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Strong-field photoelectron holography of atoms by bicircular two-color laser pulses
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We study photoelectron holography in strong bicircular two-color laser fields by solving the time-dependent
Schrödinger equation (TDSE) and a semiclassical rescattering model with implementing interference effect. The
holographic patterns observed in the TDSE are well recaptured by the semiclassical rescattering model. Four
types of photoelectron holographic interferences between the forward scattered and nonscattered trajectories
are predicted by the semiclassical rescattering model in the bicircular two-color laser field. We find that those
holographic patterns are spatially separated from each other in the electron momentum distribution. We further
show that the dependence of the initial transverse momentum at the tunnel exit on the ionization time for the
rescattering electron is recorded by the holographic patterns.
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I. INTRODUCTION

When an atom or a molecule is exposed in a strong laser
field, an electron wave packet might be ejected at near the field
maximum of the laser field [1]. According to the quantum-
orbit theory [2,3], the propagation of the released electron
wave packet in the laser field can be approximated by many
trajectories. The electron is either freed directly or driven
back to the parent ion (known as rescattering), depending
on the phase of the laser field when the electron tunnels out
from the bound state. The electrons from the rescattering
trajectory can have the same final momenta as those from
the direct trajectory. The superposition of their contributions
in the quantum-mechanical ionization amplitudes leads to the
interference in the photoelectron momentum distribution. This
kind of interference is very similar to optical holography, thus
it is known as strong-field photoelectron holography (SFPH).
The SFPH was first observed for strong-field ionization of
atoms in a linearly polarized laser field [4,5]. The SFPH
can record extensive time-resolved information about both
the electron and ion, and it therefore opens a new door to
probe ultrafast atomic and molecular dynamics in strong-field
physics. Nowadays, the SFPH has been used to characterize
the alignment-dependent phase distribution of the tunneling
wave packet in molecule [6,7], to extract the phase of the
scattering amplitude of atoms and molecules [8], and to
probe the molecular dynamics [9,10]. Because the electron-ion
rescattering is highly suppressed with increasing the ellipticity
of the laser pulse, the SFPH can hardly be observed in a
circularly polarized laser field [11].
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Almost two decades ago, it was theoretically predicted
that the rescattering trajectory can play a considerable role
in a bicircular two-color laser field [12,13]. Generally, the
bicircular two-color laser field consists of two counterrotating
circularly polarized fields with the fundamental frequency and
its second harmonic. This special laser wave form is very useful
for both high-harmonic generation (HHG) and strong-field
ionization (SFI). In the case of HHG, the bicircular two-color
laser field has been used to generate high-brightness circu-
larly polarized harmonics in the extreme ultraviolet and soft
x-ray regions [14–16], enabling new capabilities for probing
magnetic materials and chiral molecules. Recently, it was
further demonstrated that the HHG driven by the bicircular
two-color laser field has a broad range of applications, such as
probing the rotational symmetries of atoms and molecules and
their evolution in time [17] and three-dimensional attosecond
metrology [18].

In the case of SFI, the bicircular two-color laser pulses
have been used to study above-threshold ionization [19,20]
and nonsequential double ionization [21–23]. The rescattering
trajectory in the bicircular two-color laser field is signifi-
cantly more complex than that in a linearly polarized laser
field [24,25]. Moreover, low-energy features of the electron
spectra arising from the electron rescattering were observed,
which are separated from the direct ionizations in the final
momentum distribution [19]. By changing the laser intensity
ratio of the driving laser, the high-energy rescattering electrons
were subsequently observed [20]. It is possible that the final
momentum of the electron from the rescattering trajectory
is the same as that of the electron from the nonscattering
trajectory, which can lead to the SFPH in the momentum
distribution. The existence of the SFPH in the bicircular two-
color laser fields was mentioned by Milošević and Becker [24],
but it has not been discussed in detail as far as we know.

In this paper, we study the SFPH in a bicircular two-color
laser field by solving the two-dimensional time-dependent
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Schrödinger equation (TDSE) and a semiclassical rescattering
model. Four types of photoelectron holographic interferences
between the forward-scattered and nonscattered trajectories are
predicted by the semiclassical rescattering model in the bicir-
cular two-color laser field, three of which are well resolved in
the TDSE simulation. Since the ionization times are mapped to
the final two-dimensional momenta for both forward-scattered
and nonscattered trajectories, those holographic patterns are
separated from each other in the final momentum distributions.
In the bicircular two-color laser field, the rescattering electron
travels along a two-dimensional trajectory, and the initial
transvere momentum of the rescattering electron at the tunnel
exit depends sensitively on the ionization time. We show that
this dependence has been recorded by the holographic patterns.
In addition, we find that the return angle of the rescattering
electron also depends sensitively on the ionization time in
the bicircular two-color laser field. The wide range of the
return angle spanned by the rescattering electron provides
an alternative avenue to image the molecular structure and
dynamics.

II. METHODS

A. Quantum simulation

To study the SFPH in the bicircular two-color laser fields, we
numerically solve the two-dimensional TDSE of a hydrogen
atom. The TDSE is expressed as [atomic units (a.u.) are used
throughout unless stated otherwise]

i
∂ψ(r,t)

∂t
= H (r,t)ψ(r,t), (1)

where ψ(r,t) is the wave function and H (r,t) is the Hamilto-
nian. In length gauge, the Hamiltonian is given by

H (r,t) = − 1
2∇2 + V (r) + r · E(t), (2)

where r is the distance between the nucleus and the electron.
V (r) = −1/

√
r2 + a is the Coulomb potential. The soft pa-

rameter a is set to be 0.635 to match the ionization potential
of the hydrogen atom. The electric field of the laser pulse is
given by

E(t) = E1600f (t)[cos(ωt)x̂ + sin(ωt)ŷ]

+E800f (t)[cos(2ωt)x̂ − sin(2ωt)ŷ], (3)

where x̂ and ŷ are the unit vectors along the x and y

directions, respectively. E1600 and E800 are the electric field
amplitudes for the 1600-nm and 800-nm pulses, respectively.
f (t) = sin2(πt/mT ) is the envelope of the laser pulse with
m being the number of the optical cycle and T being the
period of the 1600-nm laser field. m is chosen to be 10 in
the simulation. The electric field amplitude ratio is chosen
to be E800/E1600 = 2, corresponding to the intensity ratio
of I800/I1600 = 4. It has been shown that the electron-ion
rescattering probability is optimized at this intensity ratio [20].
The laser intensity for the fundamental field (1600 nm)
is 4 × 1013W/cm2 and for the second harmonic (800 nm)
is 1.6 × 1014W/cm2. Because the photoelectron holography

is favored by a longer wavelength [26], we use a long laser
wavelength of 1600 nm for the fundamental field. The laser
pulse with long wavelength is achievable in the experiment
using the optical parametric amplification technology [27]. For
this laser field, the ionization mainly occurs in the tunneling
ionization regime and the holographic pattern might be easily
observed. For the fundamental field with a wavelength of
800 nm, the ionization is dominated by the multiphoton ion-
ization at the intensity ratio of ∼4 and the holographic pattern
is not well resolved in the final momentum distribution [20].

The initial wave function is obtained by imaginary-time
propagation. Then we use the split-operator method to solve
the TDSE [28]. At each time step, the whole wave function is
separated into the inner and outer regions by a wave-function
splitting technique [28]. The wave function in momentum
space is calculated by the Fourier transformation of the wave
function in the outer region. Then the final momentum distribu-
tion is obtained by summing the wave function in momentum
space over ti

∂P (E,θ )

∂E∂θ
=

∣∣∣∑ C(p,ti)
∣∣∣2

, (4)

where C(p,ti) is the wave function in the momentum space
at each time step ti , E and θ are the electron energy and the
electron emission angle, respectively. In the simulation, the
time step is 0.1 a.u. and the grid size of the space is also set to
be 0.1 a.u.

B. Semiclassical rescattering model

The rescattering effect in the bicircular two-color laser
field has been analyzed in detail by solving the saddle-point
equation within the model of the improved strong-field ap-
proximation [24,25]. Here we use a simplified semiclassical
rescattering model to simulate the interference structures
between the nonscattering trajectory and forward-scattering
trajectory in the bicircular two-color laser field. This model
is based on the classical three-step model and has included
the interference effect of the electron trajectories [10,29]. The
model has been successfully used to study the holographic
structures in a linearly polarized laser field [9,30]. Here we
apply it to the analysis of the holographic structure induced by
the two-dimensional rescattering trajectories.

For the laser field given by Eq. (3), we neglect the en-
velope effect. As shown in Fig. 1(a), the electric field Es =√

E2
x + E2

y consists of three segments per cycle, i.e., −T/6 <

t < T/6, T /6 < t < T/2, and T/2 < t < 5T/6. Each seg-
ment corresponds to a field maximum, thus three electron wave
packets can be released within each laser cycle, as shown by
w1, w2, and w3 in Fig. 1(a). Due to the threefold rotational
symmetry for those three wave packets in the final momentum
distribution [24,25], we only consider the rescattering trajec-
tories released from w1. We restrict the ionization time of the
rescattering trajectory within (0, 0.01T ), for which the laser
field component in the x direction is much larger than that
in the y direction. The rescattering trajectory (signal wave) is
released at a random laser phase ωt0 within (0, 0.01T ). The
velocities of the electron in the x and y directions before the
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FIG. 1. (a) One cycle of the laser field Es = √
E2

x + E2
y (black

curve) is shown. Ex and Ey are the electric fields in the x and y

directions, respectively. For better visualization, the two orthogonal
components are drawn in parallel. Three electron wave packets (black
for w1, red for w2, gray for w3) are launched in each cycle of the
laser pulse through the tunneling at near the field maximum. (b) The
field-driven photoelectron momenta p = −A(t0) of the three wave
packets are shown by the solid curves with different colors. The arrows
show the time evolution direction.

rescattering can be written as, respectively,

vx = vx0 − E0

ω
[sin(ωt) − sin(ωt0) + sin(2ωt) − sin(2ωt0)],

vy = vy0 + E0

ω
[cos(ωt) − cos(ωt0) − cos(2ωt)

+ cos(2ωt0)], (5)

where E0 = E1600. vx0 and vy0 are the initial momenta in the
x and y directions when the electron tunnels, respectively.
Because the laser field in the x direction is much larger than
that in the y direction for the tunneling phase of (0, 0.01T ),
we can assume zero initial momentum along the x direction
for the rescattering trajectory, i.e., vx0 = 0. A nonzero initial
momentum along the y direction vy0 is used to compensate
the electron motion induced by the rotating electric field. The
rescattering time tc is determined when the electron is driven
back to the core in both x and y directions, i.e., x(tc) = 0 and
y(tc) = 0. Due to zero initial momentum along the x direction,
we can obtain the rescattering time tc by numerically solving
the equation of motion in the x direction

cos(ωtc) − cos
(
ωt

sig
0

) + cos(2ωtc)/2 − cos
(
2ωt

sig
0

)
/2

+ω
(
tc − t

sig
0

)[
sin

(
ωt

sig
0

) + sin
(
2ωt

sig
0

)] = 0, (6)

and the initial transverse momentum vy0 for the rescattering
electron is calculated by,

vy0 = −E0/ω

[
sin(ωtc) − sin

(
ωt

sig
0

)
ω

(
tc − t

sig
0

)

− sin(2ωtc)− sin
(
2ωt

sig
0

)
2ω

(
tc−t

sig
0

) − cos
(
ωt

sig
0

)+ cos
(
2ωt

sig
0

)]
.

(7)

The electron velocities along the x and y directions at the
instant of rescattering are given by, respectively,

vxc = E0

ω

[
sin(ωtc) − sin

(
ωt

sig
0

)

+ sin(2ωtc) − sin
(
2ωt

sig
0

)]
,

vyc = vy0 + E0

ω

[
cos(ωtc) − cos

(
ωt

sig
0

)

− cos(2ωtc) + cos
(
2ωt

sig
0

)]
. (8)

The return energy Ec and the return angle φc with respect to
the x axis are calculated by

Ec = 1
2

(
v2

xc + v2
yc

)
,

φc = tan−1(vyc/vxc). (9)

At the instant of rescattering, the electron elastically scatters
off the nucleus with a scattering angle θc with respect to the
impact direction. The scattering angle θc is within [−90◦, 90◦]
for the forward scattering. Thus the final momentum of the
rescattering electron is given by

px =
√

2Ec cos(φc − θc) + E0

ω
[sin(ωtc) + sin(2ωtc)],

py =
√

2Ec sin(φc − θc) − E0

ω
[cos(ωtc) − cos(2ωtc)]. (10)

We mainly discuss the interference between the rescattering
and nonscattering trajectories. Those electrons tunnel at differ-
ent times, travel along different paths, and obtain the same final
momenta. Given the final momenta, we can directly calculate
the ionization time and the initial transverse momentum for the
nonscattering electron (reference wave)

p = v
(
t ref
0

) − A
(
t ref
0

)
, (11)

where t ref
0 is the ionization time of the nonscattering elec-

tron, A(t) is the vector potential of the laser field at the
time t , and v(t) is the initial momentum transverse to the
instantaneous laser field when the electron tunnels. The phase
of each trajectory is given by the classical action along the
path, i.e., S = ∫ ∞

t0
( v2(t)

2 + Ip)dt . Therefore, the phase differ-
ence between the forward-scattering and nonscattering trajec-
tories is

�S = 1

2

∫ tc

t
sig
0

(
v2

x + v2
y

)
dt − 1

2

∫ tc

t ref
0

(
v2

x + v2
y

)
dt

− Ip

(
t

sig
0 − t ref

0

)
. (12)

The interference patterns are determined by this phase dif-
ference, i.e., W = cos2(�S/2). In this model, we sample the
electron ensemble with the Monte Carlo method.

Compared to the quantum-orbit theory [24,25], the semi-
classical rescattering model need not solve the saddle-point
equation. With neglecting the initial momentum along the
x direction, the two-dimensional rescattering problem of an
electron in a bicircular two-color laser field is much simplified,
i.e., we need only numerically solve Eq. (6) to obtain the
rescattering time tc for a given ionization time t0, and all other
physical quantities can be analytically obtained.
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FIG. 2. (a) Logarithm of the differential ionization rate of H atoms presented in false colors in the electron momentum plane for ionization
by a bicircular two-color laser field by solving the TDSE. The intensity for 1600-nm laser pulse is 4 × 1013W/cm2 and for 800-nm laser pulse
is 1.6 × 1014 W/cm2. Panel (b) shows the enlarged momentum distribution inside the white frame of (a) to highlight different interference
patterns marked as I, II, and III. The solid, dashed, and dot-dashed lines show the minima of the interference patterns I, II, and III, respectively.

III. RESULTS AND DISCUSSIONS

Since the rescattering trajectory is more complex than
the nonscattering trajectory in the bicircular two-color laser
field, we first estimate the final momentum distribution of the
nonscattering electron. With neglecting the Coulomb potential
and the initial momentum at the instant of tunneling, the
final momentum of a nonscattering electron can be estimated
by the field-driven momentum p = −A(t0). In Fig. 1(b), we
show the field-driven momenta for the three wave packets of
Fig. 1(a) (black for w1, red for w2, gray for w3). One can see
that the distribution of the field-driven momentum shows a
three-lobe structure. Each wave packet contributes to an arc of
the three-lobe structure.

A. Interference patterns in TDSE

To study the photoelectron interference effect, we show
in Fig. 2(a) the photoelectron momentum distributions by
solving the TDSE. As expected, the photoelectron momentum
distribution by solving the TDSE shows a threefold rotational
symmetry [24]. Three arcs can be clearly seen in the pho-
toelectron momentum distribution, which correspond to the
three nonscattering wave packets released within one laser
cycle by comparison to Fig. 1(b). One can see that those
three nonscattering wave packets are separated from each
other in the momentum distributions except for the low-energy
photoelectron with pr =

√
p2

x + p2
y < 0.4 a.u.

More importantly, the TDSE result reveals many interesting
interference patterns. First, the spectrum displays ring-like
interference patterns centered around zero momentum, which
come from the intercycle interference of the electron wave
packets [31]. Besides those ring-like patterns, there are three
other prominent interference structures. We show in Fig. 2(b)
an enlarged view for the momentum distribution inside the
white frame of Fig. 2(a), where the three obvious interference
patterns are marked as I, II, and III. Those three interference
patterns differ from each other by the slopes of their inter-
ference fringes. One can see that the interference patterns I
and II are very similar to the spider-leg structure in a linearly

polarized laser field [4]. In contrast to the spider-leg structure
in the linearly polarized laser field, the patterns I and II are not
symmetric with respect to py = 0. The interference pattern
I shows many tilted fringes with positive slope while the
interference pattern II reveals many tilted fringes with negative
slope. The third interference pattern III also shows many tilted
fringes with positive slope, which are nearly perpendicular
to the fringes of the interference pattern II. Moreover, those
three kinds of interference patterns are distributed in different
regions of the final momentum plane. Comparing Fig. 2(b) to
Fig. 1(b), one can find that the interference patterns I and II
appear in the region of the electron momentum plane corre-
sponding to the nonscattering electron wave packet w1 [black
curve in Fig. 1(b)] and the interference pattern III appears in the
region of the electron momentum plane corresponding to the
nonscattering electron wave packet w2 [red curve in Fig. 1(b)].
Those interference patterns are not well resolved in TDSE
using the laser pulse with a shorter wavelength of 800 nm
for the fundamental field [32].

B. Holography by semiclassical rescattering model

To shed light on the origins of the interference patterns
in TDSE, we resort to the semiclassical rescattering model.
Before showing the interference patterns, let us study the
rescattering trajectory in the bicircular two-color laser field.
In Figs. 3(a) and 3(b), we show the return energy and the
return angle of the rescattering trajectories with respect to
the ionization (and rescattering) time. The return energy and
the return angle are defined in Eq. (9). For comparison, the
results in a linearly polarized laser field are also shown (dashed
curves). In a linearly polarized laser field, one can see that the
curve of the return energy with respect to the ionization time (or
the rescattering time) shows a single-peak structure. The
electron freed at ∼0.047T (∼17◦) obtains the maximum return
energy of 3.17Up, where Up is the ponderomotive energy. In
contrast, the curve of the return energy with respect to the
ionization time (or the rescattering time) reveals a double-peak
structure in the bicircular two-color laser field [33], as shown
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FIG. 3. The return energy and return angle of the rescattering
electron with respect to the ionization time (black) and the rescattering
time (red). The return energy and the return angle are defined in
Eq. (9). The dashed curves show the results in a linearly polarized
laser field.

by the solid curves. Those two peaks are marked as Q1 and
Q2 in Fig. 3(a), which are separated by the ionization time
of ∼0.03T (or the rescattering time of ∼0.65T ). Near zero
return energy is obtained by the electron released at ∼0.03T .
The electron released before ∼0.03T (Q1 trajectory) returns to
the nucleus later while the electron released after ∼0.03T (Q2

trajectory) returns to the nucleus earlier. At the ionization times
of ∼0.014T and ∼0.041T , the electron obtains the maximum
return energy of ∼2.58Up, where the Up of the bicircular
two-color field is simply the sum of the Up of each field. This
cutoff energy agrees well with the prediction in Ref. [13].

For the return angle, as shown by the dashed lines in
Fig. 3(b), the electron returns to the nucleus with zero degree in
a linearly polarized laser field. In the bicircular two-color laser
field, the rescattering electron travels along a two-dimensional
trajectory with a nonzero return angle. The return angle of
the trajectory Q1 changes from ∼5◦ to ∼45◦, while the return
angle for the trajectory Q2 changes from ∼ − 90◦ to ∼ − 20◦,
as shown by the solid curves in Fig. 3(b).

Those rescattering trajectories of Q1 and Q2 can interfere
with the nonscattering trajectories w1 and w2 when their final
momenta are the same. Therefore, there might be four kinds of
interferences between the forward scattering and nonscattering
trajectories, i.e., the interference of rescattering trajectory Q1

with nonscattering trajectory w1, rescattering trajectory
Q1 with nonscattering trajectory w2, rescattering trajectory Q2

with nonscattering trajectory w1, and rescattering trajectory
Q2 with nonscattering trajectory w2. In Fig. 4, we show those
four kinds of interferences using the semiclassical rescattering
model. The insets show typical trajectories contributing to the
corresponding interference patterns.

The interference of Q1 with w1 [Fig. 4(a)] reveals many
fringes with positive slope, and the fringe space is similar to
the interference pattern I in Fig. 2(b). Both of them mainly
appear in the electron momentum plane with px ranging
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Q2

w2

III

(d)

px (a.u.)

FIG. 4. (a) The simulated holographic structures from the inter-
ferences of rescattering trajectory Q1 with nonscattering trajectory
w1, (b) rescattering trajectory Q1 with nonscattering trajectory w2,
(c) rescattering trajectory Q2 with nonscattering trajectory w1, (d)
and rescattering trajectory Q2 with nonscattering trajectory w2 are
shown using the classical recollision model. Here the ionization rate
of the trajectory is not included. The black dashed lines in (a) and (c)
show the central maxima of the corresponding interference fringes.
(a) I, (c) II, and (d) III are used to show the same interference patterns
as those in Fig. 2(b). Inset: Typical trajectories of the corresponding
interference patterns. The red curves are the forward scattering
trajectories and the white curves are the nonscattering trajectories.
A scattering angle of 10◦ at the instant of rescattering is assumed for
the forward rescattering trajectory. The gray dots show the positions
of the parent ions.

from 0.1 to 0.5 a.u. and py ranging from −0.3 to 0.3 a.u..
Thus, the interference pattern I in Fig. 2(b) results from the
interference of Q1 with w1. The interference fringes of Q2 with
w1 [Fig. 4(c)] reveal negative slopes, which agree qualitatively
with the interference pattern II of Fig. 2(b). Specifically, the
fringes are nearly the same for those two patterns when px

changes from 1 to 1.5 a.u.. Therefore, the interference pattern
II in Fig. 2(b) results from the interference of Q2 with w1.
The interference of Q1 with w2 [Fig. 4(b)] shows many stripes
with smaller spacing, while the interference of Q2 with w2

[Fig. 4(d)] reveals stripes with larger spacing. The interference
of Q2 with w2 agrees with the interference pattern III of
Fig. 2(b) because their fringe spacings are very similar. And
the slopes of the fringes at px = 0.5 a.u. are also similar for the
interference structure of Fig. 4(d) and the interference pattern
III of Fig. 2(b). Therefore, the pattern III in Fig. 2(b) originates
from the interference of Q2 with w2. Using the semiclassical
rescattering model, we provide a physical interpretation of
different kinds of interferences in the TDSE result of Fig. 2(b).

To further estimate the contributions of different holo-
graphic structures to the momentum distribution, we can study
the most probable trajectories released at different ionization
times for both nonscattering and rescattering electrons. Here
the most probable trajectory indicates the (nonscattering or
rescattering) trajectory with the largest ionization probability
for a given ionization time. For the nonscattering electron,
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FIG. 5. (a) The solid curves show the final momenta of the
rescattering trajectories Q1 and Q2 with zero scattering angle at the
instant of rescattering. The dashed curves show the final momenta of
the nonscattering trajectories w1 and w2 with p = −A(t0). (b) The
initial transverse momentum with respect to the ionization time for
the rescattering trajectories Q1 and Q2.

the most probable trajectory corresponds to the electron re-
leased with zero initial momentum according to the tunneling
theory [34]. For the forward scattering electron, the initial
momentum is determined by the ionization time according to
Eq. (6), and thus the most probable trajectory corresponds to
the electron with zero scattering angle due to the divergent
scattering cross section of the Coulomb potential [35]. In
Fig. 5(a), we show the final momenta of the most probable
trajectories for the rescattering electrons Q1 and Q2 (solid
lines) and for the nonscattering electrons w1 and w2 (dashed
lines). The momentum distribution of the rescattering and
nonscattering electron wave packets will be centered by the
momenta of the corresponding most probable trajectory, and
the holographic pattern appears only when both signals from
the rescattering and nonscattering wave packets are large. From
Fig. 5(a), one can predict that the interference of Q1 with w1

will be obvious when px is within [0.1, 0.5] a.u. and py is within
[−0.1,0.3] a.u. due to the large overlap of the rescattering and
nonscattering wave packets. This agrees well with the TDSE
result in Fig. 2(b). Because the final momentum of the most
probable nonscattering trajectory w1 locates in the upper right
side of Q2 in Fig. 5(a), the interference structure of Q2 with
w1 will mainly appear in the upper right side of the solid line
of Q2. Similarly, the interference structure of Q2 with w2 will
mainly appear in the lower left side of the solid line Q2 of
Fig. 5(a). Those features are also in good agreement with the
interference patterns II and III in Fig. 2(b). Due to the large
difference between the final momenta of the most probable
trajectories Q1 and w2, as shown in Fig. 5(a), the interference
of Q1 with w2 will be suppressed. As shown in Fig. 2(b), this
kind of interference is indeed not resolved in TDSE.

Because the momenta of the most probable trajectories for
the rescattering and nonscattering electrons are distributed in
different regions of the momentum plane, the holographic
structures are also spatially separated from each other, as
shown in Fig. 2(b). The separation of different types of in-
terferences in the final momentum distribution makes it easier
to retrieve the information of the electronic dynamics from
the interference pattern. If multiple interference patterns are
mixed with each other, a minimum of one type of interference
might be overlapped by a maximum of another type, which
will reduce the precision of the phase reconstruction [36,37].

There are still some differences between the simulated
interference patterns from the TDSE [Fig. 2(b)] and semi-

classical rescattering model [Figs. 4(a), 4(c) and 4(d)] by a
careful comparison. Two reasons might be responsible for
the differences. One is the effect of the long-range Coulomb
potential on the electron trajectory, which is neglected in
the semiclassical rescattering model. The other one is that
the nonadiabatic effect is not considered in the semiclassical
rescattering model [38].

C. Imprint of the initial transverse momentum in the
holographic patterns

In the bicircular two-color laser field, the rescattering
electron travels along a two-dimensional trajectory in the laser
polarization plane. As a result, only the electron with a specific
initial transverse momentum at the tunnel exit can be driven
back to the parent ion. Within the semiclassical rescattering
model, the initial transverse momentum of the rescattering
electron should satisfy Eq. (7) for a given ionization time.
Thus the value of the initial transverse momentum at the tunnel
exit depends on the ionization time. In Fig. 5(b), we show
the initial transverse momentum of the rescattering trajectory
with respect to the ionization time in the bicircular two-color
laser field. One sees that the initial transverse momentum
vy0 for the rescattering trajectory Q1 [the ionization time
of (0,0.03T )] increases with the increase of the ionization
time, while decreases with the increase of the ionization
time for the rescattering trajectory Q2 [the ionization time of
(0.03T ,0.1T )].

Because the vector potential of the laser field along the y

direction is negligible at the ionization time of (0,0.1T ), the
final momenta of the most probable rescattering trajectories
(zero scattering angle) are px ≈ E0

ω
[sin(ωt0) + sin(2ωt0)] and

py ≈ vy0, according to Eq. (10). As a result, the dependence
of the initial transverse momentum vy0 on the ionization time
t0 is mapped to the final two-dimensional momenta (py with
respect to px) for the most probable rescattering trajectories.
As shown by the solid curves in Fig. 5(a), we see that py

increases when px increases from 0 to 0.55 a.u., while py

decreases when px increases from 0.55 to 1.2 a.u. for the
most probable rescattering trajectories. More importantly, the
final momenta of the most probable rescattering trajectories
correspond to the central maxima of the holographic patterns
in Figs. 4(a) and 4(c) because the phase difference between
the rescattering and nonscattering trajectories is zero for zero
scattering angle, according to Eq. (12). As shown in Figs. 4(a)
and 4(c), the central maxima of the interference fringes indeed
show the same structure as that in Fig. 5(b), i.e., the interference
structure of the rescattering trajectory Q1 [Fig. 4(a)] reveals
fringes with positive slope while the interference structure of
the rescattering trajectory Q2 [Fig. 4(c)] reveals fringes with
negative slope. The holographic patterns have recorded the
dependence of the initial transverse momentum at the tunnel
exit on the ionization time for the rescattering electron in the
bicircular two-color laser field.

IV. CONCLUSION

In conclusion, we systematically study the photoelectron
holography in strong bicircular two-color laser fields using nu-
merical solutions of the TDSE and the semiclassical rescatter-
ing model. We predict four types of photoelectron holographic
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interferences between the forward scattered and nonscattered
trajectories in the bicircular two-color laser field using the
semiclassical rescattering model. In the TDSE simulation,
three types of the interference patterns can be well resolved.
We find that those holographic patterns are spatially separated
from each other in the final momentum distribution, which is
significant for retrieving the information about the electronic
dynamics from those holographic patterns [6–8]. We find that
only the electron with a specific initial transverse momentum
at the tunnel exit can be driven back to the parent ion in the
bicircular two-color laser field, and the value of the initial trans-
verse momentum depends sensitively on the ionization time.
It is further shown that the dependence of the initial transverse
momentum on the ionization time for the rescattering electron
has been recorded by the holographic patterns.

It is well known that the rescattering electron has been
widely used to image the molecular structure. Unlike the case in
a linearly polarized laser field, the rescattering electrons travel
along two-dimensional trajectories in the laser polarization

plane in a bicircular two-color laser field. The return angle is
altered with respect to the ionization time, as shown in Fig. 3(b).
This makes the photoelectron holographic structure valuable
for probing electronic dynamics in molecules. The molecular
structure might be more easily imaged because of the wide
range of the return angles. When the bicircular two-color laser
field is used to ionize a molecule, the rotational symmetry for
the photoelectron momentum distribution and the holographic
structure might be broken. Thus the photoelectron holographic
structure might be applied as a sensitive probe of the elec-
tronic structure and symmetry-breaking process of molecules
[17].

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China under Grants No. 61405064, No.
11722432, No. 11747013, No. 11674116, and No. 11234004
and the Fundamental Research Funds for the Central Univer-
sity, HUST: 2016YXMS012.

[1] L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
[2] P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H.

Walther, R. Kopold, W. Becker, D. B. Milošević, A. Sanpera,
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H. C. Kapteyn, and M. M. Murnane, Phys. Rev. A 93, 053406
(2016).

[21] C. A. Mancuso, K. M. Dorney, D. D. Hickstein, J. L. Chaloupka,
J. L. Ellis, F. J. Dollar, R. Knut, P. Grychtol, D. Zusin, C. Gentry,
M. Gopalakrishnan, H. C. Kapteyn, and M. M. Murnane, Phys.
Rev. Lett. 117, 133201 (2016).

[22] S. Eckart, M. Richter, M. Kunitski, A. Hartung, J. Rist, K.
Henrichs, N. Schlott, H. Kang, T. Bauer, H. Sann, L. Ph. H.
Schmidt, M. Schöffler, T. Jahnke, and R. Dörner, Phys. Rev.
Lett. 117, 133202 (2016).

[23] J. L. Chaloupka and D. D. Hickstein, Phys. Rev. Lett. 116,
143005 (2016); Y. Zhou, M. Li, Y. Li, A. Tong, Q. Li, and P.
Lu, Opt. Express 25, 8450 (2017).

[24] D. B. Milošević and W. Becker, Phys. Rev. A 93, 063418
(2016).
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