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Ferroelectric nanotraps for polar molecules
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We propose and analyze an electrostatic-optical nanoscale trap for cold diatomic polar molecules. The main
ingredient of our proposal is a square array of ferroelectric nanorods with alternating polarization. We show
that, in contrast to electrostatic traps using the linear Stark effect, a quadratic Stark potential supports long-lived
trapped states. The molecules are kept at a fixed height from the nanorods by a standing-wave optical dipole trap.
For the molecules and materials considered, we find nanotraps with trap frequency up to 1 MHz, ground-state
width ∼20 nm with lattice periodicity of ∼200 nm. Analyzing the loss mechanisms due to nonadiabaticity,
surface-induced radiative transitions, and laser-induced transitions, we show the existence of trapped states with
lifetime ∼1 s, competitive with current traps created via optical mechanisms. As an application we extend our
discussion to a one-dimensional (1D) array of nanotraps to simulate a long-range spin Hamiltonian in our structure.
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I. INTRODUCTION

Ultracold atoms and molecules trapped in optical potentials
constitute a versatile toolbox for simulating a plethora of
Hamiltonians [1]. The energy scale for such trapping is set by
the optical wavelength and laser strength. To go beyond this
energy scale, there is a recent surge in investigations of trapping
atoms in subwavelength lattices. Most of these studies concen-
trate on hybrid atom-dielectric systems and the use of vacuum
forces to achieve lattice constants on the order of ∼50 nm
[2,3]. Naturally, a pertinent question in this regard is to extend
such trapping schemes for polar molecules, which because of
their rich internal structure and potentially strong interactions
have raised considerable interest as a basis for quantum com-
putation and simulation [4–6]. Additionally, the presence of a
permanent dipolar moment in such molecules is responsible
for a plethora of exotic physics with applications in quantum
engineering [7–10] and precision measurements [11]. The use
of a nanoscale trap can be beneficial for these applications
because of its increased energy scale. For a comparison, in typ-
ical optical lattices (λ ∼ 1.06 μm) with a microwave-coupled
RbCs molecule, the maximum nearest-neighbor interaction
energy is on the order of ∼0.5 kHz (30 nK). Since the dipolar
interaction falls off as a cubic power of distance and a threefold
decrease in lattice constant will result in a 27-fold increase of
interaction strength. This energy scale can potentially give rise
to ∼104 gate operations, within a typical molecule lifetime
of ∼1 s, for quantum information processing applications.
Another advantageous consequence of nanoscale confinement
originates from the reduced tunneling and overlap between
neighboring sites, a possible mechanism for suppression of
molecular complex formation [12]. We propose a setup to
create a subwavelength trap for cold rovibrational ground-state
polar molecules which are prepared, e.g., in optical lattices
[13,14]. Ferroelectric materials can provide a natural basis for
such traps. Nanoscale ferroelectricity is a source of intense re-
search because of its potential application as nonvolatile mem-
ories, sensors, etc. [15]. It has been found that monodomain

ferroelectricity survives for nanorods with radius down to
∼20 nm [16–18]. Taking advantage of state-of-art lithography
and nanotechnology [19–25] techniques, it is possible to create
a periodic array of ferroelectric nanorods. Moreover, using
cantilever tips or external loads, polarization of each nanocell
can also be controlled externally [26,27]. This enables, in
principle, the design of potential landscapes to trap polar
molecules.

In this paper, we propose an electrostatic-optical trap for
rigid-rotor 1� diatomic polar molecules. The subwavelength
trap is provided by the electric field created by a periodic
arrangement of ferroelectric nanorods. An optical potential
is used to prevent the molecules from moving away from
the nanostructure. We show that it is possible to obtain a
nanometer-sized trap for molecules in high-field-seeking states
with a lifetime on the order of seconds. Such lifetime is
achieved by the virtue of two ingredients: (i) the existence
of a trapped state with negligible nonadabatic (Majorana) loss
and (ii) the suppression of additional losses due to hyperfine
mixing by applying a strong magnetic field on the order of a
few Tesla for 1D trapping.

At this point, we like to stress that trapping molecules using
electrostatic force has a long history [28]. In most of these
studies, the molecules are trapped using linear Stark shift.
Such traps suffer from Majorana losses near the trap center
owing to their kinetic origin [29]. Therefore, reducing the trap
size to the nanometer (nm) regime in general will make the
molecules extremely short-lived (lifetime on the order of few
microseconds or less). In our proposal, the trapping potential
originates as a second-order perturbative effect (quadratic
Stark shift). By analyzing the quantum motion, we show
the presence of motional states in which the nonadiabatic
coupling is weakened considerably by destructive interference.
Additionally, we discuss molecule loss due to both vacuum
photons and thermal phonons in the presence of a substrate.
We finish the article by a proposal to simulate a long-range
XX spin Hamiltonian.
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The paper is arranged as follows: We present the hyperfine
and rotational structure of a 1� molecule in Sec. II; in
particular, we consider 87Rb133Cs (RbCs) as a paradigmatic
example. In Sec. III, we present our ferroelectric structure
corresponding to a 0D arrangement of nanorods. Section IV
contains a detailed analysis of the 0D electric field and its
trapped states. In Sec. V, we close the trap in the Z direction by
adding a suitable laser field. Additionally, we sketch a method
for electrostatically trapping the general molecules. The main
loss mechanisms (nonadiabatic and hyperfine-induced losses
and losses due to nanostructure and laser field) are discussed
and shown to be small in Secs. VI and VII. Sections VIII and IX
consider the extension to a 1D system and propose a quantum
simulator using our traps.

II. MOLECULAR HAMILTONIAN

Here we consider a rigid-rotor 1� diatomic molecule
amenable to laser cooling. The molecular Hamiltonian in the
electronic and vibrational ground state is given by [30]

Hmol = h̄Be N2 +
∑

i

ci I i · N + c4 I1 · I2 + HQ + Hmag,

HQ =
∑

i(eqQ)i
[
3(I i · N)2 + 3

2 (I i · N) − N2 I2
i

]
2Ii(2Ii − 1)(2N − 1)(2N + 3)

, (1)

Hmag = −grμN N · �B − μN

∑
i

gi(1 − σi)I i · �B,

where the first term gives the rotational spectrum where N is
the total angular momentum operator and Be is the rotational
constant. The second term takes into account interaction of the
rotational angular momentum with the nuclear spins and the
third term denotes the direct interaction between the nuclear
spins. As we are interested in diatomic molecules, the total
nuclear spin operators of the two atoms are denoted by I1,2.
The Hamiltonian HQ denotes quadrupole interaction with
coupling constants (eqQ)1,2. The last term in the Hamiltonian
denotes the Zeeman term in the presence of a magnetic field
�B where gr is the rotational g factor of the molecule and
g1,2 are the nuclear g factors with typically g1,2 � gr . In the
present paper, we apply a magnetic field along the Z direction,
�B = B0Ẑ. A full description of the internal molecular state is
then denoted by |N ,MN ,I1,MI1 ,I2,MI1〉, where, N2|N ,

MN 〉=N (N+1)|N ,MN 〉,NZ|N ,MN 〉=MN |N ,MN 〉,
N ∈ [0,1,2, . . . ], − N � MN � N and the same for the
nuclear spin operators.

As a first step, we diagonalize the Hamiltonian in Eq. (1) for
the 87Rb133Cs molecule (I1 = ICs = 7/2,I2 = IRb = 3/2).
The hyperfine constants are taken from Ref. [31]. We are
especially interested in the rotational levels N = 1,MN =
±1. This justification for choosing such state will be clarified
in Sec. IV. Moreover, for the present purpose we ignore
coupling to the N = 1,MN = 0 state, which can be detuned
by application of laser fields (see Sec. V A). For concreteness,
we chose the magnetic field B = B0 such that the two lowest
energy states are almost degenerate. These states are

|α0〉 = |1,1,7/2,3/2〉 ,

|β0〉 ≈ (1 − δ2/2) |1,−1,7/2,3/2〉 − δ |1,1,7/2,−1/2〉 ,

(2)

where δ � 1, and |α0〉 is the maximally polarized state
which has no quadrupolar coupling. On the other hand,
the |1,−1,7/2,3/2〉 state is coupled to |1,1,7/2,−1/2〉 via
HQ. Without the magnetic field, such coupling will lead to
an equal superposition of these states. Moreover, the Hmol

eigenvalues for the states |α0〉 , |β0〉 are ≈2h̄Be − E0 − �hf/2,
and ≈2h̄Be − E0 + �hf/2, where E0 is the energy and �hf

is the detuning due to hyperfine and Zeeman Hamiltonian of
Eq. (1).

For future use (see Sec. IV), we will also consider the
energy eigenstates in which |1,±1,7/2,−1/2〉 has the majority
contribution:

|α1〉 ≈ (
1 − δ2/2 − δ2

1/2
)|1,1,7/2,−1/2〉 + δ1|1,1,5/2,1/2〉

+ δ|1, − 1,7/2,3/2〉,
|β1〉 ≈ (

1 − δ2
1/2
)|1,−1,7/2,−1/2〉 + δ1|1,−1,5/2,1/2〉,

(3)

where δ1 � 1 and |α1〉 , |β1〉 are Hmol eigenstates with eigenen-
ergies 2h̄Be − E1 − �hf/2 ≈ 2h̄Be − E1 + �hf/2, where E1

is the energy contribution from the hyperfine and Zeeman
Hamiltonian. In Sec. IV, we will see that these states are
coupled to |α0〉 , |β0〉 by the electric field of the ferroelectric
rods. For future use, we introduce a shorthand notation for
the nuclear spin quantum numbers by the collective symbol,
Icol ≡ {ICs,MICs ,IRb,MIRb}, and as a result a general state is
written as

|N ,MN ,Icol〉 ≡ ∣∣N ,MN ,I1,MI1 ,I2,MI1

〉
. (4)

III. POLAR MOLECULES NEAR 0D FERROELECTRIC
NANOSTRUCTURES

Our system consists of a symmetric arrangement of polar-
ized ferroelectric nanorods. The elementary structure consists
of four cylindrical nanorods centered around each corner of
a square as shown in Fig. 1(a). Each nanorod has a radius
rd and height h � rd. Within a cell, neighboring nanorods
are separated by a distance ad . The unit vectors X̂ and Ŷ

along the plane of the cell are shown in the second panel of
Fig. 1(a). We measure Z from the top surface of the nanorods
and denote the centers of the four rods by (mx,my)ad/2 ≡
�Fm,mi = ±1, respectively. We consider an antiferroelectric

arrangement where polarization of each rod is given by Pm =
(−1)(mx+my )/2P . From now on, we scale all distances by the
nanorod radius rd unless otherwise explicitly specified. In this
paper, such nanorod arrangement is referred to as 0D structure.

We study polar molecules near such ferroelectric nanos-
tructures. In general, our model Hamiltonian is given by
Hsys = Hkin + Hmol + Hmf , where Hkin is the kinetic energy
of the center of mass of the molecule, Hmol is given in Eq. (1)
and Hmf denotes the interaction between a single molecule and
a nanostructured cylinder.

A. Molecule-ferroelectric interaction

First, we set the notation for the molecular position as
ρ = ( �R,Z), where the transverse vector �R ≡ (X,Y ). The
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FIG. 1. (a) Left panel: Side view of our primitive cell is shown.
Each nanorod is made of ferroelectric material. The red and blue
colors of the rods denote the ±Ẑ direction of the ferroelectric
polarization, respectively. We place a dipolar molecule at a height
Z above the top of the nanorods. We illuminate the system by
counterpropagating optical laser fields, which provide a trap for the
molecule along the Z direction. Moreover, we apply a static magnetic
field B0Ẑ to minimize hyperfine loss. Right panel: Top view of our
primitive cell. We define the local polar coordinate system. (b) We
arrange the primitive cells periodically along the X axis. Notice the
π/2 rotation of the ferroelectric arrangement between neighboring
cells. The periodicity of the cells is denoted by alatt .

molecule-ferroelectric interaction is given by the dipole Hamil-
tonian and expressed as

Hmf = −αmf

[
EZ[ �ρ]T 1

0 + E−[ �ρ]
T 1

1√
2

+ E+[ �ρ]
T 1

−1√
2

]
, (5)

where T 1
0 = cos θin, T 1

±1 = sin θine
±iφin/

√
2 are the spherical

tensors of rank 1 denoting the internal coordinates of the
molecule and only act on the rotational states |N ,MN 〉. The
molecular axis in the laboratory frame is defined by the angles
to the Z axis and its projection to the X axis, θin,φin. Here,
EZ[ �ρ] is the Z component of the electric field and E±[ �ρ] =
(EX[ �ρ] ± iEY [ �ρ]) are its azimuthal components. We should
note that electric fields are dimensionless in our units. We
define the effective molecule-ferroelectric coupling strength,
αmf = μP

4πε0
, where μ is the permanent dipole moment of the

molecule. For RbCs molecules, the dipole moment is given by
μ = 1.22 Debye [32].

After carrying out integration over the height of the
nanorods, the field strength at �ρ due to the ferroelectric nanorod

at position (mxad,myad ) reads

EZ[m; �ρ] = −
∫

d�r(ZE[Z] − (Z + h)E[Z + h]),

E−[m; �ρ] = −e−iφ̃m

∫
d�r(E[Z + h] − E[Z])

× (Rm − re−i(φ−φm)),

E[Z] = 1

(Z2 + | �Rm − �r|2)3/2
, (6)

where �Rm = �R − �Fm, m ≡ (mx,my) and tan φm = (Y −
myad )/(X − mxad ) and we have defined a local polar coor-
dinate around each nanorod axis �r ≡ (r,φ). The integral is
defined as

∫
d�r = ∫ 1

0 rdr
∫ 2π

0 dφ. The total field components
are given as the sum of the contributions of all nanorods by
EZ[ �ρ],E−[ �ρ]:

Eη[ �ρ] =
∑

m

(−1)
mx+my

2 Eη[m; �ρ] (η = Z,−). (7)

For the azimuthal electric fields, E+[ �ρ] = E∗
−[ �ρ]. From the

expression in Eq. (6), it is clear that each ferroelectric nanorod
can be effectively substituted by opposite surface charges at
the top and bottom of the nanorods.

To treat the effect of ferroelectric nanorods on the molecular
motion and identify the trap provided by the proposed arrange-
ment, we operate in a regime with αmf |E±[ �ρ]|,αmf |EZ[ �ρ]| �
h̄Be, which allows us to carry out a second-order perturbation
analysis for each N manifold. Note that selection rules imply
that 〈N | Hmf |N ′〉 ∝ δN ′N±1. Moreover, we neglect the detun-
ing effect of hyperfine splitting as c1,2,c4,(eqQ)1,2,μNB0 �
Be and suppress the hyperfine structures of the molecular state
in the notation. From the Hamiltonians in Eqs. (1) and (5), we
derive an effective potential of the form

V N = α2
mf

2h̄Be

(
E+[ �ρ]E−[ �ρ]V N

⊥ + E2
−[ �ρ]V N

+ + E2
+[ �ρ]V N

−

+E2
Z[ �ρ]V N

Z + EZ[ �ρ]E−[ �ρ]V N
Z++EZ[ �ρ]E+[ �ρ]V N

Z−
)
,

(8)

where V N
− = [V N

+ ]†,V N
Z− = [V N

Z+]† and

V N
⊥ =

∑
η=±1

∑
N ′,MN ′

T 1
η |N ′,MN ′ 〉 〈N ′,MN ′ | T 1

−η

EN − EN ′
,

V N
+ =

∑
N ′,MN ′

T 1
1 |N ′,MN ′ 〉 〈N ′,MN ′ | T 1

1

EN − EN ′
,

V N
Z =

∑
N ′,MN ′

T 1
0 |N ′,MN ′ 〉 〈N ′,MN ′ | T 1

0

EN − EN ′
,

V N
Z+ =

∑
η,η′=0,1

η �=η′

∑
N ′,MN ′

T 1
η |N ′,MN ′ 〉 〈N ′,MN ′ | T 1

η′

EN − EN ′
. (9)

While deriving Eq. (8), we have made the assumption that the
molecular center-of-mass motion is adiabatic; i.e., it is slow
compared to the rotational splitting. In Appendix B, we discuss
the nonadiabatic corrections to this approximation.

023416-3



OMJYOTI DUTTA AND G. GIEDKE PHYSICAL REVIEW A 97, 023416 (2018)

FIG. 2. Electric field distribution of the 0D nanorods arrangement as in Fig. 1 with Nf = 0 and ad = 2.25. (a) The magnitude of the azimuthal
field distribution E−[ �ρ] in the XY plane is shown for Z = 15. At the center of the square, the electric field vanishes due to the reflection and π/2
rotational symmetries. Moreover, we define a local polar coordinate from the center of each square: (R,ϕ). For R � 1, the E[ �ρ] field magnitude
grows linearly with R. The black dashed lines denote boundaries of the nanorods along the XY plane. (b) The argument of E−[ �ρ] is shown.
We clearly see that in terms of the local polar coordinate, E−[ �ρ] ≈ ieiϕ . (c) The field distribution of EZ is plotted. The Z field has maximum
magnitude along the two diagonals and has a angular distribution ∝ sin 2ϕ. (d) |E−[ �ρ],EZ[ �ρ]| are plotted as a function of distance along the
diagonal from the center.

IV. 0D NANOTRAPS FOR MOLECULES

First, we investigate the simplest ferroelectric geometry
consisting of only four nanorods; i.e., the 0D structure intro-
duced above, cf. Fig. 1. As we shall see, this configuration can
laterally confine molecules in a suitable internal state to the
center of the arrangement; hence we call it a 0D nanotrap. To
obtain this result, we consider the form of the electric field
at the center of the square. We can gain useful insights from
symmetry arguments: The field sources change orientation
under rotation (around the Z axis) by π/2 as well as under
reflections either at Y = 0 or at X = 0. This constrains the
Fourier series of the azimuthal field component (written using
in-plane polar coordinates R,ϕ, collectively referred to as
�R) E−(ϕ,R,Z) = ∑

l cl(R,Z)eilϕ (cf. Appendix A): Only the
coefficients cl with l = 4j + 1 may be nonzero and they are
imaginary and odd functions of R. Specifically, we have that
c−1[R,Z] = c3[R,Z] = 0.

Moreover, note that as the electric field is nonsingular,
we have in general that cn[R,Z] ∝ Rn as R → 0. Thus,
c1[R,Z] ∝ R for small R. For the Z components, we can
similarly show that it contains only even powers of R and
by Gauss’s law ∇ · �E = 0 we have EZ[ϕ,R,Z] ∝ O[R2] for

small R. Such electric fields resemble a traditional quadrupolar
field configuration. For illustration purposes, we plot the field
distributions in Fig. 2. In Figs. 2(a) and 2(b) amplitude and
argument of the azimuthal field is shown. For R < ad/2, we
indeed notice that E−[ �ρ] ∝ ieiϕ . The linear dependence of
E−[ �ρ] with R is clearly seen in Fig. 2(d) as is the angular
dependence of EZ[ �ρ] in Eq. (10) in Fig. 2(c). Moreover, EZ[ �ρ]
depends quadratically on R to the leading order as can be
verified from Fig. 2(d).

Thus we find for small R for the field given in Eq. (7) that

E−[ �ρ] ≈ iR(f⊥[ad,Z] + f1⊥[ad,Z]R2) exp[iϕ]

+ if−3[ad,Z] exp[−3iϕ]R3 + O[R5],

EZ[ �ρ] ≈ fz[ad,Z]R2 sin[2ϕ] + O[R4], (10)

where Gauss’s law leads to the form of EZ[ �ρ] with
∂Zfz[ad,Z] − 3(2f1⊥[ad,Z] + f−3[ad,Z]) = 0. We use
f⊥[ad,Z],f1⊥[ad,Z],f−3[ad,Z] as fitting functions which
we obtain numerically and which are shown in Fig. 3.
It is clear that the largest parameter is f⊥[ad,Z],
corresponding to the linear dependence of the azimuthal
electric field with R as f1⊥[ad,Z]/f⊥[ad,Z] ∼ 10−2, and
f−3[ad,Z]/f⊥[ad,Z] ∼ 5.0 × 10−3. Moreover, we see that
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FIG. 3. We plot the fitting functions in Eq. (10) as a function of ad and Z. Left panel, f⊥[ad,Z]; middle panel, −f1⊥[ad,Z]/f⊥[ad,Z]; and
right panel, f−3[ad,Z]/f⊥[ad,Z].

by increasing the lattice constant one increases f⊥[ad,Z]
and simultaneously one decreases the relative strength of
the fitting functions associated with R3 scaling, whereas by
increasing Z, we see a decrease in each fitting function due to
the scaling of the dipolar interaction.

As the electric fields vanish as R → 0, we can write the
effect of the ferroelectric nanorods within perturbation theory
as presented in Eq. (8). We consider the first excited rotational
level N = 1 manifold with M1 = ±1. The MN = 0 state is
excluded from further consideration due to its large shift in en-
ergy from the MN = ±1 as will be shown later. Moreover, for
R < ad/2, theE±[ �ρ] field components are dominant compared
to EZ[ �ρ], which is then neglected at first. Subsequently we
only keep the V 1

⊥,V 1
± from Eq. (8). Using the state description

of Eq. (4), we find that the effective potential is

V 1
rad = f 2

⊥[ad,Z]α2
mf

40h̄Be

R2
∑

M1=±1
Icol

(|1,M1,Icol〉 〈1,M1,Icol|

− 3e2iM1ϕ |1,M1,Icol〉 〈1, − M1,Icol|
)
, (11)

where we have used the expression for E±[ �ρ] from Eq. (10),
retaining the leading term ∝R. By inspecting Eq. (11), it is
clear that for each Icol a trapped state can be formed by the
superposition:

|−,ϕ〉 ≡
∑

M1=±1

|1,M1,Icol〉 eiM1ϕ/
√

2. (12)

We are now ready to consider the joint effect of the internal
Hamiltonian Hmol in Eq. (1) and the effective potential in
Eq. (11). Specifically, we will transform to the diagonal basis
of Hmol and consider the states |α0,1〉 , |β0,1〉 in Eqs. (2) and (3).

Exploiting the approximate cylindrical symmetry of our
problem, we write down explicitly the position dependence of
individual internal states as 〈 �R | αj 〉 = ∑

� a
j

� [R]e−i�ϕ/
√

2π

and 〈 �R | βj 〉 = ∑
� b

j

� [R]e−i�ϕ/
√

2π , where j = 0,1 denotes
the molecular internal state and � = 0, ± 1, ± 2, . . . repre-
sents the center-of-mass angular momentum around the labora-
tory Z axis. Additionally, for the time being, we neglect motion
of the particle along the Z axis (see Sec.V A) and as a result the
Z dependence is implicit in the coefficients. We use the trans-
formed coefficients t

j

� [R] = (aj

� [R] − b
j

�−2[R])/
√

2,u�[R] =
(aj

� [R] + b
j

�−2[R])/
√

2. Moreover, to simplify the notation, we

introduce the array tj

�[R] = [t j� [R] u
j

� [R]]T . In terms of the
transformed coefficients, the Schrödinger equation in closed
form reads

[
H00 H01

H10 H11

][
t0
�[R]

t1
�−2[R]

]
= ε

[
t0
�[R]

t1
�−2[R]

]
, (13)

where the matrices are given by

H00 =
[−K

(
∂2
R + ∂R

R
− (�−1)2+1

R2

)+ (f⊥[ad ,Z]αmf )2R2

10h̄Be
− E0 2K �−1

R2 − �hf
2

2K �−1
R2 − �hf

2 −K
(
∂2
R + ∂R

R
− (�−1)2+1

R2

)− (f⊥[ad ,Z]αmf )2R2

20h̄Be
− E0

]
,

H11 =
[−K

(
∂2
R + ∂R

R
− (�−3)2+1

R2

)+ (f⊥[ad ,Z]αmf )2R2

10h̄Be
− E1 2T �−3

R2 − �hf
2

2K �−3
R2 − �hf

2 −K
(
∂2
R + ∂R

R
− (�−1)2+1

R2

)− (f⊥[ad ,Z]αmf )R2

20h̄Be
− E1

]
, (14)

H01 = −3δ(f⊥[ad,Z]αmf )2R2

40h̄Be

[
0 1
1 0

]
,

and H10 = H01, where we have introduced the unit for kinetic energy K = h̄2

2mmolr
2
d

and neglected terms with strength ∝ δ2. To
solve Eqs. (13) and (14), as a first approximation we neglect the off-diagonal elements H01,H10, and �hf , since δ � 1. Later on in
Sec. VI, we consider the consequence of H01,H10, and �hf �= 0 on the trap lifetime. Within this approximation, the Schrödinger
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equation becomes[−K
(
∂2
R + ∂R

R
− (�−1)2+1

R2

)+ (f⊥[ad ,Z]αmf )2R2

10h̄Be
− Ej 2K �−1

R2

2K �−1
R2 −K

(
∂2
R + ∂R

R
− (�−1)2+1

R2

)− (f⊥[ad ,Z]αmf )2R2

20h̄Be
− Ej

]
= ε

[
t
j

� [R]
u

j

� [R]

]
, (15)

Note that the nanorod-dependent potential term (that depends
on f⊥) describes a harmonic trap for the upper part of Eq. (15),
while it comes with the opposite sign in the lower block.
Consequently, we divide Eq. (15) in two parts, the diagonal
part where t

j

� [R] denotes bound (trapped) states due to the
R2 potential and u

j

� [R] denotes untrapped states with positive
energy (ε > 0). A coupling between the two is given by the
off-diagonal term. We notice in Eq. (15) that apart from the
diagonal energy shift Ej , the equation of motion is independent
of the hyperfine internal index j . For � = 1, the off-diagonal
part vanishes. Neglecting it at first for all �, the differential
equation for t

j

� [R] ≡ t�[R] can be transformed to associated
Laguerre equations with known solutions. The eigenvectors
and eigenenergies are given by

|t j ; �; N ;N = 1〉 = ei(�−1)ϕ |t,�N〉 |−,ϕ〉 ,

〈 �̃R | t,�N〉 =
√

2(R̃)�eff exp[−R̃2/2]L�eff
N [R̃2]

(�[N + �eff + 1]/N!)1/2
, (16)

ε�,N [ad,Z] = (2N + �eff + 1)h̄ω[ad,Z],

where

R̃ = R/σ [ad,Z], (17)

�eff =
√

(� − 1)2 + 1, (18)

and �[· · · ] is the � function. The quantum number of the radial
motion of the trapped molecules is represented by non-negative
integers N , with N = 0 representing the lowest energy state.
The Z-dependent oscillator width (σ [ad,Z]) and frequency
ω[ad,Z] have the form

σ 2[ad,Z] ≡ (σ [Z])2 = (10Kh̄Be)1/2

f⊥[ad,Z]αmf
,

h̄ω[ad,Z] = |αmf |f⊥[ad,Z]

(
2K

5h̄Be

)1/2

. (19)

From Eq. (16) it is clear that � = 1 is lowest
in energy and is nondegenerate. All other levels
are twofold degenerate between the pair of states,
|t j ; −� + 2; N ;N = 1〉 , |t j ; �; N ;N = 1〉 ,� > 1. Looking
into the radial distribution of the trapped states in Eq. (16), we
see that the wave function vanishes at R = 0. As a result, the
effect of the cross term in Eq. (15) will be small. Moreover,
for N = 0, the excitation energy from the lowest energy state

TABLE I. Ferroelectric parameters for 0D and 1D traps.

P (C m−2) rd (nm) alatt (nm) hd (nm) αmf
h̄Be

K

h̄Be

0D 10−1 60 ∞ 180 5.8 × 103 1.2 × 10−5

1D 2.5 × 10−1 45 200 135 2.9 × 104 2.2 × 10−5

is given by δε = ε0,0[ad,Z] − ε1,0[ad,Z] = ε2,0[ad,Z] −
ε1,0[ad,Z] = (

√
2 − 1)h̄ω[ad,Z]. Next, we discuss the

properties of the trap. It is clear that as the molecule is held
closer to the surface, the trapping frequency increases as noted
in Fig. 6(a). For such states to be trapped along Z, one needs
an external force to keep the molecule near the nanostructure;
this matter will be addressed in the next section. Additionally,
by increasing the lattice constant ad up to a certain value, one
can also increase the trap frequency.

To qualitatively characterize the number of trapped states
present, first we define the effective potential without the

quadratic approximation as Vtrap[ �ρ] = |E−[ �ρ]|2α2
mf

10h̄Be
. As seen from

Fig. 2(a), the trap height is minimal along ϕ = 0 or π/2, and
consequently the trap depth is defined as

Vdepth[ad,Z] = Vtrap[R = ad/2,ϕ = 0,Z]. (20)

Then the quantity Nmax = Vdepth[ad,Z]/2h̄ω[ad,Z] gives an
estimate for the number of trapped states; it is plotted in
Fig. 6(b). We see that as the lattice constant decreases, the
trap becomes shallow. For a fixed lattice constant, as expected,
bringing the molecule closer to the surface results in an
increased number of trapped states. Approximately, the trap
ceases to exist as Z increases and h̄ω[ad,Z] ≈ Vdepth[ad,Z] is
reached. For the parameters given in Tables I and II, and using
Eq. (19), we find that for ad = 2.25 and at Z = 16 the trapping
frequency is ω[2.25,16] ≈ 0.5 MHz; cf. Fig. 6(a).

V. TRAPPING THE MOLECULES ALONG Z DIRECTION

In this section, we explain the mechanisms for providing
trap for molecules along the Z direction.

A. Optical trapping mechanism

From the trapping energy, Eq. (16), it can be noticed that as
the molecule in the (laterally) trapped state moves closer to the
surface, the trap energy increases. Hence, the molecules will be
pushed away from the surface. To prevent such an escape, we
locally trap the molecules along the Z direction by employing
a standing-wave optical laser field far red-detuned from the
excited electronic states. Via the AC Stark effect, this attracts
the molecule to the high-intensity region of the beam. However,
the presence of such a field can lead to loss of molecules as
components of the laser field polarized in the XY plane will
strongly mix the trapped and untrapped internal states [33]
described above. To prevent such polarization loss, we propose

TABLE II. Molecular parameters for RbCs

μ (Debye) mmol (10−26kg) Be (GHz)

1.22 37 0.5
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to use light beams propagating along the ±Z direction with a
focused waist along the Y direction and a longitudinal field
component along the Z direction. Moreover, the longitudinal
field component needs to be much stronger than the transverse
field component in the trapping region. Furthermore, we keep
in mind that we want to generalize our trapping geometry from
0D to 1D, which means that the property of the beam should
be approximately unaltered by translation along either the X

or Y axis. To realize such a beam, we pass a Hermite-Gaussian
wave through a cylindrical lens to focus at Z = Z0 along
the Y axis. As a zeroth-order approximation [34] (ad/λ � 1,
where λ is the laser wavelength), we neglect the effect of the
nanostructure on the laser field at the molecular position so long
as λ/ad > n, where n is the refractive index of the ferroelectric
substrate. This condition is equivalent to the physical situation
that only the zeroth-order diffraction mode exists and the
coupling to the guided modes of the periodic dielectric system
is minimal due to normal incidence. For the incident field,
we assume E±

inc = √
Pin(0,2Y/w0,0) exp[−Y 2/w2

0 ± ikZ −
i�last], where Pin denotes the laser power, w0 is the beam
waist, and k = 2π/λ. Such a mode can be created by passing
a Gaussian wave through a π -phase plate [35]. Along the X

direction, we have assumed a uniform field distribution. The
time-independent contribution of the light field after focusing
through a cylindrical lens (cylinder axis along X̂) is given
by E±

las = (0,E±
Y ,E±

Z ) (apart from a position-independent phase
factor) [35,36],

E±
Y [Y,Z] =

√
Pin

2kf 2

w0

∫ −ψ1

ψ1

F [ψ] cos3/2[ψ] sin[ψ]

× exp[±ikY sin[ψ] ± ik(Z ∓ Z0) cos[ψ]]dψ,

E±
Z [Y,Z] =

√
Pin

2kf 2

w0

∫ −ψ1

ψ1

F [ψ] cos1/2[ψ] sin2[ψ]

× exp[±ikY sin[ψ] ± ik(Z ∓ Z0) cos[ψ]]dψ,

(21)

where F [ψ] = exp[−f 2 sin[ψ]2/w2
0] is the window function

of the lens and f is its focal length. The numerical aperture
of the lens is given by sin[ψ1] = a0/f , where a0 is the
width of the pupil. The total laser field is given by adding
two counterpropagating fields in Eq. (21) and defined as
Etot[Y,Z] = (0,EY

tot[Y,Z],EZ
tot[Y,Z]). The total Z field shows a

maximum at the focal line Z = Z0, Y = 0 as seen in Fig. 4(a).
From Eq. (21), it is clear that at Y = 0, E±

Y [Y,Z] = 0 as the
integrand is odd under ψ → −ψ . From Fig. 4(b), we see that
at the line Z = Z0,Y = 0, the Y component of the total field
vanishes. This is due to the out-of-phase oscillation of the Y

field as a function of Z. As a result, for Z ≈ Z0,Y → 0, we are
always in a region where the longitudinal Z component is much
stronger than the transverse component and for Z → Z0,Y =
0, the laser intensity is approximately quadratic: |EZ

tot[0,Z]|2 ≈
I0(1 − β(Z − Z0)2/λ2),EY

tot = 0, where β ≈ 4π2 is a constant
denoting curvature of the intensity profile near Z = Z0 and I0

is the total intensity of the lasers after focusing.
Next, we consider the effective laser-induced potential for

N = 1 molecules. The laser-molecule interaction Hamiltonian
projected onto theMN=1 ∈ {0,±1} subspace is given by (apart

FIG. 4. (a) Plot of the longitudinal Z component of the total
electric field. (b) Ratio between the transverse Y component and
the longitudinal Z component is shown. The limits on the axis are
different in panels (a) and (b). The parameters are, ψ1 = π/3,f/w0 =
1.15.

from a constant shift in energy = −α1I0) [33,37,38] by

V 1
light

I0
= −α0

∑
Icol

|1,0,Icol〉 〈1,0,Icol|

+α1VZ

∑
M1=±1
Icol

|1,M1,Icol〉 〈1,M1,Icol| , (22)

where VZ = sin2 [ 2π(Z−Z0)
λ

], and α1 is the polarizability of
the |±1〉 states for a Z-polarized light field, which can be
expressed as α1 = (α‖ + 4α⊥)/5, where α‖,α⊥ are anisotropic
polarizabilities of the molecule. Similarly,α0 = 2(α‖ − α⊥)/5,
which shows that the M1 = 0 state will be detuned in en-
ergy from the M1 = ±1 states. Moreover, we consider laser
strengths such that the detuning α0I0 is much larger than the
transverse trap frequency h̄ω[ad,Z]. For a laser strength of
I0 ∼ 0.1 MW cm−2 and the trap frequency range considered
in the present paper, typically, α0I0/(h̄ω[ad,Z]) ∼ 20 will
exponentially suppress the loss rate to the M1 = 0 state by
an approximate factor e−α0I0/(h̄ω[ad ,Z]). The exponential factor
arises due to the overlap integral between the trapped and the
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continuum state with energy ∼α0I0. Then, combining Eqs. (16)
and (22), the total effective potential along the Z direction seen
by the trapped state is given by

V 1
eff [Z] = ε�,N [Z] + α1I0 sin2

[
2π (Z − Z0)

λ

]
,

≈ V 1
eff [Z1] + d2V 1

eff [Z]

2dZ2

∣∣∣∣
Z=Z1

(Z − Z1)2, (23)

where in the second line we have Taylor expanded the potential
around the local minimum Z1 (the subscript 1 is to keep
track of the rotational level). We find that for the region of
Z with minimized loss rate (discussed in the next section) the
local minimum of Eq. (23) coincides with Z1 ≈ Z0 for a laser
with wavelength λ = 1090 nm with focal plane Z0 ∼ 16 and
I0 ∼ 0.1 MW cm−2. The approximate ground state along the
Z direction is expressed as

�Z =
(

1

πσZ
2

)1/4

exp

[
− (Z − Z0)2

2σZ
2

]
,

where the wave-function width is given by σZ
2 =

( d2V 1
eff [Z]

2dZ2 |Z=Z0
)
−1/2

. For the parameters considered here,
α1I0(rd/λ)2 � ω[ad,Z] and as a result the trap frequency in
the Z direction is given by ωZ = 4π

√
α1I0K(rd/λ).

1. Laser-induced loss

Because of the red-detuned nature of the laser light, we
trap the molecule at an intensity maximum. This can lead to
molecular loss due to the imaginary part of the polarizability
[37]. For a laser wavelength of 1 μm, the imaginary part
is 10−7–10−8 times weaker than the real part. Thus a laser
intensity of I0 ∼ 0.1 MW cm−2 gives a lifetime in the order
of 1–10 s. One way to further increase the lifetime is by
increasing the laser wavelength to around 1.5 μm, where one is
off-resonant from all excited states and as a result the imaginary
part should decrease exponentially with respect to frequency
shift: As seen in Ref. [37], the real part of the polarizability
remains the same, but the imaginary part decreases by an
order of magnitude or more. As a result, one can increase the
molecular lifetime to tens of seconds although the trapping
along Z direction becomes shallow.

B. Electrostatic trapping along Z axis

As an alternative to optical trapping along the Z direction,
we also sketch a purely electrostatic proposal involving two
0D structures, as shown in Fig. 5(a). The distance between
the two structures is given by LZ . Following Eq. (10), the
total azimuthal electric field E−[ �ρ] then can be written as
E−[ �ρ] ≈ if⊥[ad,Z]Reiϕ . In Fig. 5(b), we plot f⊥[ad,Z] for
ad = 2.25 and LZ = 32. We clearly see that along Z direction,
the potential increases from the center of the trap Z0 =
LZ/2. From using the parameters in Table I, we find that the
corresponding trap has the following parameters: ω[2.25,Z] ≈
0.5 × 10−4Be,ωZ ≈ .5 × 10−5Be, where ωZ is the frequency
along the Z direction.

Though the optical trapping maybe preferable for loading
from ultracold samples, the electrostatic method is preferable
for molecules for which optical preparation is not available.

FIG. 5. Electrostatic 0D trap: (a) Two 0D structures facing each
other and the corresponding Z axis. Nanorods of similar polarization
in both nanostructure is aligned with each other. (b) We show the
effective shape of the electric-field fitting function.

Moreover, it can be readily extended to 2D array structure as
unlike the optical trapping, we are not constrained by special
polarization properties of the laser. A detailed analysis of such
2D array is beyond the scope of the present paper.

VI. MOLECULE LOSS RATES DUE TO NONADIABATIC
AND HYPERFINE COUPLING

Next, we discuss various couplings that can transfer trapped
states to untrapped states. The first approximation arises as
a nonadiabatic effect to the Hamiltonian due to the position
dependence of the perturbation in Eq. (8). As discussed in
Appendix B, in the present case, such corrections are found to
be negligible.

In the remaining part of this section, we describe important
loss mechanisms.

A. Loss due to intrastate coupling

The next correction arises due to the nonzero off-diagonal
elements of H11 in Eq. (15). These elements couple the trapped
state |t j ; �; N ;N = 1〉 to the continuum states |uj ; �;N = 1〉
with same angular momentum � as described by the off-
diagonal terms in Eq. (15). It is readily seen that a special
situation arises for � = 1 as the off-diagonal term vanishes and
there is no coupling to the untrapped state. This exact decou-
pling of trapped and untrapped states no longer holds for � �= 1.
To qualitatively describe the effect of the untrapped states, we
invoke Fermi’s golden rule by considering resonant coupling
of the trapped state |t j ; �; N ;N = 1〉 to the continuum states
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FIG. 6. (a) The trap frequency is shown as a function of Z and ad for the parameters listed in Tables I and II. (b) Relative trap depth Nmax

is shown as a function of Z for ad = 2.25 (solid line), 3.0 (dashed line), and 4.0 (dash-dotted line). (c) The decay rate γ1[�,N ] from Eq. (24) is
plotted as a function of � for N = 0(◦),1(�),2(�),3(�). (d) Total nonadiabatic and hyperfine-induced loss rate γ 0

tr is plotted as a function of Z

for ad = 2.25 (solid line), 3.0 (dashed line), and 4.0 (dash-dotted line). The parameters are shown in Tables I and II.

with energy ε�,N > 0 via the off-diagonal term in Eq. (15). The

solution for the untrapped state then becomes 〈 �̃R | u,�M〉 =√
2J�eff [α�,MR̃/R̃0]/(R̃0|J�eff +1[α�,M ]|), where J�[] denotes

the Bessel function of order �. We use a cylindrical hard-wall
boundary condition with radius R̃0 → ∞ and α�,M is Mth zero
of the Bessel function, J�eff [xα�,M ] = 0. The resonant energy
condition is given by α2

�,Mres
/R̃2

0 = 2(2N + �eff + 1) + R̃2/2.
The decay rates for the trapped state |t j ; �; N ;N = 1〉 reads

γ1[�,N ]

h̄ω[ad,Z]
= 2πD

[
α�,Mres

]| 〈t,�N | R̃−2 | u,�Mres〉 |2, (24)

where the density of states in dimensionless units isD[α�,M ] =
R̃2

0/(2πα�,M ). The use of Fermi’s golden rule remains valid
as long as the decay rates are lower than the minimum
energy gap, |ε�,N+1 − ε�,N | = 2h̄ω[ad,Z] > γ1[�,N ], which
is fulfilled for all �. We plot the decay rate in Fig. 6(c)
for various �,N . Because of the symmetry around � = 1,
γ [−�,N ] = γ [� + 2,N ] for � � 0. We find that the decay rate
is maximal for � = 5,−3 and then decreases for larger �. Note
that as the effective potentials are always of finite height, as
a result the decay rates are valid as long as ε�,N � Vdeptth. We
point out that trapped states with this kind of long lifetime
(|t ; � = 1; N ;N = 1〉) do not exist for traps using the linear
Stark shift (e.g., for asymmetric-top molecules). As a result,
for those traps, one needs a larger trap size (which decreases K)
to suppress molecule loss. The reason behind this is that there

exists no angular momentum channel for which the coupling
to untrapped states vanishes.

B. Loss due to hyperfine-structure-induced coupling

Hyperfine-induced coupling has two contributions. The first
one induces intrastate transitions due to the presence of �hf in
H00 and H11 in Eq. (14). From Table III and Fig. 6(a), we
find that the trap frequency is much larger than the detuning
(�hf/ω[ad,Z] ≈ 0) and as a result we neglect its effect. The
next correction arises due to the matrix elements of H01,H10

in Eq. (14) which are of order δ � 1 (cf. Table III) and induce
coupling between different internal states denoted by j . As the
off-diagonal elements of H01,H10 are nonzero, these elements
can couple a trapped state to continuum states belonging to a
different hyperfine structure. On the hand, there is a detuning
due to the presence of a magnetic field with magnitude |E0 −
E1|. As a result, for a sufficiently strong magnetic field, the
transition is suppressed for |E0 − E1|/ω[ad,Z] � 1. Such a

TABLE III. Parameters representing molecular states in Eqs. (2)
and (3) and the corresponding magnetic field and energy scales.

B0 (T) δ δ1
E1−E0

h̄Be

�hf
1h̄Be

0D 0.1 0.054 0.058 5.5 × 10−3 0.0
1D 2.0 0.003 0.003 5.5 × 10−1 3.7 × 10−4
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suppression occurs as the trapped |t0,10〉 state is confined deep
inside the classically forbidden region of the continuum states
|u1,−1〉.

Though for magnetic fields available in a laboratory, one
cannot reach a regime of complete suppression. As a result, we
calculate the transition rate from the trapped state (for details,
see Appendix C), which we denote by γ

j

hf . Their definitions are
given in Eqs. (C2) and (C3). The most important thing to notice
by dimensional analysis of H01,H10 is that γ

j

hf ∝ δ2ω[ad,Z].

C. Loss rate due to the R3 dependence of electric field

Additional loss channels are also present due to the second
term ∝R3 exp[−3iϕ] in Eq. (10) which modifies the E±
electric field components. As a result, the effective potential
in Eq. (11) will be modified with an additional term ∝R4. As
shown in Appendix D, the correction leads to coupling within
the same hyperfine manifold j between states belonging to
different � quantum number. The modified decay rate due to
coupling of � = 1,N = 0 motional state to other lossy trapped
state is given by (for details, see Appendix D)

γt =
(

f−3⊥[ad,Z]K

f⊥[ad,Z]h̄ω[ad,Z]

)2 ∑
�′=−3,5

∑
N ′

×
∣∣∣∣∣ V1,0;�′,N ′

−2N ′ + 1 −
√

(�′ − 1)2 + 1

∣∣∣∣∣
2

γ1[�′,N ′]. (25)

We like to point out that the use of perturbation theory may
become invalid for calculating the decay for states with higher
� due to the presence of nearby degenerate states. In that case,
one can get the decay rates by concentrating on the degenerate
subspace. If that is not the case, we find that the sum in
Eq. (25) approximately converges for |N ′| < 2. As a result, for
a consistent decay rate from N = 0 state, one needs to have a
trap with Nmax ∼ 2. Otherwise, one also need to consider the
continuum states due to the finite hight of the trapped potential.

The next source of loss originates from coupling of the � =
1 state to continuum states with different � quantum number
as shown in Appendix D. The loss rate for the N = 0,� = 1
state consequently is given by

γc = 2π

(
3f−3[ad,Z]

4f⊥[ad,Z]h̄ω[ad,Z]

)2 K2D
[
α�,Mres

]
h̄ω[ad,Z]

×
∑

�=−3,5

|〈t,�N | R̃4 | u,�Mres〉|2, (26)

with the resonant energy condition α2
�,Mres

/R̃2
0 = 2(�eff + 1) +

R̃2/2. To find the lifetime, we assume the parameters as in
Tables I and II and the unperturbed loss rate from Eq. (24).

D. Total trapped molecule loss rate

To find the total loss rate, we notice from Eqs. (26) and (25)
and Sec. VI B that the hyperfine-induced rate of level j scales
as γ

j

hf ∝ ω[ad,Z]. On the other hand, from Eqs. (25), (26), and
(24), we find that higher order correction to the electric field
gives rise to loss rates γt,c ∝ ω−1[ad,Z]. As a result, once we
fix the ferroelectric polarization and the nanorod dimensions,
by changing the position of the molecule along Z, one can find

an optimum solution. To this end, we define the total molecule
loss rate by adding Eqs. (25) and (26) and hyperfine-induced
loss rate,

γ
j
tr = γ

j

hf + γt + γc, (27)

which is pictorially shown in Fig. 6(d). From Figs. 6(b) and
6(d), we find that for ad = 2.25 (ad = 135 nm for parameters in
Table I) and with Nmax ≈ 10, the loss rate is minimized around
a distance Z ≈ 16.0 (≈0.96 μm) with decay rate γ 0

tr ≈ 0.2 Hz
(lifetime of ∼5 s). By increasing the distance between the
nanorods, one sees that the lifetime is increased up to ∼10 s for
ad = 4.0. Another way to increase the lifetime is by increasing
the magnetic field which will increase |E1 − E0| between the
hyperfine states j = 0,1 and decreasing the hyperfine loss rates
in Sec. VI B. In Appendix E, we show the effect of increased
magnetic field with increased lifetime of ∼20 s for Z = 14.

We find that the remaining nonadiabatic loss channels due
to the EZ field in Eq. (8) give a much longer lifetime and as a
result they are discussed in Appendixes F and G.

VII. LOSS DUE TO SURFACE PROXIMITY

The present section considers the loss of trapped molecules
due to thermalization in the presence of the substrate surface.
Such losses exist irrespective of the presence or absence of
a trapping potential. The loss rates arise from two primary
sources: (i) photon fluctuations of the vacuum-substrate inter-
face and (ii) phonon fluctuations in the surface of the substrate.

A. Radiative loss

A source of loss of molecules is the coupling of rotational
levels to the black-body radiation modified by nanorods and
surface of the 2D substrate. The coupling frequency then
corresponds to a rotational transition which for 1� molecules
generally lies in the GHz region and subsequently we neglect
the hyperfine splitting. The coupling wavelength corresponds
to λrot ∼ 10−1m. The height of the nanorods is negligible com-
pared to the coupling wavelength, h/λrot � 1. As a result, from
the viewpoint of effective medium theory, the Fresnel reflection
coefficients only get modified by a negligible amount, ∝h/λrot

[39], and we can neglect the effect of the periodic nanorods.
Moreover, the lifetime of the molecule is dominated by the
surface and, as a result, we neglect the free-space contribu-
tion. Assuming that the substrate- and free-space photons are
in equilibrium with temperature kbT � h̄Be, and following
Refs. [40,41], the rotational heating rate for a molecule from
the |N = 1,MN = ±1〉 state is given by

γh = γ0 + μ2

8πε0Z
3
mol−sub

kBT

2h̄Be

Qf

2Be

Re[εs]

(Re[εs] + 1)2

×
(

〈D−
00〉2 + 〈D+

22〉2

22
+ 〈D−

20〉2

22
+
〈
DZ

21

〉2
2

)
, (28)

where γ0 is the free-space heating rate, Zmol−sub is the distance
of the molecule from the substrate, εs is the dielectric constant
of the substrate, and the Dij are dipole matrix elements

〈D−
00〉 = 〈N = 0,MN = 0| T 1

−1 |N = 1,MN = 1〉 ,

〈D+
22〉 = 〈N = 2,MN = 2| T 1

1 |N = 1,MN = 1〉 ,
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〈D−
20〉 = 〈N = 2,MN = 0| T 1

−1 |N = 1,MN = 1〉 ,〈
DZ

21

〉 = 〈N = 2,MN = 1| T 1
0 |N = 1,MN = 1〉 .

Hence, the total heating rate is given given by the sum of
the free-space and substrate-induced heating rates [40]. The
lifetime of a RbCs molecule at 4K is on the order of ∼108 s
[40], and as a result we can practically neglect the free-
space heating rate compared to the substrate-induced rate.
To estimate the latter, we use fused quartz as an example
whose dielectric properties are given by [42] Re[εs] ≈ 3.83
and Qf ≈ 105 GHz. The molecular heating rate then becomes
γh ≈ 0.02 s−1 at a distance of 1 μm (equivalent to Z ≈ 16 in
the unit of nanorod radius for the parameters in Table I) from
the substrate for liquid helium temperature of 4K. The role of
Casimir forces in such distance is negligible and is discussed
qualitatively in Appendix H.

One possible way to extend the lifetime can be achieved by
a 1D substrate with thickness dsub near an integer multiple of
2πclight/(nsubBe), where clight is the speed of light and nsub is
the refractive index of the substrate. This reduces the reflection
coefficient for light waves with perpendicular incidence (polar-
ized in the XY plane). As a result, the important substrate effect
comes from the electromagnetic waves with polarization along
the Z direction, a change from the vacuum structure, which can
increase the lifetime by a factor of 2. Another possible way to
increase lifetime can be achieved be use of a glassy substrate
with thickness dsub � B−1

e , where Be is given in cm−1. In such
cases, due to the long wavelength of the resonant light, the
substrate will be invisible. Such a substrate can stand on thin
pillars and as a result any macroscopic object will effectively
be far away from the molecule.

B. Loss induced by vibrational modes of the substrate

The presence of long-wavelength vibrations in the 2D
substrate also induces vibrations of the nanorods. This leads
to an phonon-assisted coupling between the molecular rota-
tional levels. As a result, there will be transitions between
rotational levels leading to heating (similar to the radiative
loss due to electromagnetic coupling). To gain a qualitative
understanding, we model the surface of the substrate as a square
lattice of atoms. Moreover, we also consider that the underlying
arrangement of atoms in the nanorods are also cubic. For
simplicity, we assume that atoms in both lattices have mass
M and lattice constant aS . We denote the equilibrium position
of individual nanorod by �b. For long-wavelength phonons,
vibrations of the atoms in the nanorods are all locked to the
surface vibrations of the substrate. We first consider the effect
of transverse acoustic phonon modes of the substrate surface.
The displacement of the atoms are normal to the surface with
magnitude U[�b]. In the second quantized form, we write the
displacement operator in momentum space [two-dimensional
momentum �k = (kx,ky)] as

U[�b] =
∑

�k
U �ke

i�k·�b,

U �k =
√

h̄

2Mω�kr
2
d

(a�k + a†
−�k), (29)

where the appearance of rd is due to our choice of the unit of
distance. The phonon creation and annihilation operators are
denoted by a†

�k,a�k and the phonon dispersion relation is given
in the long wavelength limit as ω�k = ck, where c is the sound
velocity. In the limit where the molecules are far away from the
nanorods, the electric field components due to the transverse
displacement of a nanorod are expressed as Eη = ∂EηU[�b],
where η = ±,Z and ∂Eη = ∂Eη

∂Z
with the electric field given by

Eq. (6), and as we are using the expression for only a single rod,
mx = my = 0 in this particular case. The total Hamiltonian is
given by

Htot = Hrot + Hph + Hmol−ph,

Hrot = h̄Be

∑
N ,MN

N (N + 1) |N ,MN 〉 〈N ,MN | ,

Hph =
∑

�k
(n�k + 1/2)h̄ω�k,

Hmol−ph =
∑

�k
U �k

∑
N ′ ,M′

N
N ,MN

VN ′,MN ′ ;N ,MN |N ′,MN ′ 〉 〈N ,MN | ,

(30)

where in order to write the molecule-phonon interaction,
we have assumed that we are interested in the
long-wavelength limit and the molecular matrix
element VN ′,MN ′ ;N ,MN = 〈N ,MN | ∂EZT 1

0 + ∂E−T 1
1 +

∂E+T 1
−1 |N ′,MN ′ 〉. For our present paper, we are

specifically interested in transition rates from the molecular
states |N = 1,MN = ±1〉 which will couple to the
states |N = 0,2,MN = 0〉 , |N = 2,MN = ±1,±2〉 via
absorption or emission of phonons with energy corresponding
to the energy difference between the molecular levels. Similar
to the electromagnetic case in Ref. [43], we find for the
transition rate from |N = 1,MN = +1〉 to |N ,MN 〉

γph[N ,MN ] =
∑
�k,�k′

∑
ni

�k ,n
f

�k′

δ
[
(N 2 + N − 2)h̄Be

+ (nf

�k′ − ni
�k
)
h̄ω�k

]
P [n�k]

∣∣ 〈nf

�k′

∣∣ 〈N ,MN |
×Hmol−ph |1,1〉 ∣∣ni

�k′
〉 ∣∣2, (31)

where |ni,f

�k 〉 are phonon Fock states and |1,1〉 =
|N = 1,MN = 1〉. The thermal distribution of the phonon
number ni

�k is given by P [ni
�k] = exp[−ni

�k h̄ω�k/(kBT )]/
(
∑∞

m�k=0 exp[−m�k h̄ω�k/(kBT )]) with T being the temperature.
The δ function in Eq. (31) represents the resonance condition.

For general 1� molecules, the rotational energy gap is in
the GHz range. For a substrate with sound velocity c = 5 ×
103m s−1, the corresponding phonon wavelength is on the order
of k−1 ∼ 10−6m which is much larger than the lattice constant
aS . Using Eqs. (29)–(31), we calculate the transition rates

γph[0,0] = h̄D[ω�k]|∂E+|2
3Mr2

dω�k

∑
n

(n + 1)P [n], ω�k = 2Be,

γph[2,η] = fη

h̄D[ω�k]|∂E+|2
Mr2

dω�k

∑
n

nP [n], ω�k = 4Be, (32)
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where η = 0,1,2, f0 = 1/15,f1 = 1/5,f2 = 2/5, and
D[ω�k] = a2

Sω�k/(π2c2) is the density of states for the phonon.
The total transition rate from the |N = 1,MN = 1〉 state is
given by γ tot

ph = γph[0,0] + γph[2,0] + γph[2,2] + γph[2,1].
For a quantitative estimate, we assume a sound velocity of
c = 5 × 103m s−1 (similar to the one in a quartz crystal),
temperature T = 10 K, an atom mass for the substrate
M = 5 × 10−26kg (mass of silicon), and a typical lattice
constant of aS ∼ 0.5 nm. We place a molecule at a distance√

X2 + Y 2 ∼ 1,Z ≈ 16, which is similar to the trapping
distance in our scheme with rd = 60 nm. Inserting the
parameters in Eq. (32), for RbCs molecules, the transition rate
becomes γ tot

ph ≈ 0.01 s−1. To see the combined effect of the four
nanorods for a trapped molecule near the center of a square cell,
we find that the heating rates in Eqs. (32) are multiplied by a
factor |∑jx=±1/2,jy=±1/2(−1)jx+jy exp[−iad (kxjx + kyjy)]|2.
This is due to the phase in phonon amplitude [Eq. (29)]
and the alternating polarization of the rods. For long phonon
wavelengths k−1 � ad , this results in a destructive interference
and as a result the transition rate is decreased by a factor
∼(kad )4 ∼ 10−4. Hence, near the center of the square cell in
Fig. 1, molecules are more stable than in the corners.

Phonons with energies in the range of the trapping frequency
can further heat up the molecules by coupling the motional
states. Following a similar procedure as above, we found that
the motional heating rate is dominated by the vibrations along
the surface of substrate. The heating rate is given by

γmotion ∝ ω2[ad,Z]

(
h̄D[ω�k]

Mσ 2[ad,Z]ω�k

)
kBT

h̄ω�k
,

ω�k = ω[ad,Z],

where the trapping frequency and width are given in Eqs. (19).
Theω2 term on the right-hand side comes from the square of the
overlap of motional states. The second factor (in parentheses)
originates from the overlap between the resonant phonon
states, whereas the last fraction gives the thermal phonon
number at the resonant frequency. For a molecule trapped at
Z ∼ 1 μm (Z = 16 in units of rd ) from top of the nanorod with
radius rd = 60 nm, from Eq. (19) we find that ω[2.25,16] ∼
0.5 MHz. For a temperature of T = 4K, this given a heating
rate of γmotion � 10−2 s−1.

VIII. 1D NANOTRAPS FOR MOLECULES

Using our 0D nanorod arrangement as a building block,
we extend to a 1D structure by repeating the primitive square
cell with a lattice constant of alatt , as shown in Fig. 1(b).
Additionally, the polarization arrangement in each square
cell is π/2 out of phase with its neighbor. Each nanorod
is centered at �Fq,m = alattqX̂ + ad (mxX̂ + myŶ )/2,where
q ∈ [−Nf ,−Nf + 1, . . . ,−1,0,1, . . . ,Nf − 1,Nf ]. The total
number of cells is given by 2Nf + 1. The polarization of
each rod is defined as, P [ �R] = (−1)q+(mx+my )/2P Ẑ when 0 <

| �R − �Fq,m| < rd, − h < Z < 0; otherwise, it is zero. Also, the
0D structure can be considered as a special case of 1D structure
with alatt = ∞.

In the 1D structure, we define electric fields equivalent
to Eqs. (6) by replacing Rm → Rq,m with �Rq,m = �R − �Fq,m

and φm → φq,m with tan φq,m = (Y − myad )/(X − qalatt −

mxad ). Similar to Eq. (7), the total electric field is given by

Eη[ �ρ] =
Nf∑

q=−Nf

∑
m

(−1)q+ mx+my

2 Eη[q,m; �ρ] (η = Z,−).

(33)

To look for the properties of the electric field, we first
notice that the long-range nature of the dipole potential from
neighboring cells strongly affects the trapping potential and
lowers it significantly. Moreover, the absence of rotational
symmetry leads to additional loss terms. Each square cell
is centered at (q,0)alatt and is bounded by the lines X =
(qalatt ± ad/2),|Y | = ad/2 as shown in Fig. 1(b). The alternat-
ing orientation of the cells generate electric-field distributions
with out-of-phase neighboring square cells. Inside each square
cell, the trap potential close to the center depends quadratically
on |E−|, the same as in 0D. In Fig. 7(a), we plot the |E−|2 along
the X axis for a fixed Z with Nf = 10,alatt = 2ad . It is clear
that there is a potential minimum at the center of each square
cell whereas there is a shift in the position of the minima for
the boundary square cells. Moreover, the trap height at the
boundary is higher, which will result in a reduced escape rate
of the molecules from the boundary traps.

For a quantitative study, we define a local polar coordinate at
each cell q as R2

q = (X − qalatt)2 + Y 2 and ϕq = tan[ Y
X−qalatt

].
Similar to the 0D trap, the 1D trap is symmetric under reflection
at the X or Y axes (and change of polarization) and the
Fourier coefficients of the azimuthal field E− with even power
vanishes. The rotational symmetry about center of the square
is violated. However, as noted in Appendix I, the leading-order
term in E− is still ∝ iReiϕ . Thus we can write the electric field
at the center of the cell as

E−q[ �ρ] ≈ iRq(F⊥[ad,alatt,Z]) exp[iϕq]

+ i
∑
η=±3

Fη[ad,alatt,Z]R3
q exp[iηϕq],

EZq[ �Rq,Z] ≈ Fz[ad,alatt,Z]R2
q sin[2ϕq], (34)

where Rq < ad/2. In contrast with the 0D case in Eq. (10), the
electric field contains both of ±3 azimuthal components. The
fitting functions are shown in Fig. 7(b) for parameters in Table I.
Comparing it with the 0D case (Fig. 3), we see that for similar
ad , |F⊥[ad,alatt,Z]| < |f⊥[ad,Z]| and as a result yields much
weaker potential. Only in the situation of alatt → ∞ do they
become equal as the 1D trap becomes equivalent to 0D trap.
Otherwise, the magnitude of |F⊥[ad,alatt,Z]| can be boosted by
trapping the molecules nearer to the nanorods and by increasing
the total polarization of the nanorods. Moreover, for fitting
functions to R3 component (responsible for nonadiabatic loss),
compared to the 0D case, |F±3[ad ,alatt,Z]|

|F⊥[ad ,alatt,Z]| � |f−3[ad ,Z]|
|f⊥[ad ,Z]| which

results in larger nonadiabatic loss rates.
For the 1D potential, using the fields in Eq. (34) we solve

the equivalent of equation Eq. (13) within the cell q. Following
Eq. (16), the lowest energy trapped state is

|t j ; �; N ;N = 1〉q = |tq ,�N〉 |N = 1,−,ϕq〉 ,

〈 �̃Rq | tq ,�N | =
√

2(R̃q)�eff exp
[−R̃2

q/2
]
L�eff

N

[
R̃2

q

]
(�[N + �eff + 1]/N !)1/2

,

(35)
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FIG. 7. (a) Shape of the trap potential due to the azimuthal field
for a lattice with Nf = 10, ad = 2.25, and alatt = 2ad . (b) Plot of
fitting parameters Fη defined in Eq. (34): F⊥[2.25,4.5,Z] (solid
line), 10F3[2.25,4.5,Z] (dash-dotted line), and −10F−3[2.25,4.5,Z]
(dashed line). (c) The dashed line represents the zero-point trap
frequency ω[2.25,4.5,Z]/2 in units of 10 MHz. The solid line is
107γ 0

tr , the total molecule loss rate for the j = 0 hyperfine state
(in Hz).

where �̃Rq = �̃R − qãlattX̂, with ãlatt = alatt/σ [ad,alatt,Z], and
the Z-dependent oscillator width and frequency have the form

σ 2[ad,alatt,Z] = (10Kh̄Be)1/2

F⊥[ad,alatt,Z]αmf
,

h̄ω[ad,alatt,Z] = |αmf |F⊥[ad,alatt,Z]

(
2K

5h̄Be

)1/2

. (36)

We plot the trap frequency for the parameters in Tables I and
II in Fig. 7(c) (the dashed line).

A. Z trapping in 1D

To prevent the molecule from escaping in the Z direction,
we use the same laser setup as discussed in Sec. V A. As
an example, from Fig. 7(c), an optimum position to trap the
molecule will be around Z = 9.5 where the trap frequency
ω[2.25,4.5,9.5] ≈ 10 MHz. To look for laser parameters, we
use Eq. (23) as an expression for an effective potential along
the Z axis with Z1 ≈ 9.5. This is fulfilled for a total laser
power I0 = 1.0 MW cm−2 and the focal plane Z0 = 7.65.
The corresponding Z-axis trap frequency ωZ = 0.5 MHz and
oscillator length σZ = 0.2. Though the Z trapping is much
weaker than the radial trapping, the oscillator length is still
less than the nanorod radius. One important change from the
0D case is the laser induced loss rate, which will be around
≈1 s.

B. Molecular loss rate

Now, we estimate the molecular loss rate for 1D by fol-
lowing similar procedures as discussed in Sec. VI with the
fitting functions denoted by f replaced by the correspond-
ing 1D functions, F . For each cell, we calculate the 1D
equivalent of the molecular loss rate following the treatment
for Eqs. (25) and (26). The total molecule loss rate for the
j = 0 state (γ 0

tr ) is shown in Fig. 7(c). For the 1D case,
the calculation of the nonadiabatic loss rates due to the R4

potential gives results similar to Eqs. (25) and (26), with
F±3 in place of f−3. Again, we notice the interplay between
nonadiabatic loss (∝ ω−1[ad,alatt,Z]) and hyperfine-induced
molecule loss (∝ω[ad,alatt,Z]). Because of the relatively large
nonadiabatic coupling (compared to 0D), controlled by the
ratio |F±3[ad ,alatt,Z]|

|F⊥[ad ,alatt,Z]| , we need a high trap frequency to minimize
the nonadiabatic loss rate. The hyperfine-induced loss rate
is controlled by the potential barrier between the j = 0,1
hyperfine states: |E0 − E1|/ω[ad,alatt,Z], which in turn is
controlled by the magnetic field. Accordingly, we need a
stronger magnetic field, see Table III, to increase the potential
barrier between the hyperfine states. The minimum loss rate we
obtain for the parameters in Table III:γ 0

tr ≈ 0.8s−1 forZ ≈ 9.5.
One way to increase lifetime will be by increasing ad or alatt ,
which will result in increased lattice constant and lower the
energy scales.

Moreover, as we are in a lattice, we like to have a
stable local trap; i.e., we want to have a small tunneling
rate, which is guaranteed as long as alatt/σ � 1 [7]. From
Eq. (36), we see that the ratio ad/σ ∼ |F⊥[ad,alatt,Z]|amf ,
where F⊥[ad,alatt,Z] is weaker than the corresponding 0D fit-
ting function f⊥[ad,alatt,Z] for fixed ad,alatt,Z. As a result, we
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need to increase the ferroelectric strength αmf to get the same
alatt/σ [ad,alatt,Z]. Therefore, we chose in Table I the polariza-
tion strength for 1D stronger than that of 0D. Consequently,
one needs to use ferroelectric material with high spontaneous
polarization like PZT (lead zirconate titanate compounds). For
such parameters, we find that alatt/σ [2.25,5,9.5] ∼ 102, which
implies an effectively vanishing tunneling rate.

Next we consider the substrate-induced loss rate as dis-
cussed in Sec. VII. Compared to the 0D case, the trap center is
closer to the surface at Z ≈ 9.5. As a result, for the parameters
in Table I, we obtain from Eq. (28) a loss rate γh ∼ 0.2 s−1.
We also obtain a similar loss rate for phonon induced noise
from Eqs. (32). From these discussion it is clear that the most
important loss mechanism originates from nonadiabatic and
hyperfine coupling with molecule lifetime on the order of 1 s
[Fig. 7(c).

IX. SIMULATION OF QUANTUM SPIN MODEL

From the discussion in the previous section, it is clear
that each primitive cell of the ferroelectric lattice can trap
molecules. For the N = 1 manifold, the trapped state at a site
q is given by Eq. (35). By applying a laser field similar to
Sec. V A, we trap the molecule at Z = Z0.

To use the molecules as spins, we need a second trapped
state. We have carried out similar studies as in the previous
sections for the levelN = 2. Let |±1〉 again denote theMN =
±1 projection on the molecular axis. The quadratic Stark
shift for N = 2 level is weaker than for N = 1. Numerically,
we find that the effective potential [Eq. (11)] is V N=2

rad ≈
V N=1

rad /4. We then solve the equivalent of Eqs. (13), (14),
and (F2), only changing the potential strength. We denote
the transverse trapping width for N manifold as σN [ad,Z].
In relation to the oscillator width and energy for the N = 1
state, σ2[ad,alatt,Z] ≈ √

2σ1[ad,alatt,Z] and ω2[ad,alatt,Z] =
ω1[ad,alatt,Z]/2. For the laser-induced potential, as noted
in Ref. [33], the polarizability of the molecule is almost
independent of N and as a result we trap the N = 2 state
also at Z0. Following Eq. (35), the corresponding trapped state
is then expressed as

|t j ; �; N ;N = 2〉q = |t ′q,�N〉 |N = 2,−,ϕq〉 ,

〈 �̃Rq | t ′q,�N〉 =
√

2(R̃q)�eff exp
[−R̃2

q/4
]
L�eff

N

[
R̃2

q/2
]

2�eff /2(�[N + �eff + 1]/N!)1/2
.

(37)

For this section, we only consider the motional states � =
0,N = 0 and as a result omit these labels in our description
of the states. To simulate a spin model with long-range dipolar
interaction, we first consider just two cells at q and q ′ and
assume that each cell is filled with one molecule in the state
|t0;N = 1〉 or |t0;N = 2〉. We introduce the spin operators,

S+
q = |t0; 1; 0;N = 2〉q 〈t0; 1; 0;N = 1|q ,

Sz
q =

∑
η=1,2

(−1)η |t0; 1; 0;N = η〉q 〈t0; 1; 0;N = η|q , (38)

and S−
q = [S+]†q . The dipole-dipole Hamiltonian projected to

the subspace of interest is then given by

Hclass = Vdd

∑
q �=q ′

S+
q S−

q ′ + (S+
q S+

q ′ + S−
q S−

q ′)/2

|q − q ′|3

+ 4h̄Be

∑
q

Sz
q, (39)

where dipolar energy is given by

Vdd = μ2∑
MN =±1 |〈N = 1,MN |T 1

0|N = 2,MN 〉|2
8πε0a

3
latt

,

= 1

5

μ2

4πε0a
3
latt

, (40)

with the factor of 1/5 originating from the dipole matrix be-
tween the N = 1 and N = 2 states and the last term denoting
detuning between the two spin states. For the parameters con-
cerned, Vdd � h̄Be, Sz

q becomes a conserved quantity and as a
result, the pair creation and annihilation terms S+

q S+
q ′ ,S−

q S−
q ′ in

Eq. (40) are suppressed. Hence, one has a long-range classical
Ising model.

To simulate a quantum model, one way is to couple the
|t0; 1; 0;N = 2〉q , |t0; 1; 0;N = 1〉q state by introducing a

linearly Z-polarized time-periodic microwave field �Emw =
E cos �tẐ, where � = 4Be + �. The microwave coupling
Hamiltonian is given by Hmv = gmw cos �t

∑
q Sx

q , where

gmw = μE√
5
〈t ′q,10 | tq ,10〉. Going to the rotating frame and

projecting to the trapped state, the spin Hamiltonian has the
form (see Appendix J)

Hspin = Vdd

∑
q,q ′

S+
q S−

q ′

|q − q ′|3 + h̄(� − ω1[ad,Z0]/2)
∑

q

Sz
q

+ gmw

∑
q

Sx
q . (41)

The second term in Eq. (41) originates from the detuning of
the microwave field and the difference in trap frequency of the
two trapped states. The microwave-molecule coupling gives
the last term, where we have assumed that the width of the wave
function in Z remains the same in both levels. The Hamiltonian
in Eq. (41) is an example of a long-range XX spin Hamiltonian
in a transverse and longitudinal field, both of which are tunable.

Note, however, that the presence of more than one molecule
and the dipolar interactions also lead to a new loss mechanism:
Dipolar collisions between two molecules can also resonantly
couple the states |t ;N = 2〉q |t ;N = 1〉q ′ to the untrapped
states |N = 2,MN = 0〉 |N = 1,MN = 0〉, where q,q ′ are
two sites in the lattice. As discussed in Sec. V A, the MN = 0
state is detuned from the MN = ±1 state. As a result, the loss
rate is suppressed by a factor (see Appendix J) of

(
V 2

dd

/
K
)

exp

[
−2

α0I0

K

]
. (42)

For a laser strength of I0 ∼ 1.0 MW cm−2 and the polarizabil-
ity taken from Ref. [38], and using parameters from Table I,
we find that α0I0/K ∼ 102. We see that such a loss rate is
exponentially suppressed.
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Moreover, to suppress motional excitation, one needs to
make sure that the dipolar energy remains much weaker than
the local trap energy: Vdip < 2h̄ω[ad,alatt,Z]. This gives a
lower limit on the lattice constant alatt for a fixed molecule and
ferroelectric polarization. For the parameters in Tables I and II
with a molecule trapped at Z0 = 9.5 [minimum loss rate from
Fig. 7(c)], we find that the dipolar energy Vdip ≈ 6 kHz which
is small compared to the trap energy of ∼1 MHz. Moreover, as
our trap is stable for around ∼1 s, such a dipolar coupling in
principle allows us to perform around Vdip/min[γ 0

tr ] ≈ 7 × 103

gate operations. If we use instead a 5T magnetic field to
suppress the hyperfine loss, we can gain an order of magnitude
in the number of gate operations by decreasing the nanorod
radius rd = 20 nm. For a comparison to a possible optical
lattice trap, we assume a setup similar to Ref. [14] with an
additional microwave field to couple |N = 0,MN = 0〉 to
|N = 1,MN = 0〉. The resulting spin model permits gate
operation of order ∼3 × 102. Thus, in our setup we can expect
an increase in the number of potential gate operations by a
factor of ∼20.

X. SUMMARY AND CONCLUSIONS

In summary, we have proposed nanotraps for polar
molecules near an array of ferroelectric nanorods. Our most
important finding is that in the proposed scheme there exist
trapped states with suppressed molecular loss rate even within
the regime of nanoscale confinement. The molecules are held at
a certain distance from the nanorods by the combined potentials
of the nanorods and a standing-wave laser field. Moreover,
we have shown that the trapping scheme can be extended
to a one-dimensional periodic structure with lattice constant
∼200 nm. We carried out a qualitative analysis of the main
loss mechanisms, including nonadiabatic losses as well as
hyperfine-, laser-, and surface-induced losses. Considering, in
particular, RbCs molecules that have already been prepared
at temperatures below those corresponding to our trap, we
find that the main limiting process comes from the interplay
between nonadiabatic and hyperfine coupling and leads to a
lifetime of ∼10 s for 0D trap and ∼1 s for 1D trap. This time,
in principle, can be increased by applying a stronger static
magnetic field. As an application, we have sketched a way to
simulate a family of long-range spin Hamiltonians using our
proposed 1D array of traps.

We like to point out that the present proposal can be applied
to all 1� diatomic molecules. Depending on the hyperfine
and rotational structure of the molecule, the dependence of
the loss rate on the magnetic field will change. Moreover,
one can exploit the possibility that for N > 1, there can be
more than one trapped state which can lead to more exotic
spin models. In addition, a difference in trapping properties
between different N manifolds can be exploited to generate
spin models by shaking the Z-axis optical potential without
using a microwave field.

While our proposal combining electrostatic with optical
trapping is restricted to 1D arrays, we note that a 2D geometry
can be realized by using a two-dimensional arrangement of
the purely electrostatic 0D traps presented in Fig. 5, in which
there is no limitation due to optical trapping. Moreover, as no
special optical properties of the molecule are required, such a

scheme can, in principle, be used to trap general rigid-rotor-like
molecules.

More generally, the use of nanostructures for trapping
polar molecules opens several new directions. One possible
extension is to investigate its potential for trapping other
types of molecules such as, e.g., those of 2� type, which
have a richer fine structure due to an unpaired electron spin.
Furthermore, ferroelectrics in the nanoregime can have exotic
(e.g., vortexlike) polarization distribution [44,45], which can
be controlled in dynamical manner. Such control can poten-
tially give rise to a state-independent trap in a time-averaged
potential. Another direction will be to extend our trapping
scheme to open shell molecules, e.g., 2� molecules. Such
molecules have a magnetic moment and can then be trapped by
ferromagnetic nanorods [46]. Moreover, ferromagnetic states
can be switched in nanosecond rates [47], allowing for fast,
time-dependent potentials, which can again give rise to a novel
state-independent mechanism to trap open-shell molecules.

Another route of further investigation will focus on the
usability of such traps for quantum information processing and
for precision measurements.
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APPENDIX A: SYMMETRIES OF THE TRAPPING
POTENTIAL

We consider the simplest ferroelectric trapping geometry
consisting of only four nanorods, i.e., Nf = 1, corresponding
to just one square in Fig. 1 as outlined by the dashed line.
The symmetry of the arrangement of ferroelectrics gives useful
insight into the properties of the electric field. There are three
relevant symmetries RJ ,J = 1, . . . ,3 involved: reflection at
Y = 0, reflection at X = 0, and rotation around Z by π/2.
Each of these operations moves a ± polarized nanorod to a ∓
polarized one. Therefore, the electric field �E( �R) changes sign
under each of the symmetry transformations RJ , i.e., [48],

RJ
�E(R−1

J
�R) = − �E( �R) ∀J = 1, . . . ,3. (A1)

We are interested at the field distribution close to the origin (the
center between the rods) but outside of the volume containing
the nanorods. Thus, we can use a Taylor series in X,Y for each
component of �E,

Eu(X,Y,Z) =
∑

n,m�0

cu
nm(Z)XnYm, u = X,Y,Z. (A2)

Then from R1 (reflection at Y = 0), we obtain⎛
⎝−EX(−X,Y,Z)

EY (−X,Y,Z)
EZ(−X,Y,Z)

⎞
⎠ = − �E(X,Y,Z),

which implies cX
nm = (−1)ncX

nm and cY
nm = −(−1)ncY

nm, i.e.,

cX
nm = 0 ∀n odd, cY

nm = 0 ∀n even, cZ
nm = 0 ∀n even.

(A3)
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Similarly, reflection at X = 0 yields

cX
nm = 0 ∀m even, cY

nm = 0 ∀m odd, cZ
nm = 0 ∀m even.

(A4)
Thus, we can conclude that the only nonzero terms in the
Taylor series are cX

odd,even,c
Y
even,odd, and cZ

even,even. Note that these
symmetries persist even in the 1D case and thus still apply to
the (center of) the 1D array of nanorods. R3, in contrast, only
holds for the 0D case (and would be restored for the (center
of) a full 2D arrangement that we do not discuss here):

cX
nm = −(−1)mcY

mn, (A5)

cY
nm = +(−1)mcX

mn, (A6)

cZ
nm = −(−1)mcZ

mn. (A7)

We are mainly interested in the azimuthal field component
E− = EX − iEY . Inserting the Taylor series for EX,Y and
expressing X and Y in polar coordinates, we find

E−(R,ϕ,Z) =
∑
n,m

[
cX
nm(Z) − icY

nm(Z)
]
Rn+m cosn ϕ sinm ϕ.

Using that both cX
nm and cY

nm vanish whenever n + m is even,
we see that only odd powers of R appear in the series and
only powers of eilφ with |l| < 2k1 appear. Therefore, we are
justified to make the ansatz

E−(R,ϕ,Z) =
∑

k�0,2k+1�|l|
c−
kl(Z)R2k+1eilϕ ≡

∑
l

c−
l (Z,R)eilϕ,

(A8)
where the c−

l (Z,R) are odd functions of R. While further
constraints on l can be obtained (after some algebra) by relating
cX,cY , and c−, they are easier to see by applying the symmetry
operations directly to the Fourier series of E− and using that

from the three symmetry operations, we get

E−(X,Y,Z) = E∗
−(−X,Y,Z) ≡ E∗

−(R,π − ϕ,Z), (A9)

= −E∗
−(X,−Y,Z) ≡ −E∗

−(R,−ϕ,Z), (A10)

= iE−(Y,−X,Z) ≡ iE−(R,ϕ − π/2,Z). (A11)

This implies that c−
l = (c−

l )∗eilπ = (c−
l )∗eiπ = c−

l e−i(m−1)π/2,
from which we conclude that

c−
l = 0 ∀l �= 4J + 1, (A12)

c−
l = −(c−

l )∗, (A13)

i.e., only c−
l with l = . . . ,−3,1,5, . . . may be nonzero (neither

even powers of eiϕ in the Fourier series of E− nor powers
4k − 1).

Analogously, we find for the Fourier series of EZ(ϕ,R,Z) =∑
l c

Z
l (R,Z)eilϕ that −cZ

l = eilπ c−l = cZ
−l = eilπ/2cZ

l , from
which we conclude that cZ

l may be nonzero only for l = 4J + 2
and that cZ

−l = −cZ
l ; all cZ

l are even functions of R.
Note that these considerations only apply to 0D case or the

center of a 1D or 2D array. However, due to the diminishing
influence of the boundary, it will approximately hold also for
cells close to the center of such an array.

APPENDIX B: NONADABATIC CONTRIBUTION TO
POTENTIAL EQ. (8)

Here, we consider the nonadiabatic effect to the Hamil-
tonian due to the position dependence of the perturbation in
Eq. (8). The second-order energy corrections arise from a first-
order correction to the unperturbed states. The transformed
states related to our model are given by (we neglect the
hyperfine structure for this discussion)

|0̃,0̃〉 = |N = 0,MN = 0〉 −
∑
N ′>0,

MN ′

〈N ′,MN ′ | Hmf |N = 0,MN = 0〉
h̄BeN ′(N ′ + 1)

|N ′,MN ′ 〉,

= |N = 0,MN = 0〉 + αmf

2
√

6h̄Be

(E− |N = 1,MN = 1〉 + E+ |N = 1,MN = −1〉),

|1̃〉 = |N = 1,MN = 1〉 +
∑
N ′ �=1,

MN ′

〈N ′,MN ′ | Hmf |N = 1,MN = 1〉
h̄Be(2 − N ′2 − N ′)

|N ′,MN ′ 〉,

= |N = 1,MN = 1〉 − αmf

4
√

5h̄Be

(
E− |N = 2,MN = 2〉 + E+√

6
|N = 2,MN = 0〉 −

√
10

3
E+ |N = 0,MN = 0〉

)
,

|−1̃〉 = |N = 1,MN = −1〉 +
∑
N ′ �=1,

MN ′

〈N ′,MN ′ | Hmf |N = 1,MN = −1〉
h̄Be(2 − N ′2 − N ′)

|N ′,MN ′ 〉 ,

= |N = 1,MN = −1〉 − αmf

4
√

5h̄Be

(
E+ |N = 2,MN = −2〉 + E−√

6
|N = 2,MN = 0〉 −

√
10

3
E− |N = 0,MN = 0〉

)
.

(B1)
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The nonadiabatic effect then can be estimated by employing the kinetic energy operator onto the states |0̃,0̃〉 , |±1̃〉. As we
have seen that the width of the trapped states are within the linear region of the electric field strength, we only consider the effects
of E± fields. The resulting kinetic operator reads Ktot = K0 + K1 + K2, where

K0 = K(|0̃,0̃〉 〈0̃,0̃| + |1̃〉 〈1̃| + |−1̃〉 〈−1̃|)∇2,

K1 = K

(
αmf

2
√

6h̄Be

)2 ∑
σ=±

(Eσ (∇Eσ )(∇ |0̃,0̃〉) 〈σ 1̃| + E−σ (∇E−σ )(∇ |σ 1̃〉) 〈0̃,0̃| + E−σ (∇Eσ ) · (∇ |0̃,0̃〉) 〈0̃,0̃|), (B2)

K2 = K

(
αmf

4
√

30h̄Be

)2 ∑
σ=±

(E−σ (∇E−σ )(∇ |σ 1̃〉) 〈−σ 1̃| + Eσ (∇E−σ )(∇ |σ 1̃〉) 〈σ 1̃|),

where a derivative on a internal state is used as a expression for derivative on the position wave function of that internal state.
The first term, Eq. (B2), is the adiabatic part of the kinetic operator. K1 denotes the nonadiabatic contribution and couples the
N = 1 states to N = 0 level. Such a transition has energy gap of h̄Be. In the present case, we find that ‖K1‖/(h̄Be) ∼ 10−7 and
as a result its effect can be neglected. The operator K2 in Eq. (B2) denotes nonadiabatic corrections leading to coupling between
the trapped states. In the linear field regime, (E− ∝ −ieiϕ), this term can be shown to be proportional to (∇ |−ϕ〉) 〈−ϕ|. Again
as ‖K2‖/K ∼ 10−4, we can neglect its effect compared to the adiabatic contribution.

Similarly, one can show that the nonadiabatic coupling between the other states also results in small corrections to the kinetic
operator.

APPENDIX C: LOSS DUE TO HYPERFINE STRUCTURE INDUCED COUPLING

We give the detailed derivation of the hyperfine structure induced loss rates as presented in Sec. VI B. The loss rate arises
due to the off-diagonal elements of H01,H10 in Eq. (14) which are of order δ � 1 (cf. Table III) and couple each trapped state
to a continuum state with different hyperfine structure. We are interested in a regime where the energy of j = 0 trapped state
2ω[ad,Z] − |E0 − E1| < 0. Moreover, we are interested in a regime where the width of the trapped state is much smaller than
the classical turning point radius. Away from the size of our square cell, R > ad/2, we assume that the untrapped state is
essentially a free particle with respective energy-independent two-dimensional density of states. Assuming such density of state
is an approximation which can drastically change in presence of a resonance. In such cases, one can use the magnetic field to
tune |E0 − E1| away from such a resonance.

The relevant equations for the j = 0 trapped state are derived from Eqs. (13) and (14),[−(∂2
R̃

+ ∂R̃

R̃
− 1

R̃2

)+ R̃2 − 2E0
h̄ω[ad ,Z] − 3δR̃2

4

− 3δR̃2

4 −(∂2
R̃

+ ∂R̃

R̃
− 5

R2

)+ V [R̃] − 2E0
h̄ω[ad ,Z]

]
= 2ε

h̄ω[ad,Z]

[
t0
1 [R̃]

u1
−1[R̃]

]
. (C1)

We are interested in a region where |E0 − E1| > 2ω[ad,Z],
i.e., where resonant tunneling is possible when the energy
of the continuum state is εres = 2ω[ad,Z] − |E0 − E1|. This
corresponds to a situation where the center of the trap R = 0
is situated in a classically forbidden region of the continuum
state.

We first numerically calculate the position dependence
of |u1,−1〉 with energy εres where we replace the shape of
the potential for the continuum state as V [R̃] = −R̃2/2,R̃ <

ãd/2 and V [R̃] = V [ãd/2] = −ã2
d/8,R̃ � ãd/2. The reason

behind this substitution is that the potential for the continuum
state has a downward curvature near the center of the trap
with the minimum residing at the boundary of the square
cell. Our trapped states are concentrated near the center
of the square cell (σ [ad,Z]/ad � 1) and we are interested
in classically forbidden energy regimes ε ∼ V [ad/2]. With
this substitution, we find the solution for |u1,−1〉 inside
a region of R̃ ∈ [0,R̃max]. To find the density of states
at the resonant energy, we first notice that as R̃ → ∞,
the solution should approach the free-particle wave func-
tion ∝J√

5[αMR̃/R̃max], where αM is the Mth zero of the
Bessel function J√

5[x]. Here, we numerically find M0 by
maximizing the overlap function: O[M] = |〈M | u1,−1〉|2

where |M〉 = √
2R̃2

maxJ√
5[αMR̃/R̃max]/J√

5+1[αM ]. The den-
sity of states is then given by D[M0] = R̃2

max/(2παM0 ).
Then using Fermi’s golden rule, we express the transition
rate from the lowest energy trapped state to the continuum
as

γ 0
hf

h̄ω[ad,Z]
= 9πδ2D[M0]

32
|〈u1,−1|R̃2|t0,01〉|2. (C2)

On the other hand, the transition rate from the trapped state
|t1,01〉 happens at a positive energy and is given by

γ 1
hf

h̄ω[ad,Z]
= 9πδ2D[Mres]

32
|〈u0,3|R̃2|t1,01〉|2, (C3)

where the resonant condition now reads α2
�,Mres

/R̃2
0 = 4 +

2|E0 − E1|/(h̄ω[ad,Z]) + R̃2/2; cf. Sec. VI B.

APPENDIX D: LOSS RATE DUE TO THE R3 DEPENDENCE
OF ELECTRIC FIELD

1. Loss rate for 0D trap

Including the correction due to ∝R3 exp[−3iϕ] in Eq. (10)
and going to the transformed basis, the equation of motion for
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the � = 1 trapped state Eq. (15) reads

−1

2

(
∂2
R̃

+ ∂R̃

R̃
− 1

R̃2
− 2R̃2

)
t
j

1 [R̃] + f−3[ad,Z]K

f⊥[ad,Z]ω[ad,Z]

× R̃4
∑
η=±1

(
t i1+4η[R̃] − 3

4
u

j

1+4η[R̃]

)
= ε1 + Ei

h̄ω[ad,Z]
t
j

1 [R̃],

(D1)

where R̃ = R/σ [ad,Z] and the last term on the right-hand
side arises from the R3 correction to the field. While deriving
Eq. (D1), we have neglected the effect of f1⊥[ad,Z] in Eq. (10),
as we consider regions with Nmax > 1 where its effect is
negligible as it only renormalizes the trapping frequency by
a factor 1 + (f1⊥[ad,Z]/f⊥[ad,Z])2 ≈ 1 (cf. Fig. 3). As a
result, we only consider the effect of f−3[ad,Z] components
in Eq. (10). Next, we solve Eq. (D1) perturbatively with the
zeroth-order solution given by Eq. (16). The second last term in
Eq. (D1) couples j,1,N to |t1

−3N ′ 〉 , |t1
5N ′ 〉 states. As from Fig. 3,

|f−3[ad,Z]|/f⊥[ad,Z] ∼ 10−3, we express the perturbed wave
function as

|t j ,1N〉 = |t j ,1N〉 + f−3[ad,Z]K

f⊥[ad,Z]h̄ω[ad,Z]

∑
�′=−3,5

×
∑

N ′ �=N

VN,�,N ′ |t j ,�′N ′〉
2(N − N ′) + 1 −

√
(� − 1)2 + 1

,

(D2)

where VN ;�,N ′ = 〈t j ,1N | R̃4 | t j ,�N ′〉 is a dimensionless
number. These admixtures can have a strong impact on the
loss rate, especially for � = 1, which is lossless to zeroth order
as seen from Eq. (24) and Fig. 6, but becomes lossy due to
the small admixture of the degenerate states � = −3,5. It is
clear that the correction does not couple different hyperfine
manifolds, so we will drop the hyperfine subscript j . From
Eq. (D2), we find that the modified decay rate for the N = 0
motional state of � = 1 is given by Eq. (25).

The next source of loss originates from the last term in
Eq. (D1), which couples the trapped t� state to the continuum
states u�±4. Using Fermi’s golden rule, the loss rate for the
N = 0,� = 1 state consequently is given by Eq. (26).

2. Loss rate for 1D trap

For 1D trap, in the electric field expansion in Eq. (34), both
exp[±i3φq] terms are present. As a result, the equivalent of

FIG. 8. Total nonadiabatic and hyperfine-induced loss rate γ 0
tr is

plotted as a function of Z for ad = 2.25 (solid line), 3.0 (dashed line),
and 4.0 (dash-dotted line).

Eq. (D1),

−1

2

(
∂2
R̃

+ ∂R̃

R̃
− 1

R̃2
− 2R̃2

)
t
j

1 [R̃] + KR̃4

2F⊥[ad,Z]ω[ad,Z]

×
∑
η=±1

(
F−3[ad,Z]t j1+4η[R̃] + F3[ad,Z]t j1+2η[R̃]

+ 3

4
F−3[ad,Z]uj

1+4η[R̃] + 3

4
F3[ad,Z]uj

1+2η[R̃]

)

= ε1 + Ei

h̄ω[ad,Z]
t
j

1 [R̃]. (D3)

Then we get the loss rates for 1D following the same
procedure in as the previous subsection.

APPENDIX E: TOTAL MOLECULAR LOSS FOR A
DIFFERENT MAGNETIC FIELD

Here we show the total molecular loss rate γtr as defined in
Eq. (27) for a magnetic field B0 = 5T. For such a magnetic
field, the hyperfine parameters of Eqs. (2) and (3) for the
j = 0,1 states are given by δ ≈ 0.01 and |E1 − E0|/(h̄Be) ≈
0.027. For such parameters, along with the ferroelectric pa-
rameter of the 0D trap from Table I, we plot the loss rate for
different values of ad in Fig. 8.

APPENDIX F: EFFECT OF EZ FIELD

An additional loss channel arises due to the second-order
Stark term in Eq. (8),

V N=1
Z = −E2

Z[ �ρ]a2
mf

20h̄Be

∑
M1=±1
Icol

|1,M1,Icol〉 〈1,M1,Icol| . (F1)

By using the fitting potential of Eq. (10), EZ[ �ρ] ≈ fz[ad,Z]R2 sin[2ϕ],R → 0 and going to the position basis as used for Eq. (15),
the transformed equation reads

[
−∂2

R̃
− ∂R̃

R̃
+ (� − 1)2 + 1

R̃2
+ R̃2 − f 2

z [ad,Z]K

2f 2
⊥[ad,Z]h̄ω[ad,Z]

R̃4

]
t
j

� [R̃] + f 2
z [ad,Z]K

4f 2
⊥[ad,Z]h̄ω[ad,Z]

R̃4
(
t
j

�+4[R̃] + t
j

�−4[R̃]
)

= 2(ε� + Ej )

h̄ω[ad,Z]
t
j

� [R̃]. (F2)
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We solve Eq. (F2) perturbatively with the zeroth-order solution
given by Eq. (16). The attractive R4 will lower the barrier due
to the quadratic potential for large R and will lead to tun-
neling loss. From a semiclassical Wentzel-Kramers-Brillouin
approximation, the tunneling loss rate is found to be negligible
compared to the other time scales involved in our system and
as a result we neglect this effect. The last two terms will
perturbatively couple t

j

1 to t
j

−3,5. Again, there is no coupling
between different hyperfine j states and as a result we drop the
label for rest of the section. The perturbed state is given by

|t j ,1N〉 = |t j ,1N〉 + f 2
z [ad,Z]K

4f 2
⊥[ad,Z]h̄ω[ad,Z]

×
∑

�′=−3,5

∑
N ′ �=N

VN,�,N ′ |t j ,�′N ′〉
2(N − N ′) + 1 −

√
(� − 1)2 + 1

,

(F3)

where VN ;�,N ′ is defined below Eq. (D2). Such a superposition
will have an impact on the loss rate, specially for � = 1. In
the zeroth order, the � = 1 is the only lossless state as seen
from Eq. (24) and Fig. 6. The loss rate is same as Eq. (25) with
f−3[ad ,Z]
f⊥[ad ,Z] replaced by ( fz[ad ,Z]

2f⊥[ad ,Z] )
2. We find that fz[ad ,Z]

f⊥[ad ,Z] ∼ 10−1

and the loss rate is ∼10−2s−1 for ad = 2.25,Z = 16.

APPENDIX G: EFFECT OF COUPLING TO
|N = 1,MN = 0〉 STATE

One of the loss channels we have neglected so far is due
to the coupling between a |±1〉 = |N = 1,MN = ±1〉 and
|0〉 = |N = 1,MN = 0〉 states. Such coupling arises again
via quadratic Stark shift and the corresponding coupling
Hamiltonian is given by

V N
0⊥ = a2

mfEZ√
2h̄Be

(
E+V N

0+ + E−V N
0−
)
, (G1)

where

V N
0+ =

∑
ε=0,1

∑
N ′,MN ′

T 1
ε |N ′,MN ′ 〉 〈N ′,MN ′ | T 1

ε

EN − EN ′
, (G2)

V N
0− =

∑
ε=0,−1

∑
N ′,MN ′

T 1
ε |N ′,MN ′ 〉 〈N ′,MN ′ | T 1

ε

EN − EN ′
. (G3)

For the first rotational level N = 1, the internal states
are characterized by |−1〉 = |N = 1,MN = −1〉 ,|0〉 =
|N = 1,MN = 0〉 , |1〉 = |N = 1,MN = 1〉. With these ba-
sis states, the various components of the coupling matrices are
given by

V 1
0+ ≈

⎡
⎣0 3/20 0

0 0 3/20
0 0 0

⎤
⎦, V 1

0− ≈
⎡
⎣ 0 0 0

3/20 0 0
0 3/20 0

⎤
⎦.

By including the energy shift of the |0〉 state due
to laser potential, E0 = −α0I0 [33], and using Fermi’s
golden rule, the loss rate is proportional to the cou-
pling constant, | 〈t ; �; N ;N = 1| V N

0⊥ |0,�k〉 |2, where |0,�k〉 =
ei�k· �R |0〉 /

√
A is a 2D free particle state with momentum �k,

|�k| = √
(ε�,N [Z] + E0)/K . We find that specifically for the

� = 1 state, i.e., the state |t ; � = 1; N ;N = 1〉, the above

integral vanishes, i.e., | 〈t ; � = 1; N ;N = 1| V N
0⊥ |0,k〉 | = 0 as

EZ ∝ sin 2ϕ [Fig. 1(c)].

APPENDIX H: EFFECT OF CASIMIR-POLDER FORCE

Another possible modification arises from attractive
Casimir-Polder potential. Using similar effective medium ar-
guments, we can infer that the important contribution comes
from the substrate. For a planar substrate in the nonretarded
regime, from Ref. [49] we can write down the Casimir-Polder
potential for the level |N = 1,MN = ±1〉 as

VCasimir = − 3μ2

160πε0

εs − 1

εs + 1

1

Z3
,

where Z is the distance (not scaled with rd ) and εs is the
static dielectric constant of the substrate (εs � 1). As we
trap our molecule at a distance of Z0 ≈ 420 nm from the
substrate, the strength of the Casimir-Polder energy for RbCs
molecule is VCasimir/h̄Be ≈ 10−7 � h̄ω[Z0], much weaker
than the trapping potential.

APPENDIX I: EXPANSION OF E−[mx,m y; �R,Z] IN EQ. (7)
AND THE RESULTING TOTAL AZIMUTHAL FIELD E−[ �ρ]

To look for the behavior of the electric field, we first chose
a rectangular configuration from Fig. 1(b) with the nanorod
positions, [mx(qalatt − ad ),myad ] and for a fixed q and mx =
±1,my = ±1. The electric field for such a configuration can
be written as

E−[q,m; �ρ] = −(−1)
mx+my

2 e−iφ̃q,m

∫
d�r(E[Z + h] − E[Z])

× (Rq,m − re−i(φ−φq,m)),

E[Z] = (Z2 + | �Rq, �m − �r|2)−3/2, (I1)

where �Rq,m = �R − �Fq,m, m ≡ (mx,my), and tan φq,m = (Y −
myad )/[X − mx(qalatt − ad )]. The total field components are
given as the sum of the contributions of all nanorods by E−q [ �ρ]:

E−q[ �ρ] =
∑

m

E−[q,m; �ρ]. (I2)

1. Terms of order R

As we are interested in the field near the center of the
rectangle, we carry out the integration over r in Eq. (I1) and
we expand the resulting expression as a function of R � ad/2.
The electric field can be written as

E−[q,m; �ρ] = (−1)
mx+my

2 smx,my
e−is̃mx ,my φ0

× (
1 + i{mxaxY − myadX} + O

[
R2

q

])
× (

g0[Rq,Z] + g1[Rq,Z]{mxaxX + myadY }
+ O

[
R2

q,Z
])

, (I3)

where we have defined ax = qalatt − ad and R2
q = a2

x + a2
d

and g0,1[Rq] are functions resulting from the integration
which only depends on Rq and Z. Moreover, we define
the angle tan φ0 = (ad/ax). The sign functions are defined
as s1,1 = s1,−1 = 1; s−1,1 = s−1,−1 = −1 and s̃1,1 = s̃−1,−1 =
1; s̃−1,1 = s̃1,−1 = −1. Now from Eqs. (I3) and (I2), by
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carrying out the summation for terms ∝ R, we find that E−q[ �ρ] ∝ Reiφ . As a result, to get the full electric field, one sums over
terms similar to Eq. (I2) over different q which only changes the strength of the leading-order term.

APPENDIX J: DERIVATION OF SIMULATION HAMILTONIAN

Here we derive the equation in Eq. (41). At first, we only consider a single molecule near the ferroelectric substrate in a linearly
Z-polarized microwave field �Emw = E0 cos �tẐ, where � = 4Be + � with � � Be. Such a frequency will resonantly couple
|N = 1〉 to |N = 2〉 state. Our Hamiltonian is then given by

H =
∑

N ,MN

EN |N ,MN 〉 〈N ,MN | +
∑

|N−N ′ |=1,

MN ,M′
N

Hmf[N ′,M′
N ;N ,MN ] |N ′,M′

N 〉 〈N ,MN |

+ cos �t
∑

|N−N ′ |=1,

MN

gmw[N ′,N ,MN ] |N ′,MN 〉 〈N ,MN | , (J1)

where the molecular rotational energy EN = h̄BeN (N + 1) and the molecule-ferroelectric coupling Hmf [N ′,M′
N ;N ,MN ] =

〈N ′,M′
N | Hmf |N ,MN 〉 with Hmf are defined in Eq. (5) and are position dependent. The microwave cou-

pling is given by gmw[N ′,N ,MN ] = μE0 〈N ′,MN | T 1
0 |N ,MN 〉. We apply the unitary transformation, U t =

exp [−i
∑

N ,MN
EN |N ,MN 〉 〈N ,MN | t], and carry out the transformation H ′ = U†t HU t − iU †

t [dt U t ]. As a result, Eq. (J1)
becomes

H ′ = �
∑
M2

|2,M2〉 〈2,M2| + 1

2

∑
M1

(gmw[2,1,M1] |2,M1〉 〈1,M1| + gmw[1,2,M1] |1,M1〉 〈2,M1|)

+
∑

|N−N ′ |=1,

MN ,M′
N

Hmf[N ′,M′
N ;N ,MN ] exp[i(EN ′ − EN )t] |N ′,M′

N 〉 〈N ,MN |

+ 1

2

∑
M1

(gmw[2,1,M1]ei8Bet |2,M1〉 〈1,M1| + gmw[1,2,M1]e−i8Bet |1,M1〉 〈2,M1|)

+ cos �t
∑

|N − N ′| = 1,

MN

′
gmw[N ′,N ,MN ] exp[i(EN ′ − EN )t]|N ′,MN 〉〈N ,MN |, (J2)

where in the first line we have defined the time-independent component in the transformed Hamiltonian and in the last line the
summation

∑′ excludes transitions between N = 1 and N = 2 states. We carry out a Floquet-Magnus expansion [50] up to
second order (1/�2), which results in the effective Hamiltonian in the N = 1,2 subspace

Heff = �

2∑
M=−2

|2,M〉 〈2,M| + g
∑

M=±1

(|2,M〉 〈1,M| + h.c.) + g
√

2/3(|2,0〉 〈1,0| + H.c.)

+
∑

M′
1,M1

V 1[M′
1,M1] |1,M′

1〉 〈1,M1| +
∑

M2,M′
2

V 2[M′
2,M2] |2,M′

2〉 〈2,M2| , (J3)

where the matrix elements in V N are given by Eq. (8) and g = μE0/
√

20. The first line represents the time-independent part
and the second line comes from the first term in the Magnus expansion [50]. As we noticed from our discussion of Eqs. (8),
the terms of the last line will give rise to trapped states |t ;N = 1〉 and |t ;N = 2〉 with energy h̄ω[Z1] and h̄ω[Z2]. Then, if
we project the Hamiltonian in Eq. (J3) to the motional ground states in the two N subspaces and define the operators S+ =
|t ;N = 1〉 〈t ;N = 1| ,Sz = |t ;N = 2〉 〈t ;N = 2| − |t ;N = 1〉 〈t ;N = 1|, and S− = [S+]†, this gives rise to the last two terms
in Eq. (41), where we have introduced an additional subscript q to denote the mean position of the trapped state. Next, we look into
the situation when each site in the periodic potential is filled with one molecule and consider the effects of the dipolar interaction.
Dipolar interaction between the two molecules is given by

Vdip = μ1 · μ2 − 3(μ1 · ρ̂12)(μ2 · ρ̂12)

| �ρ12|3 , (J4)

where μ1,2 are the dipole moment operators for molecules are position �ρ1,2 and �ρ12 = �ρ1 − �ρ2. Between molecules at sites q and
q ′, the resonant dipolar interaction is given by

〈t ;N = 2|q 〈t ;N = 1|q ′ Vdip |t ;N = 1〉q |t ;N = 2〉q ′ =
∑

MN =±1

μ2|〈N = 2,MN |T 1
0|N = 1,MN 〉|2

16πε0|q − q ′|3a3
d

, (J5)
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where we assume that 1 � σ [ad,Z]/ad and give rise to the first term in Eq. (41). There will also be losses due to dipolar coupling
of untrapped state. After some algebra, one such lossy term can be written as

〈N = 2,MN = 0; k| 〈N = 1,MN = 0; k′| Vdip |t ;N = 1〉q |t ;N = 2,−〉q ′

≈ −μ2| exp[−R̃2/2 − iϕ − i�k · �̃R]d2R̃|2
8πε0|q − q ′|3a3

d

〈N = 2,MN = 0| T 1
−1 |N = 1,MN = 1〉

× 〈N = 1,MN = 0|T 1
−1 |N = 2,MN = 1〉

∝ exp[−k2/4] = exp

[
−α0I0

4K

]
, (J6)

where we have used for the untrapped state 〈N = 2,MN = 0; k| = 〈N = 2,MN = 0| exp[−i�k · �̃R] and 1 � σ [ad,Z]/ad . For
the last line, we have used the fact that due to laser light, the MN = 0 state is shifted by α0I0 (see Sec. V A), and the resonant
condition reads k2 = α0I0/K . As a result, the loss rate will be ∝ exp[−α0I0

2K
].
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