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Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of
driving ionic transitions
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Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of
the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron
momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-
center interference effects on the photoelectron momentum distribution. Comparing the experimental results
with a new model calculation, which is based on the strong-field approximation, actually reveals the influence
of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade
electronic state pairs of the Xe2

+ ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects
the photoelectron momentum distribution.
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I. INTRODUCTION

The effect of two equivalent emission centers on strong-field
ionization (SFI) of molecules has attracted attention since the
first hints of its possible influence were detected in the total
ionization rate of homonuclear diatomic molecules and in the
photoelectron momentum distribution. Molecules such as N2,
O2, S2, and F2 with different electronic ground-state symmetry
have been investigated [1–4]. Experimentally, molecular SFI
has usually been compared with SFI of a corresponding atom,
which has a practically identical ionization potential. This kind
of comparison makes sense, since for atomic SFI the total
ionization rate and the overall kinetic-energy distribution of
directly emitted photoelectrons, which did not rescatter on
the ion core, has been found to be determined mainly by the
ionization potential alone [5–9]. Differences of SFI rates and
photoelectron kinetic-energy distributions for a corresponding
molecule would thus directly indicate a molecular structure
effect. Theoretical investigations actually showed an influence
of the symmetry of the orbital of a homonuclear molecule, from
which the electron is removed, on SFI [10–12]. Specifically
for the O2 molecule, a suppression found in the yield of low-
kinetic-energy photoelectrons, compared with the companion
atom Xe, has successfully been accounted for by considering
the symmetry of the O2 highest occupied molecular orbital
(HOMO) from where the electron is removed [4]. This orbital
gives rise to a modulation of the momentum distribution of
directly emitted electrons of the form sin2(R · p/2) where
R = |R| is the internuclear separation and p is the momentum
of the photoelectron. This factor just suppresses the yield
of photoelectrons with small momentum; that is, of those
electrons which are emitted directly without rescattering. For
N2, compared with the companion Ar atom, the situation is
different. Removing an electron from the N2 HOMO actually
gives rise to a modulation of the photoelectron momentum
distribution by a factor cos2(R · p/2) [4,12]. For the tightly
bound N2 molecule (R = 2.1 a.u.), this function does not
change too much over the kinetic-energy range where directly
emitted photoelectrons dominate the kinetic-energy distribu-

tion. Thus one would not expect a significant suppression
of the total photoelectron yield and a marked difference
in the kinetic-energy distribution to appear in comparison
with the companion Ar atom. This result was actually found
experimentally [3,4].

The experiments on tightly bound molecules are not able
to completely reveal the influence of two-equivalent-center
interference on the photoelectron momentum distribution. The
main obstacle is the hardly possible observation of at least one
half of the period of the cosine or sine functions modulating
the momentum distribution within the momentum range where
overwhelmingly directly emitted photoelectrons are found.
This range is practically limited from above by the kinetic
energy Ekin = 2Up (or for the momentum |p| < 2

√
Up, atomic

units assumed) where classically directly emitted photoelec-
trons are found. The situation can be changed by investigating
homonuclear diatomics with an intrinsic large internuclear
separation, such as, for example, noble gas dimers (see, for
example, Refs. [13–15]).

Similar to noble gas atoms, whose strong-field ionization
has successfully been modeled by using the strong-field ap-
proximation (SFA), molecules usually also have an electronic
ground state well separated from electronically excited states.
One thus may expect the atomic SFA to be also applicable to
molecules. However, different from noble gas ions, molecular
ions usually possess many closely spaced electronic states
next to the molecular ionization threshold. Their energy-level
spacings are usually of the same order of magnitude as the
photon energy typically used for SFI. Moreover, these states are
normally strongly coupled by large transition dipole moments.
In a high-intensity laser pulse, this means that SFI will end
up in vastly perturbed ionic states while the laser pulse is
applied. This has already been observed in and theoretically
modeled for high-order harmonic generation in molecular
samples [16–20].

Besides affecting high-harmonic generation, driving of
ionic transitions in molecular ions during SFI will certainly
also influence the photoelectron momentum distribution, and,
for homonuclear molecules, the two-equivalent-center interfer-
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FIG. 1. Scheme of the reaction microscope setup.

ence expected to be found for directly emitted photoelectrons.
Here we investigate this effect for SFI of Xe2 dimers, which
have an internuclear separation (R = 8.35 a.u. [13]), where
it is possible to retrieve two-equivalent-emission-center inter-
ference together with the possible effect of strongly driving
transitions in the Xe2

+ ion during SFI of Xe2. The Xe2
+ ion has

altogether six closely spaced electronic states at the ionization
threshold which are connected by large transition dipole matrix
elements [21,22]. Based on the results for high-harmonic
generation, the heavy perturbation of this state manifold during
SFI is expected to leave an imprint on SFI. We analyze
the experimental results for directly emitted photoelectrons
using the SFA for a basic homonuclear model molecule which
simulates main features of the Xe2 SFI. Hartree atomic units,
i.e., h̄ = e = me = 1, accompanied by the Gaussian system
of units for the electromagnetic field, are used throughout the
paper unless otherwise specified.

II. EXPERIMENTAL SETUP

A schematic view of the experimental setup is shown in
Fig. 1. A reaction microscope was used for the investigation
whose detailed principle of operation can be found in Ref. [23].
The reaction microscope allows the correlated determination
of the momenta of all charged particles, electrons, and ions,
formed in the interaction of, in our case, laser pulses with noble
gas atoms and dimers.

In the experiment Xe2 and ArXe dimers were formed in a
supersonic expansion of either pure Xe gas or of a mixture of
Xe with Ar (≈15 vol% Xe in Ar) at a stagnation pressure of 0.65
and 3 bar, respectively. The nozzle with an opening diameter
of 20 μm was kept at room temperature. The supersonic
beam then consisted of either a mixture of mainly Xe atoms
and a small contribution of Xe2 dimers (less than 2%) or of
mainly Ar and Xe atoms with small amounts of Ar2, Xe2,
and ArXe dimers (less than 2%). The expansion conditions
were set to avoid excessive formation of bigger clusters. After
passing through a skimmer and two differentially pumped
vacuum stages, the beam was finally collimated by a slit with
dimensions 25 μm × 3 mm positioned approximate 0.9 m
downstream of the nozzle. The focused laser beam crossed

the supersonic beam approximately 0.15 m behind this slit.
In this way, the width of the supersonic beam along the
direction of propagation of the laser beam was limited to about
30 μm.

Assuming a residual thermal velocity distribution along the
axis of the supersonic beam, an axial translational temperature
T|| (see Ref. [24]) can be determined from the measured
velocity distribution of Xe+ ions along the beam axis after
SFI of xenon atoms. It amounts to T|| = 8 K for the pure Xe
expansion and T|| = 5.5 K for the mixed gas expansion. On the
basis of this residual translational temperature, it is possible to
estimate which vibrational states of the Xe2 or ArXe dimers in
the beam are significantly populated. To do this, we assume that
the translational temperature is equal to the internal vibrational
temperature. For the Xe2 dimer, one can estimate the popula-
tion probability of the first vibrationally excited state (v = 1)
to be about 3 × 10−2 (T = 8 K, pure Xe gas expansion), while
for the ArXe dimer this probability is approximately equal to
1 × 10−3 (T = 5.5 K, mixed gas expansion). The vibrational
constants of Xe2 and ArXe in the electronic ground state used
here were taken from Refs. [13,25], respectively. Thus, in the
supersonic beam, practically only the vibrational ground state
of the dimers was populated.

A Ti:sapphire laser system (center wavelength of 780 nm)
delivering ultrashort laser pulses with a full width at half
maximum of 40 fs at a repetition rate of 3 kHz was used to
ionize the noble gas dimers and monomers. The energy of the
pulses was adjusted in a range between ≈30 μJ and ≈60 μJ.
The laser beam was focused at the supersonic beam by using
an on-axis spherical mirror with a focal length of 150 mm. The
width of the supersonic beam along the laser-beam propagation
axis (see above) was thus short compared with the confocal
parameter of the laser beam. With this focusing geometry the
light intensities reached in the focal spot ranged from 5 × 1013

to 1.1 × 1014 W/cm2.
A weak homogeneous electric field (4.8 V/cm) was ap-

plied across the interaction region, parallel to the axis of the
momentum spectrometer, to extract photoelectrons and ions
(Fig. 1). After acceleration and subsequent field-free drift,
these particles were detected by position-sensitive multichan-
nel plate detectors with an active area diameter of 80 mm.
In this way, a 4π solid angle of detection was reached for
the ions of interest here (i.e., Xe+, Xe2

+, and ArXe+). A
homogeneous magnetic field (field strength 1.9 Gauss) parallel
to the electric field was applied to guide all photoelectrons with
a momentum component less than≈0.35 a.u. in the plane of the
detector (perpendicular to the spectrometer axis) to the electron
detector. It forces the electrons onto cyclotron orbits in the plain
perpendicular to the magnetic field. For each particle, the time
of flight was determined along with the position where it hit the
detector. From these data, the full momentum vector of each
individual detected particle can be reconstructed.

We recorded the individual photoelectron momentum dis-
tributions for the ionization processes:

Xe → Xe+ + e−, (1)

Xe2 → Xe2
+ + e−, (2)

ArXe → ArXe+ + e−. (3)
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To be able to identify whether a photoelectron hitting the
detector originates from the ionization of a Xe atom, of
a Xe2 dimer, or of ArXe, each electron was detected to-
gether with the corresponding photoion. For an unambiguous
correspondence, we restricted the rate of detecting ions to
≈20% of the repetition rate of the laser pulses. To further
reduce the possibility of false ion-electron coincidences in the
photoelectron momentum distributions, we used momentum
conservation for the z component pz of the ion and electron
momenta, i.e., the momentum component along the axis of
the spectrometer which is accessed by the time of flight
of the ion and electron, respectively (see Fig. 1). Since pz

is a momentum component perpendicular to the direction
of propagation of the supersonic beam, the sum of these
momentum components for an electron and the corresponding
photoion from any one of the ionization processes (1)–(3) is
practically zero [pz(ion) + pz(e−) = 0]. Applying momentum
conservation also reduces the contribution of photoelectrons to
the photoelectron momentum distributions for the ionization
processes (1)–(3) which originate from ionization of larger
clusters to a negligible level. It was not possible to avoid the
presence of larger clusters in the beam completely. Different
from the ionization processes (1), (2), and (3), Xe+, Xe2

+, and
ArXe+ ions emerging from dissociative ionization of these
bigger clusters gain momentum from dissociation. Thus, for
these ions the sum momentum pz(ion) + pz(e−) is not close
to zero.

III. THEORETICAL BACKGROUND

The impact of two-emission-center interference on SFI
of a homonuclear dimer and of driving transitions among
ionic bound states during SFI on the photoelectron momentum
distribution is modeled by using the strong-field approxima-
tion (SFA) [5–7,9]. We consider here only directly emitted
photoelectrons without taking rescattering on the ion core into
account. For the model calculation, we reduce the dimer ion
to a two-level system consisting of an electronic eigenstate
pair {φI

+,φI
−} coupled by the electric field of the applied

laser pulse. This idealizes the actual situation where, due to
spin-orbit splitting and the presence of �g,u and �g,u states,
altogether six closely spaced ionic states are present. They
are strongly coupled by the applied laser pulse due to the
presence of large transition dipole matrix elements [21,22].
However, the simple model will give insight into the effect
of two equivalent emission centers and of the accompanying
driving of ionic transitions during the application of the
laser pulse on the photoelectron momentum distribution. In
the model calculation we approximate the actual transition
dipole moment d which couples the gerade and ungerade
ionic state pairs (�g-�u,�g-�u) by −R/2 (R = |R| is the

internuclear separation), pointing along the internuclear axis.
In a real experimental situation, a � − � dipole coupling is
also present; however, the strength is approximately two orders
of magnitude lower than the �g-�u and �g-�u couplings at
the equilibrium internuclear separation of the Xe2

+ dimer [22].
Thus, a restriction to a single gerade-ungerade state pair for the
model appears justified. Moreover, we assume the vibration
and the rotation of the model dimer ion to be frozen while
the laser pulse is applied. This is reasonable since for Xe2

+

the duration of the laser pulse applied in the experiment is
short enough [26,27]. Therefore, we can restrict ourselves to
calculating the SFA matrix element at a fixed internuclear
separation which corresponds to the equilibrium internuclear
separation of Xe2.

The equilibrium internuclear separation R of the Xe2 dimer
is large (R = 8.35 a.u. [13]), therefore the Dyson orbitals
appearing in the general SFA transition matrix element (A7),
derived in the appendix, are approximated by linear combi-
nations of atomic orbitals φA(x); namely φD

+,−(x) = [φA(x −
R/2) ± φA(x + R/2)]/

√
2. Here the overlap of the two atomic

orbitals is assumed to be negligible. For the atomic orbital,
we choose a simple hydrogenic orbital φn,l,m with principle
quantum number n = 5, angular momentum l = 1, magnetic
quantum number m = 0 with respect to the internuclear axis
of the dimer as quantization axis and a nuclear charge (Z =
4.72 a.u.) which adapts the ionization potential of the orbital to
that of the Xe atom (Ip = 12.13 eV). We thus restrict ourselves
to a σ -orbital pair. This results in

φ̃D
+,−(p) =

√
2φ̃n,l,m(p)

⎧⎨
⎩

cos
(

R·p
2

)
+ (ungerade)

−i sin
(

R·p
2

)
− (gerade),

(4)

for the Fourier transform of the dimer Dyson orbital pair with
φ̃n,l,m(p) being the Fourier transform of the atomic orbital. In
our specific case, the inversion symmetry of the two orbitals
is determined by the ungerade symmetry of the atomic orbital
with angular momentum l = 1.

With the approximation to the ionic transition dipole
moment introduced above, the time-dependent Schrödinger
equation for the two involved molecular ionic states, which
we identify by φI

+ and φI
− according to the two corresponding

Dyson orbitals (4), reads

i
d

dt

(
a1(t)

a2(t)

)
=

(
ε− −R·E(t)

2

−R·E(t)
2 ε+

)(
a1(t)

a2(t)

)
, (5)

with E(t) being the electric-field strength of the laser pulse and
ε+ and ε− being the energy levels of the ionic states φI

+ and
φI

−, respectively. The time-dependent ionic wave function then
reads

ψI (t) = a1(t)φI
− + a2(t)φI

+. (6)

Considering these ingredients, the general SFA transition matrix element (A7) can be reduced to

M
(1)
(+,−),i(p) ∼= −

√
2 cos

(
R · p

2

) ∫ Tf

Ti

dt exp [iχ̄ ]

{
c∗

2(t)
∂

∂t

[
φ̃n,l,m

(
p + A(t)

c

)]
+ ic∗

1(t)
R · E(t)

2
φ̃n,l,m

(
p + A(t)

c

)}

+
√

2 sin

(
R · p

2

)∫ Tf

Ti

dt exp [iχ̄]

{
ic∗

1(t)
∂

∂t

[
φ̃n,l,m

(
p + A(t)

c

)]
− c∗

2(t)
R · E(t)

2
φ̃n,l,m

(
p + A(t)

c

)}
, (7)
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for the homonuclear model dimer where the phase χ̄ is defined by χ̄ (t,p,Tf ,Ti) = χ (t,p,Tf ,Ti) + (ε+ + ε−)(t − Tf )/2. The
amplitudes c1 and c2 are the solutions of the transformed ionic Schrödinger equation

i
d

dt

(
c1(t)

c2(t)

)
= ε

2

(− cos [2f (t)] −i sin [2f (t)]

i sin [2f (t)] cos [2f (t)]

)(
c1(t)

c2(t)

)
, f (t) = −R · A(t)

2c
, ε = ε+ − ε−, (8)

with the amplitudes c1 and c2 related to a1 and a2 in Eq. (5) via(
a1(t)

a2(t)

)
= e−i(ε++ε−)(t−Tf )/2

(
cos [f (t)] i sin [f (t)]

i sin [f (t)] cos [f (t)]

)(
c1(t)

c2(t)

)
. (9)

The momentum distribution of the ionized electron, repre-
sented by the SFA transition amplitude (7), thus depends on
the state of the ion detected at the end of the laser pulse. In
the calculation this final ionic state, provided it is one of the
eigenstates φI

+ or φI
− of the unperturbed Hamiltonian of the

ion, is fixed by integrating the ionic Schrödinger equation (8)
subject to the condition c1(Tf ) = 1, c2(Tf ) = 0 or c1(Tf ) =
0, c2(Tf ) = 1, respectively. The first initial condition means
the ionic state φI

−, corresponding to the Dyson orbital φ̃D
− (p),

is the final state, while the second initial condition chooses the
ionic state φI

+ to be the final ionic state.
The SFA transition matrix element in Eq. (7) explicitly

reveals the effect of the presence of two emission centers;
namely, a two-center interference effect, on the momentum
distribution of directly emitted photoelectrons. The cos(R ·
p/2) and sin(R · p/2) factors multiplying the integrals in
Eq. (7) are responsible for this interference to appear. For
example, if only the first integral on the right-hand side of
Eq. (7) is significantly different from zero, the photoelectron
momentum distribution |M (1)

(+,−),i(p)|2 would be modulated by
cos2(R · p/2). This would give rise to zeros and a suppression
of the photoelectron yield in the momentum distribution close
to the zeros of cos2(R · p/2); namely, R · p = (2n + 1)π with
n = 0, ± 1, . . . . Moreover, Eq. (7) also shows that the actually
observable interference will be affected by the driving of
transitions in the ion while the laser pulse is applied through
the presence of the c1(t) and c2(t) amplitudes appearing under
the integrals.

Assuming the values of the two integrals in Eq. (7)
named I1(p) (multiplying the cosine function) and I2(p),
the photoelectron momentum distribution can be explicitly
represented by

|M (1)
(+,−),i(p)|2 ∼= {|I1|2 + |I2|2} + {|I1|2 − |I2|2} cos(R · p)

− 2Re(I1I
∗
2 ) sin(R · p), (10)

with Re(I1I
∗
2 ) being the real part of the product I1I

∗
2 . This

expression shows that, independent of the dependence of
the integrals on the electron momentum p, a modulation
of the distribution originating from two-center interference
will appear in the photoelectron momentum distribution. The
actual modulation depth and shape, however, will depend on
the values of these integrals and on their dependence on p.

IV. RESULTS

A. Experiment

Experimentally we investigated the effects of interference
and of driving ionic transitions while the laser pulse is applied

by using the homonuclear Xe2 dimer. The vertical ionization
potential of this dimer (Ip = 11.845 eV [28]) is close to that of
the Xe monomer (Ip = 12.13 eV [29]). As a further reference
the mixed atom dimer ArXe was investigated. It also has
an ionization potential (Ip = 11.985 eV) very close to that
of its Xe constituent [30]. Considering the light intensities
used in our experiment, the ionization probability of the Ar
constituent of this dimer is negligibly small. Thus, ionization
of ArXe can be expected to proceed by ionization of its Xe
constituent only, meaning that the positive charge is localized at
the Xe constituent. Therefore this heteronuclear dimer should
not show any interference effect. The first-excited states of
the ArXe+ dimer ion, which have a nonzero dipole coupling
to the spin-orbit split ionic states at the ionization threshold,
correspond to charge-transfer states where the positive charge
is localized at the Ar site [31]. They are energetically separated
by approximately 3 eV from the ionization threshold [31].
The internuclear separation where ionization takes place is the
equilibrium separation of the dimers; that is, R = 8.35 a.u. for
Xe2 and R = 7.73 a.u. for ArXe [13,31]. While the laser pulse
is applied, this separation may be assumed to be fixed, i.e.,
nuclear vibrational motion can be ignored.

From top to bottom Fig. 2 shows the photoelectron momen-
tum distributions for the SFI processes:

Xe → Xe+ + e−, (11)

Xe2 → Xe2
+ + e−, (12)

ArXe → ArXe+ + e−, (13)

measured at a light intensity of 8.0 × 1013 W/cm2. The
intensity has been determined from the measured cutoff kinetic
energy for rescattered electrons which amounts to ten times the
ponderomotive energy (10Up) in the ionization process (11)
[32]. The peak ponderomotive energy in the focused laser pulse
thus is Up = 4.55 eV. For all investigations reported here, the
polarization of the light pulses was linear, and the z axis of any
coordinate system used is assumed parallel to this direction. In
Fig. 2, pz thus is the momentum component along the polar-
ization axis, and pr = (p2

x + p2
y)1/2 is the absolute value of the

momentum vector projected onto the plane perpendicular to the
z axis. The distributions are rotationally symmetric about the
polarization vector. As pr tends to zero, the photoelectron yield
always decreases to zero, because the phase-space volume
element in a cylindrical coordinate system is proportional to
prdpr . This behavior is obviously present in Fig. 2.

The momentum distributions of the photoelectrons for SFI
of the Xe monomer and ArXe heteronuclear dimer are very
similar (top and bottom spectra). This result shows that SFI
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FIG. 2. From top to bottom: momentum distributions of photo-
electrons detected together with Xe+, Xe2

+, and ArXe+ ions at a
light intensity of 8.0 × 1013 W/cm2. The polarization of the laser
pulses was linear and directed along the z axis. The molecular
axis of the dimers was not aligned with respect to the direction of
polarization. The numbers on the color scale represent electron counts
per momentum bin.

of ArXe indeed means the Xe constituent of this dimer is
ionized. A similar behavior has been found for SFI of ArNe
dimers [15]. On the other hand, the momentum distribution
found for the Xe2 dimer (center spectrum in Fig. 2) sig-
nificantly differs from that of the Xe monomer. The most
obvious difference is the pronounced narrow yield maximum
at the momentum pr = pz

∼= 0 which is absent in the Xe
monomer and in the ArXe spectra. This behavior appears
independent of the light intensities used in our experiment
(5.0 × 1013–1.1 × 1014 W/cm2). The narrow maximum we
find here at pr = pz

∼= 0 has previously also been observed in
SFI of Ne2, Ar2, and Kr2 [15]. It was attributed to frustrated
tunnel ionization of the dimers where the electron excited in the
laser pulse first gets trapped in a Rydberg state of the molecule
at the end of the pulse. Subsequently this Rydberg electron is
shaken off by a charge oscillation in the dimer ion core [15]. A
charge oscillation in the ion core is brought about by coherently
populating gerade as well as ungerade eigenstates of the ion
core in the laser pulse which are found closely spaced at the
ionization threshold [21].

For a more quantitative comparison, we show in Fig. 3
the kinetic-energy distribution of the photoelectrons for SFI
of Xe, Xe2, and ArXe measured at the light intensity of
8.0 × 1013 W/cm2. Included in the figure are all electrons
emitted with a momentum p enclosing an angle θ with the
positive z axis (polarization direction) in the range between
160°and 180° (see Fig. 2). Corresponding to the light intensity
of 8.0 × 1013 W/cm2, the kinetic-energy range where directly
emitted photoelectrons dominate the spectrum is limited to
the interval 0 � Ekin � 2Up = 9.1 eV. The inset in the figure
shows an enlarged view of the kinetic-energy distribution
for SFI of Xe2 and ArXe on a linear scale to reveal the
main differences. As already mentioned in connection with
the two-dimensional momentum distributions in Fig. 2, the
kinetic-energy distribution for SFI of ArXe closely resembles

FIG. 3. Kinetic-energy distribution of photoelectrons detected
together with Xe+ (dashed line), Xe2

+ (black line), and ArXe+

(gray line) ions. Included are only those electrons emitted into the
solid-angle range 160◦ � θ � 180◦ and 0 � ϕ � 360◦ (θ is the polar
angle with respect to the pz axis; see Fig. 2). The inset shows the Xe2

(full line) and ArXe spectra (dotted line) in the energy range zero to
9 eV on a linear scale. In this range directly emitted photoelectrons
prevail, which have not rescattered on the ion core.

that for Xe up to 2Up. The main differences among the Xe,
ArXe, and Xe2 kinetic-energy distributions for directly emitted
photoelectrons are most obviously visible in the inset of Fig. 3.
Specifically in the energy range between approximately 1.5
and 6 eV, the yield of photoelectrons in the Xe2 spectrum
is significantly suppressed compared with that in the ArXe
spectrum. A similar suppression is thus also found with respect
to the photoelectron yield in the Xe spectrum in this kinetic-
energy range.

The suppression of the Xe2 photoelectron yield compared
with that for Xe in the kinetic-energy distributions shown in
Fig. 3 can be quantified by calculating the ratio r(Ekin) =
YD(Ekin)/YXe(Ekin). Here YD(Ekin) is the photoelectron yield
measured for the homonuclear and for the ArXe dimer,
respectively, and YXe(Ekin) is the yield measured for the Xe
monomer. For the determination of this ratio, the yield of all
photoelectrons emitted into the solid-angle range 160◦ � θ �
180◦ and 0 � ϕ � 360◦ (see Fig. 3) is taken into account.
The ratios as a function of the photoelectron kinetic energy
are shown in Fig. 4. We normalized them to unity at the
minimum of each curve shown. At each light intensity, we
marked the point where the kinetic-energy reaches 2Up, which
is the classical upper limit of the kinetic energy where directly
emitted photoelectrons are found. Beyond this kinetic energy,
virtually only photoelectrons which have rescattered on the ion
core contribute.

As can be seen in Fig. 4, the ratio for the Xe2 dimer
reaches a minimum at each light intensity which is well located
within the kinetic-energy range Ekin < 2Up where directly
emitted photoelectrons predominate. We may thus assume that
just these electrons are responsible for the formation of this
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FIG. 4. Ratios r(Ekin) of the dimer to monomer photoelectron
yields at laser pulse intensities in the range between 5.0 × 1013 and
11.0 × 1013 W/cm2. The ratio for the ArXe dimer is only shown at an
intensity of 8.0 × 1013 W/cm2. The ratios are normalized to unity at
the respective minimum of r(Ekin) at each intensity level. The squares
with the vertical bar on each curve indicate the point where the kinetic
energy reaches 2Up .

minimum. The position of the minimum shows a dependence
on the intensity of the laser pulses. It slightly shifts towards
larger kinetic energies with increasing light intensity. Also the
minimum gets shallower with increasing intensity. Towards
Ekin = 0, the ratio for Xe2 always increases steeply. In the
low-energy region Ekin � 1 eV, this increase may in large
parts be attributed to shake-off of a Rydberg electron as a
result of charge oscillation in the ion core after frustrated
tunnel ionization of Xe2 [15]. Figure 4 also shows that, after
passing the minimum, the photoelectron yield ratio further
increases also in the kinetic-energy range where rescattered
photoelectrons predominate (Ekin > 2Up).

The yield ratio for the ArXe dimer also shows a certain
variation with the kinetic energy in the range belowEkin = 2Up

with a shallow minimum developing close to Ekin ≈ 5.5 eV.
However, the ratio approaches a nearly constant value below
Ekin ≈ 3 eV whereas the ratio for the Xe2 dimer steeply
increases towards Ekin = 0. Beyond Ekin = 2Up, the ratio
for ArXe also continuously increases with increasing Ekin;
however, at a rate much smaller than that for Xe2 SFI at the
same light intensity (see Fig. 4).

Before we further discuss the possible origin for the devel-
opment of the minimum in the yield ratio for SFI of Xe2 and its
dependence on the laser pulse intensity, we calculate this ratio
for the model molecule. As will be seen, the calculation results
suggest a reasonable origin for the experimental findings.

B. Model calculation

With the assumptions made in Sec. III on the model
homonuclear dimer, we calculate the SFA transition probabili-
ties |M (1)

(+,−),i(p)|2 in Eq. (7) at a fixed internuclear separation of

R = 8.3 a.u., the equilibrium internuclear separation of Xe2.
We restrict ourselves to determining the transition probability
for photoelectrons emitted along the direction of linear polar-
ization of the laser pulse, which is assumed to be pointing along
the z axis of a suitably chosen laboratory frame of reference.
A laser pulse with n = 42 optical cycles and a cos2(πt/nT )
pulse envelope for the electric-field strength is assumed, where
T is the oscillation cycle width and −nT/2 � t � nT/2. This
number of cycles corresponds approximately to the actual
pulse width used in the experiment. The photon energy is cho-
sen in accordance with the experimental value h̄ω = 1.55 eV,
and the ionization potential to be that of the Xe atom. For the
energy-level splitting of the ionic state pair φI

+ and φI
−, which

corresponds to the φ̃D
+ and φ̃D

− Dyson orbital pair (4), we use
ε = ε+ − ε− = −0.4 eV. This splitting closely resembles the
actual energy-level splitting of the Xe2

+ ionic electronic state
pair I(1/2)u − I(1/2)g (notation according to Ref. [21]) at the
equilibrium internuclear separation of Xe2. The state I(1/2)u
is the Xe2

+ electronic ground state. To keep the SFA transition
matrix element in its simple form (7), with the two-center
interference explicitly revealed, the dipole transition moment is
chosen to be d = −R/2. This value is close to the actual one for
the I(1/2)u − I(1/2)g state pair [22]. The experimental random
alignment of the internuclear axis with respect to the laser pulse
polarization direction is taken into account by determining
|M (1)

(+,−),i(p)|2 for a set of alignment angles and averaging over
this set. The presence of a distribution of electric-field peak
amplitudes in the focal spot of the laser pulse is accounted for
by adding transition probabilities |M (1)

(+,−),i(p)|2 calculated for
a set of peak amplitudes weighed with the respective spatial
volume where they are present (assuming a Gaussian laser
beam profile).

Representative calculated momentum distributions
[|M (1)

(+,−),i(p)|2; see Eq. (7)] for photoelectrons emitted
along the laser beam polarization axis (z axis) are shown in
Fig. 5 at a light pulse peak intensity of 8 × 1013 W/cm2.
The full (black) curve represents |M (1)

+,i(p)|2 with the ion left
finally in the electronic state φI

+. The dashed (red) one shows
|M (1)

−,i(p)|2. It has the ion finally in the electronic state φI
−.

The photoelectron yield (arb. units) is plotted on a logarithmic
scale. The momentum interval displays ranges from zero
to one atomic unit. It covers the range up to the classical
upper momentum limit of directly emitted photoelectrons
being located at about 0.84 a.u. Significant differences are
observed for the momentum distributions. At pz = 0, the
transition probability |M (1)

+,i(p)|2 is approximately one order

of magnitude larger than the transition probability |M (1)
−,i(p)|2

whereas in the range between about 0.3 and 0.7 a.u., |M (1)
+,i(p)|2

appears suppressed compared with |M (1)
−,i(p)|2. According

to the transition matrix elements M
(1)
(+,−),i(p) [see Eq. (7)], a

result like this can be provided by the cos(R · p/2) term in
Eq. (7), in case the ionic state φI

+ is chosen to be the final one.
By contrast, the sin(R · p/2) term can give rise to the opposite
behavior in the case φI

− is the final state. A suppression
(φI

+) or, on the other hand, an enhancement (φI
−) should be

observable close to Rpz = π . With the internuclear separation
being R = 8.3 a.u., the corresponding momentum pz amounts
to just 0.38 a.u. It is close to the position of the suppression

023417-6



STRONG-FIELD IONIZATION OF XENON DIMERS: THE … PHYSICAL REVIEW A 97, 023417 (2018)

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

P
ho

to
el

ec
tro

n
Y

ie
ld

(a
rb

.u
ni

ts
)

Momentum (a.u.)

FIG. 5. Representative calculated momentum distributions
[|M (1)

(+,−),i(p)|2, see Eq. (7)] for photoelectrons emitted directly
(without rescattering) along the direction of polarization of the laser
pulse. The light pulse intensity is 8 × 1013 W/cm2. The full (black)
curve shows |M (1)

+,i(p)|2 [final ionic state φI
+, (+) according to Eq. (4)],

the dashed (red) curve shows |M (1)
−,i(p)|2 [final ionic state φI

−, (−)
according to Eq. (4)].

found in the momentum distribution for the situation where
the ionic state φI

+ is chosen to be the final one.
The influence of two-center interference, present in relation

(7) for M
(1)
(+,−),i(p) through cos(R · p/2) and sin(R · p/2), can

be more precisely quantified by calculating the ratios

r+(p) = |M (1)
+,i(p)|2

|M (1)
+,i(p)|2 + |M (1)

−,i(p)|2 ,

r−(p) = |M (1)
−,i(p)|2

|M (1)
+,i(p)|2 + |M (1)

−,i(p)|2 , (14)

for the final ionic state states φI
+ and φI

−, respectively. In the
denominator of Eqs. (14), two-center interference is eliminated
since it represents the total transition probability without
accounting for the final state, φI

+ or φI
−. The result for r+ for

photoelectrons emitted along the direction of polarization of
the laser pulse is shown in Fig. 6 plotted as a function of the
kinetic energy of the photoelectron Ekin = p2

z /2 (px = py = 0
is assumed). The basis for the calculation are the parameters
of the model dimer defined above and the light intensities used
in the experiment. To emphasize the effect of the cos(R · p/2)
and sin(R · p/2) terms appearing in M

(1)
(+,−),i(p), which vary

slowly with the kinetic energy, a low-pass filter was applied
to the ratio functions. It eliminates narrow features that would
otherwise mask the effect of interference.

At all light intensities between 5 × 1013 and 11 ×
1013 W/cm2 the ratio r+ (φI

+ being the final ionic state)
in Fig. 6 shows a pronounced local minimum located in
the kinetic-energy range between ≈2 eV and ≈7 eV. It is
accompanied by the shape of the ratio function changing with
the light intensity in the vicinity of the minimum. Towards
2Up, the classical upper limit for the kinetic energy of directly
emitted electrons (indicated in Fig. 6 by the vertical bars),

0 4 8 12

0.2

0.4

0.6

0.8

1.0

R
at

io

Kinetic Energy (eV)

11.0×1013 W/cm2

9.0×1013 W/cm2

8.0×1013 W/cm2

7.0×1013 W/cm2

5.0×1013 W/cm2

FIG. 6. Calculated ratio r+(Ekin) [see relation (14)] for electrons
emitted along the direction of polarization of the laser beam (px =
py = 0, Ekin = p2

z /2) at the light intensities used in the experiment.
The calculations were done for the model homonuclear dimer pa-
rameters specified in Sec. IV B. The vertical lines indicate the 2Up

positions for the different light intensities.

the increase of the ratio systematically shifts to higher kinetic
energies with increasing laser pulse intensity. Towards zero
kinetic energy, the ratio always increases in a similar way.
According to Eq. (6), r−(p) = 1 − r+(p). Thus, r−(p), where
φI

− is the final ionic state, shows the opposite behavior. Here a
minimum develops at Ekin = 0 and a maximum where r+(Ekin)
reaches its minimum value.

The result we find means that, depending on the final ionic
state, φI

+ or φI
−, either the integral I1 or I2 in relation (10),

remains small. In the case φI
+ is the final ionic state at the end

of the laser pulse, the absolute value of the time-dependent
amplitude |c1(t)| remains smaller than |c2(t)| during the whole
laser pulse, since in our case the energy-level splitting between
the two ionic states φI

+ and φI
− of 0.4 eV is significantly

smaller than the photon energy (1.55 eV). This, however, is
not sufficient to render |I1(p)| small or alternatively large
compared with |I2(p)|. Additionally, it is necessary that the
second summand in the integrand of the integrals I1,2(p) [the
term proportional to φ̃n,l,m(p + A(t)/c), the Fourier transform
of the atomic orbital] contributes only little to the integral
compared with the first one. The calculation actually shows
just this behavior.

An approximate expression for the transition matrix ele-
ment (7) would thus be

M
(1)
(+,−),i(p) ≈ −

√
2 cos

(
R · p

2

) ∫ Tf

Ti

dt exp [iχ̄ ]c∗
2(t)

× ∂

∂t

[
φ̃n,l,m

(
p + A(t)

c

)]

+
√

2 sin

(
R · p

2

) ∫ Tf

Ti

dt exp [iχ̄ ]ic∗
1(t)

× ∂

∂t

[
φ̃n,l,m

(
p + A(t)

c

)]
. (15)
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The corresponding monomer SFA transition matrix element for
ionization of the same atomic Dyson orbital φ̃n,l,m(p) used for
construction of the dimer orbitals for directly emitted electrons
just reads

M
(1)
f,i (p) ∝

∫ Tf

Ti

dt exp [iχ̄ ]
∂

∂t

[
φ̃n,l,m

(
p + A(t)

c

)]
. (16)

Comparing this to the approximate dimer, transition matrix
element (15) shows that the main difference between monomer
and dimer SFA is actually the presence of interference due to
the cosine and sine functions and the driving of ionic transitions
represented by c1(t) and c2(t) in Eq. (15). This applies to the
off-resonance situation (h̄ω is larger than the ionic energy-
level difference |ε+ − ε−|) discussed here. It changes under
close resonance conditions where the amplitudes ci(t), i = 1,2
reach similar values or even exchange significance in certain
time intervals while the laser pulse is applied. Under these
conditions, the approximation (15) to the SFA matrix element
for the dimer no longer applies.

A simple situation arises for a degenerate ionic electronic
state pair φI

+ and φI
− [ε = 0 in Eq. (8)]. According to Eq. (8),

the amplitudes c1 and c2 then become time independent.
Provided the approximation (15) to the dimer SFA transition
matrix element applies, it just reduces to a simple product of
the interference factor cos(R · p/2) with the corresponding
atomic transition matrix element (16) for φI

+ being the final
dimer ion electronic state. By contrast, if φI

− acts as the final
ionic state, one just gets the product of sin(R · p/2) with
the atomic transition matrix element (16). Different from the
nondegenerate situation, the interference pattern then becomes
stationary, i.e., completely independent of the intensity of the
laser pulse. A similar result has been found earlier for the
ionization of a one electron homonuclear molecule with a
degenerate initial gerade or ungerade electronic state pair at
large internuclear separation [33].

V. DISCUSSION

Comparing the experimentally determined ratios r(Ekin) =
YXe2 (Ekin)/YXe(Ekin) (see Sec. IV A and Fig. 4) for photo-
electrons detected together with Xe2

+ and Xe+ ions with the
calculated ratios for the model dimer with the ion left in the
ionic state φI

+ (ungerade ionic state, Fig. 6), one observes
striking similarities in the kinetic-energy range where directly
emitted photoelectrons are found. The minimum in the ratios
develops at comparable kinetic energies. Also, the energy range
where the ratio is low becomes wider in both cases, and the
rising of the ratio towards high kinetic energies becomes less
steep with increasing light intensity. It may thus be concluded
that two-center interference and the dynamical evolution in
the ion, driven by the laser pulse, which is responsible for
this behavior of the ratios for the model dimer, explains the
experimental observation. Reasoning in this way, one has to
keep in mind that there are subtle differences in the ways
the ratios are calculated from the experimental momentum
distributions and in the model calculation.

The experiment provides momentum distributions for pho-
toelectrons detected either together with Xe2

+ or with Xe+

ions. Since Xe and Xe2 have practically the same ionization

potential, and the atomic constituents of the dimer are only
slightly perturbed Xe atoms in the Xe2 electronic ground
state, the main difference between Xe and Xe2 SFI is the
presence of the two-equivalent-center structure of the dimer
and the presence of closely spaced ionic states with large
transition dipole moments at the ionization threshold of Xe2

which are absent for the atom. This conclusion is supported by
the photoelectron momentum distribution of the ArXe dimer.
It is very similar to that of the Xe monomer at the light
intensities used here, where SFI of the Ar site of the dimer
is practically negligible (see Figs. 2 and 3). The experimen-
tally determined ratio r(Ekin) = YXe2 (Ekin)/YXe(Ekin) is thus
expected to reveal just this difference; namely, interference and
driving of ionic transitions. In the experiment, this ratio is the
only way to access these effects since we are not able to detect
photoelectrons in coincidence with specific Xe2

+ electronic
states.

Two-center interference can affect the experimental photo-
electron momentum distributions only when the laser pulse
does not create an equal distribution of the detected Xe2

+

ions over any accessible gerade and ungerade ionic electronic
state pair. This disparate distribution may either be induced
by the SFI process itself or by subsequent dissociation of
Xe2

+ into Xe+ and Xe before Xe2
+ reaches the ion detector.

The second possibility may be the most significant one,
since several of the relevant ionic electronic states are either
purely dissociative or have only a shallow potential minimum
[21]. The shapes of the experimentally determined ratios
r(Ekin) = YXe2 (Ekin)/YXe(Ekin) (Fig. 4) and the shapes of the
calculated ones (Fig. 6) for the model dimer thus imply that
the photoelectrons detected together with Xe2

+ ions have the
ion overwhelmingly in an ungerade electronic state; that is,
probably in the electronic ground state I(1/2)u, which has the
deepest potential well [21].

In comparing any details of the experimentally determined
and the calculated ratios, one should also keep in mind that
they do not represent the same quantity. Experimentally, the
denominator of the ratio is the photoelectron momentum
distribution for SFI of the Xe atom, whereas the calculation
uses |M (1)

+,i(p)|2 + |M (1)
−,i(p)|2 [see Eqs. (14)]. Both denom-

inators share the feature of not being influenced by two-
center interference effects. However, the denominator in the
model calculation still incorporates the effect of transitions
between the two electronic states φI

+ and φI
− of the dimer

ion induced by the applied laser pulse. This contribution is
absent when calculating the experimental ratio. Moreover,
the model is restricted to the most basic situation which
allows interference effects to appear; namely, one gerade
and ungerade molecular Dyson orbital pair together with the
accompanying ionic state pair. On the other hand, the actual
Xe2

+ dimer shows altogether six closely spaced electronic
states split by spin-orbit interaction with large transition dipole
matrix elements between most of these states at the equilibrium
internuclear separation of the Xe2 dimer [21,22]. Also, the
Xe2

+ states are based not only on σ orbitals as assumed in the
calculation but also π orbitals are present [21]. Nevertheless,
the reduced model is able to attribute experimentally observed
features to two-equivalent-center interference and tentatively
to driving ionic transitions during application of the laser
pulse.
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VI. CONCLUSION

In conclusion, a simplified SFI model for homonu-
clear dimers, based on an ionic two-level system, which
we presented here, reproduces the overall behavior of the
experimentally found photoelectron yield ratio r(Ekin) =
YXe2 (Ekin)/YXe(Ekin) below the classical 2Up limit of the
kinetic energy where mainly directly emitted photoelectrons
are found after SFI of Xe2. The ratio and its dependence on
the laser pulse intensity reveal two-equivalent-center interfer-
ence and indicate the presence of driving ionic transitions
during SFI. To be able to describe the experimental results
at large internuclear separation R correctly, specifically two-
equivalent-center interference in homonuclear molecules by
employing the length gauge in the calculation, as we did, it
is necessary to take into account ionic state pairs of gerade
and ungerade symmetry. At large R, always closely spaced
pairs of this kind are found at the ionization threshold of
homonuclear molecules. In employing the length gauge these
pairs of ionic states are coupled by a large dipole matrix
element which tends to be proportional to R with increasing
internuclear separation. Because of this coupling restricting
the SFA to only one ionic final state cannot correctly account
for two-equivalent-center interference in SFI in this gauge
(see, for example, also a similar situation in Ref. [33]). A
complete calculation for the noble gas dimers would need
to take into account two ionic state pairs; namely, 2�g,u and
2�g,u, together with the spin-orbit interaction coupling these
states. The main features, however, are already present in the
simplified calculation used here to model the experimental
result. We thus are convinced that the differences found
in the experimental photoelectron momentum distributions
originating from SFI of Xe2 and Xe up to Ekin ≈ 2Up are
actually due to two-equivalent-center interference for directly
emitted photoelectrons. The dependence of the experimentally
determined ratio r(Ekin) = YXe2 (Ekin)/YXe(Ekin) (Fig. 4) on
the photoelectron kinetic energy combined with the model
calculation indicates that the corresponding detected ion is left
mainly in an ungerade electronic state. This state is probably
the ion ground electronic state I(1/2)u.

Deeper insight into the interference phenomenon for pho-
toelectrons emitted directly by SFI can be gained by aligning
the noble gas dimers prior to SFI. According to the expression
(7) for the SFA transition matrix element, one expects to get
significantly different photoelectron momentum distributions
for the internuclear axis either being aligned parallel or per-
pendicular with respect to the electric field of the laser pulse.

APPENDIX: STRONG-FIELD APPROXIMATION
TRANSITION MATRIX ELEMENT

The general SFA transition matrix element Mf,i for directly
emitted electrons from an initial state φi to a final continuum
state φf at the end of a laser pulse is given by (see, for example,
Refs. [34,35])

M
(1)
f,i = −i

∫ Tf

Ti

dt〈φf |Ũ0(Tf ,t)V (t)U0(t,Ti)|φi〉, (A1)

where Ũ0(t,t0) and U0(t,t0) are two time evolution operators
for two different partitionings of the Hamiltonian H (t) of

the atomic system into “zero-order” terms H0(t), H̃0(t) and
interaction terms (“perturbations”) V (t), Ṽ (t) [35]. U0(t,t0)
satisfies the time-dependent Schrödinger equation

i
∂U0(t,t0)

∂t
= H0(t)U0(t,t0), (A2)

and Ũ0(t,t0) a corresponding one. According to the SFA,
we choose H0(t) to be the time-independent Hamiltonian
of the unperturbed neutral atomic system H0(t) = HN with
U0(t,Ti)φi = exp[−iEi(t − Ti)]φi . Here, Ei is the energy
of the initial ground state φi where SFI starts. Then V (t)
represents the interaction of the atomic system with the laser
pulse which we will treat in the length gauge V (t) = −E(t) ·∑n

k=1 xk for n electrons [E(t) is the electric field of the laser
pulse, xk is the position vector of electron k]. The final state
φf at the end of the laser pulse represents an ion core in
a specific bound state φion and an electron in the ionization
continuum, which will be represented by a plane wave φn

p =
(2π )−3/2 exp(ip · xn) with the assumption that electron n is
ionized. For the continuum electron, this corresponds to the
usual SFA assumption. Ignoring antisymmetrization, the final
state is then the product of the ionic and plane-wave states
φf = φion

f φn
p . H̃0(t) is chosen to be

H̃0(t) =
[
HI − E(t) ·

n−1∑
k=1

xk

]
+

[
p2

n

2
− E(t) · xn

]
. (A3)

The first square bracket on the right-hand side represents the
complete ionic Hamiltonian HI and the ion–laser-pulse inter-
action. The second one represents a free-electron interacting
with a laser pulse. The interaction term Ṽ (t) would thus be the
Coulomb interaction of the continuum electron with the ion
core. This will then not affect the basic SFA transition matrix
element (A1). According to Eq. (A3), the ion core and the
continuum electron in the externally applied field can thus be
propagated independently. For the final state in Eq. (A1), this
means

Ũ0
(
t,Tf

)
φf = [

ŨI,0(t,Tf )φion
f

][
ŨV (t,Tf )φn

p

]
. (A4)

ŨV (t,Tf )φn
p is the Volkoff state of a free electron in a laser

pulse. In the length gauge used here, it reads

ŨV

(
t,Tf

)
φn

p =(2π )−3/2 exp

[
i

(
p + A(t)

c

)
· xn

]

× exp

[
− i

2

∫ t

Tf

dt ′
(

p + A(t ′)
c

)2
]
, (A5)

where A(t) is the vector potential corresponding to the electric
field E(t). They are related by E(t) = −(1/c) ∂A(t)/∂t (c is
the velocity of light).

For our purposes, we restrict the ion to a system of M

bound eigenstates φI
j , j = 1, . . . ,M of the unperturbed ionic

Hamiltonian HI (HIφ
I
j = EI

j φ
I
j ), and the final state φion

f is
supposed to be one of these. ŨI,0(t ′,Tf )φion

f then can be
expressed as

ŨI,0(t,Tf )φion
f =

M∑
j=1

aj (t)φI
j , (A6)
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with aj (t), j = 1, . . . ,M being a solution of the ionic time-dependent Schrödinger equation restricted to the subspace spanned
by {φI

1 , . . . ,φI
M} and φion

f = φI
j0

for some j0 = 1, . . . ,M .
With these assumptions, the SFA transition matrix element (A1) is finally approximated by

M
(1)
f,i (j0,p) ∼= −

M∑
j=1

∫ Tf

Ti

dta∗
j (t) exp[iχ (t,p,Tf ,Ti)]

∂

∂t

[
φ̃D

j

(
p + A(t)

c

)]
, (A7)

with φ̃D
j (p) being the Fourier transform of the Dyson orbital φD

j (xn) defined by

φ̃D
j (p) = 1

(2π )3/2

∫
d3xn exp(−ipxn)φD

j (xn), (A8)

φD
j (xn) =

∫
d3x1 · · · d3xn−1φ

I∗
j (x1, . . . ,xn−1)φi(x1, . . . ,xn), (A9)

and the phase χ (t,p,Tf ,Ti) being given by

χ
(
t,p,Tf ,Ti

) = 1

2

∫ t

Tf

dt ′
(

p + A(t ′)
c

)2

− Ei(t − Ti). (A10)

The SFA transition matrix element (A7) depends on the final bound ionic state φI
j0

and on the momentum p of the continuum
electron. The amplitudes aj (t) in Eq. (A7) will result in an effect of driving ionic transitions on the momentum distribution,
specifically if several dipole coupled ionic states are found close to the ionization threshold with energy-level spacings close to
the photon energy. The matrix element (A7) is the starting point for calculating the effect of two well-separated emission centers
on the momentum distribution of directly emitted photoelectrons for model homonuclear noble gas dimers.
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