org/10.1088/0031-8949/76/4/003
https://doi.org/10.1088/0031-8949/76/4/003
https://doi.org/10.1209/0295-5075/25/7/004
https://doi.org/10.1209/0295-5075/25/7/004
https://doi.org/10.1209/0295-5075/25/7/004
https://doi.org/10.1209/0295-5075/25/7/004
https://doi.org/10.1103/PhysRevLett.58.1499
https://doi.org/10.1103/PhysRevLett.58.1499
https://doi.org/10.1103/PhysRevLett.58.1499
https://doi.org/10.1103/PhysRevLett.58.1499
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1103/PhysRevA.92.032702
https://doi.org/10.1103/PhysRevA.92.032702
https://doi.org/10.1103/PhysRevA.92.032702
https://doi.org/10.1103/PhysRevA.92.032702
https://doi.org/10.1049/ij-moa.1978.0023
https://doi.org/10.1049/ij-moa.1978.0023
https://doi.org/10.1049/ij-moa.1978.0023
https://doi.org/10.1049/ij-moa.1978.0023
https://doi.org/10.1134/1.1719131
https://doi.org/10.1134/1.1719131
https://doi.org/10.1134/1.1719131
https://doi.org/10.1134/1.1719131
https://doi.org/10.1088/2040-8986/aa82c3
https://doi.org/10.1088/2040-8986/aa82c3
https://doi.org/10.1088/2040-8986/aa82c3
https://doi.org/10.1088/2040-8986/aa82c3
https://doi.org/10.1016/j.adt.2011.08.004
https://doi.org/10.1016/j.adt.2011.08.004
https://doi.org/10.1016/j.adt.2011.08.004
https://doi.org/10.1016/j.adt.2011.08.004
https://doi.org/10.1103/PhysRevLett.111.034801
https://doi.org/10.1103/PhysRevLett.111.034801
https://doi.org/10.1103/PhysRevLett.111.034801
https://doi.org/10.1103/PhysRevLett.111.034801



