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Ubiquity of Beutler-Fano profiles: From scattering to dissipative processes
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Fano models—consisting of a Hamiltonian with a discrete-continuous spectrum—are one of the basic toy
models in spectroscopy. They have been successful in explaining the line shape of experiments in atomic physics
and condensed matter. These models, however, have largely been beyond the scope of dissipative dynamics, with
only a handful of works considering the effect of a thermal bath. Yet in nanostructures and condensed-matter
systems, dissipation strongly modulates the dynamics. We present an overview of the theory of Fano interferences
coupled to a thermal bath and compare them to the scattering formalism. We provide the solution to any discrete-
continuous Hamiltonian structure within the wideband approximation coupled to a Markovian bath. In doing so,
we update the toy models that have been available for unitary evolution since the 1960s. We find that the Fano line
shape is preserved as long as we allow a rescaling of the parameters, and an additional Lorentzian contribution
that reflects the destruction of the interference by dephasings. The universality of the line shape can be traced
back to specific properties of the effective Liouvillian.
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I. INTRODUCTION

The first observations of the distinctive asymmetric Fano
profile came during the 1930s in the study of molecular
photodissociation and atomic photoionization spectra [1,2].
Spurred by the new unexplained experimental evidence, Rice,
on the one hand [3], and Fano, on the other [4], set out to
develop the corresponding theories. The inclusion of predisso-
ciated states for the first and autoionizing states for the second
opened an additional pathway towards the fragmentation.
The interference pattern between the direct and the (newly
included) indirect pathway resulted in the asymmetric line
shape. Although both theories had similar physics, eventually
the simplicity of the Fano expression [5] led to it being more
widely used. The Fano profile is

f (ε,q) = (ε + q)2

ε2 + 1
, (1)

where ε is a normalized detuning of the laser frequency with
respect to the ground-excited transition energy and q is the line-
shape asymmetry parameter that reflects the relative strength
of the two pathways to reach the continuum. The theory
was generalized to include more complicated and realistic
structures of the energy levels while preserving the general idea
of competing pathways to a continuum [5,6]. Over the course of
the years, the Fano profile has been successful in fitting the line
shape in situations far removed from photodissociation or pho-
toionization of molecular or atomic gases experiments [7–17].
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Descriptions of asymmetric line shapes in condensed-
matter systems followed very shortly after 1961 [18,19].
These were found in GaAs semiconductors under a magnetic
field, where magnetoexcitons resulting from excitation of
Landau levels couple Coulombically to the band continuum
[20–24]. Holfeldt et al. measured Fano resonances in biased
superlattices where Wannier-Stark excitons coupled to the
continuum of higher transitions [25]. More recently, Fano line
shapes in optical excitations coupled to narrow phonon modes
have been reported [26]. The reports of Fano asymmetries
in metamaterials have been even more prolific [7,8]. There
is a particular technological interest in these metamaterials.
They serve as very high enhancement substrates for surface-
enhanced Raman spectroscopy (SERS) and also as efficient
nonlinear media.

The theoretical problem of including the coupling to a
thermal bath was recognized without an explicit solution by
Fano in 1963, inspired by the problem of pressure broadening
[27]. The motivation is as follows: the system consisting
of discrete and continuum manifolds is coupled to another
continuum of modes of the bath that can exchange energy
with the system (see Fig. 1). It is important to stress that
there are two continua which are qualitatively different. One
corresponds to the system one-particle states and the other
one corresponds to excitations of others particles (for example,
modes of a phonon bath). Rzazewski and Eberly considered the
effect of phase incoherence of the incoming laser at arbitrary
strengths of the field and solved exactly the energy-resolved
population of the continuum using stochastic methods [28].
In a landmark work, Agarwal and co-workers considered the
case of a Fano model coupled to the vacuum modes of light
to account for spontaneous emission [29,30]. They provide
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FIG. 1. Energy structure of the Fano model with dissipation. It
is important to stress that there are two continua: the one belonging
to the system that belongs to the same particle as the discrete states
which are all coupled to a continuum of bosonic modes conforming the
bath. The mathematical operations of direct sum and tensor product
emphasize this distinction.

the exact solution in the case of weak field, and compact
expressions for the arbitrary-field strength case (within the
rotating-wave approximation) in terms of the poles of the
resolvent for the continuum populations. The main conclusions
unveiled by the expressions is that spontaneous-emission-
induced decay preserves the Fano minima in both the weak- and
strong-field cases, and the authors examine the consequences
on the photoelectron spectra, in particular the effect of electron
recycling and the presence of sink states. This is explored
further in subsequent work [31–33]. The role of radiation
damping was investigated through the one- and two-time
correlation function of the electric dipoles by Haus et al. [34].

More recent efforts have considered the dissipation in the
context of condensed matter instead of ionization. Zhang et al.,
in a series of papers, solved for the absorption of a system with
Lindblad dissipator in the strong-dissipation regime [35,36].
They predicted a diminishing asymmetry with increasing field
intensity, which has been verified experimentally and called the
nonlinear Fano effect [37]. Gallinet and co-workers introduced
an analytical continuation of the Fano form and captured the
effects of dissipation in plasmonic devices [11]. The solution of
scattering by a lossy dielectric has been solved by Tribelsky and
Miroshnichenko more recently [38]. Barnthaller et al. followed
a similar treatment in their theoretical and experimental study
of dissipation in waveguides [39]. Finkelstein-Shapiro et al.
calculated the weak-field emission of a Fano model with
a Lindblad dissipator and found that the parameters of the
line shape are rescaled by the dissipation [40]. They then
provided the exact solution of the Fano model in the wideband
approximation coupled to a Markovian bath [41].

It is important to recognize that the Fano line shape
can refer to many types of interference: as in the original
problem, the interference of quantum mechanical amplitudes
in a scattering experiment [42], but also the interference
of light modes, and even the interference present in driven
coupled classical oscillators [43,44]. In each of these cases, the
dissipation is added differently. The interference of quantum
mechanical amplitudes is the most challenging case due to
the details of the system-bath coupling, with restrictions on
the complete positivity of the density matrix and situations of
non-Markovianity [45]. We focus our attention in this article

FIG. 2. Scattering experiment: an atomic or molecular beam
traverses an interaction region with a laser of variable length and
ionizes. The fragmented ionized species are detected at Faradaic
plates.

on this case. It is relevant because it is still not known how
to systematically deal with a discrete-continuum Hamiltonian
coupled to a Markovian reservoir. The scattering solution
arises from solving the Schrodinger equation in Hilbert space,
while the dissipative solution arises from solving the Liouville
equation in Liouville space, yet experiments pertaining to
both cases are equally fit by this expression, lending a strong
character of universality to this line shape.

In this article, we aim to provide a clear context for the
theoretical problem of Fano interferences in dissipative Liou-
ville space and formalize the origins of its wide applicability
mathematically. In Sec. II, we review the solution of the
scattering Hilbert-space problem using Feshbach projection
and resolvents. In Sec. III, the solution for the dissipative
Lindblad dynamics is given using the same methods but in the
space of superoperators. The mathematical condition to obtain
a Fano profile is made evident and we provide a systematic
procedure and recipe to deal with any discrete-continuum
Hamiltonian under the wideband approximation. We discuss
how to apply the equations to a transport process.

II. SCATTERING FORMALISM

We consider the typical photoionization experiment (Fig. 2).
The atoms or molecules pass through an interaction region
with a laser beam where they become ionized. The charged
fragments are then detected capacitively. The light-matter
interaction region d corresponds to an interaction time T ,
which depends upon the speed of the molecular or atomic
beam. Detector plates are placed at a distance D from the beam.
The Hamiltonian corresponds to

H = H0 + HV + HF , (2)

H0 = E0|g〉〈g| + Ee|e〉〈e| +
∫

dkEk|k〉〈k|,

HV =
∫

dk[V (k)|e〉〈k| + V (k)∗|k〉〈e|],
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HF = F [μe cos(ωLt)|g〉〈e| + μ∗
e cos(ωLt)|e〉〈g|]

+F

∫
dk[μc(k) cos(ωLt)|g〉〈k|

+μ∗
c (k) cos(ωLt)|k〉〈g|], (3)

where H0 is a bare Hamiltonian, HV is the coupling of the
discrete excited state |e〉 to the continuum set of states |k〉,
and HF is the interaction with the incident radiation field of
amplitude F and angular frequency ωL, allowing transitions
from the ground state |g〉 to the discrete excited state with
transition dipole moment μe and to the continuum of states
with transition dipole moment μc. Without loss of generality,
we take V,μe,μc to be real. We solve the dynamics in a rotating
frame obtained by applying the unitary transformation UL(t) =
e−i�Lt , where �L = ωL|g〉〈g|, so that in the new frame the
Hamiltonian becomes h̄�L + ULHU−1

L . Within the rotating-
wave approximation (RWA), which consists of neglecting fast
oscillating terms, this Hamiltonian in the rotating frame is time
independent. To obtain explicit results, we will make use of the
wideband approximation, which consists of neglecting the k

dependence for the coupling V (k) and μc(k) in the Hamiltonian
given by Eq. (3) and assuming a linear dispersion relation for
the continuum, n = dk/dE.

The solution of the system’s dynamics is fully specified by
the evolution operator U (t):

�(t) = U (t)�(0). (4)

If the detection plates are far enough from the ionization region
so that all the excited atoms have had time to completely ionize,
then the ionization probability is given by [46]

P (T ) = 1 − |Ugg(T )|2, (5)

where |Ugg(T )|2 is the probability of finding the system in the
ground state at time T , assuming it has started in the ground
state. We use the notation Aij = 〈i|A|j 〉 for an operator A. We
have

Ugg(t) = − 1

2πi

∫
R+iη

Ggg(z)e−izt/h̄dz, (6)

where η is any positive number and G(z) = (z − H )−1 is the
Hamiltonian resolvent, which can also be written as

G(z) = − i

h̄

∫ +∞

0
U (t)eizt/h̄dt for Im[z] > 0.

Lambropoulos and Zoller solved for the scattering cross
section under intense fields using the resolvent approach [46].
Here we show how the result is obtained using the resolvent
approach along with projection operators [47]. We will build on
this result in later sections to solve the dissipative case of a Fano
system coupled to a thermal bath. Projection operators allow us
to separate the subspace that corresponds to the discrete states
from the subspace that corresponds the continuum. These are

P = |g〉〈g| + |e〉〈e|, Q =
∫ ∞

−∞
dk|k〉〈k|. (7)

Separating the Hilbert space in this way allows us to write
the restriction PG(z)P of the exact resolvent G(z) in the
discrete subspace as PG(z)P = (z − Heff)−1, where Heff is
an effective Hamiltonian acting on the discrete subspace

only, but incorporating the effect of the continuum. It is
given by Heff = PHP + PHQG0(z)QHP , where G0 is the
resolvent of H0, G0(z) = (z − H0)−1. Because the problem
only involves the evolution operator element that evolves the
wave function from the ground state onto the ground state at a
later time, the solution is fully specified in the P subspace (see
Appendix A).

We switch to dimensionless variables where energies are
given in units of h̄γ = nπV 2, where n is the density of states
n = dk

dE
, and times are given in units of 1/γ . In the wideband

approximation where V (k) and μc(k) are taken as constants
independent of k, the integration over k is explicit and the
effective Hamiltonian in the RWA approximation introduced
in the previous section is

Heff =
[ −i�2 �(q − i)
�(q − i) −ε − i

]
, (8)

where q = μe

nπμc
, ε = (ωL − Ee)/h̄γ , and � = μcF/2V . The

matrix element Ggg(z) of the resolvent is given by

Ggg(z) = z + ε + i

(z − z1)(z − z2)
, (9)

where

z1,2 = − 1
2 (ω0 ± ω), with ω0 = [ε + i(1 + �2)],

ω = {(ε + i)2 − 2�2[1 − 2q2 + i(4q + ε)] − �4} 1
2 .

(10)

We stress that ω0 and ω are complex numbers and for ω both
determinations of the square root can be used as this choice
only affects the conventional labeling of z1 and z2. The inverse
Fourier Laplace equation (6) is immediately obtained and gives

Ugg(t) = a1e
−iz1t + a2e

−iz2t ,

with a1 = z1 + ε + i

z1 − z2
, a2 = z2 + ε + i

z2 − z1
. (11)

The probability |Ugg(t)|2 to remain in the ground state at time
t can be written as

|Ugg(t)|2 = e−(1+�2)t (|a1|2eIm[ω]t + |a2|2e−Im[ω]t

+ 2Re[a1a
∗
2 ]e−iRe[ω]t )

= |a1|2e−	0t + |a2|2e−	2t

+ 2Re[a1a
∗
2 ]e−iRe[ω]t e−	1t . (12)

To recover the original Fano fragmentation rate, we first
have to consider a situation where the concept of a rate has
a meaning. This is the case if there is a decoupling between
the different time scales: 	0 = 1 + �2 − Im(ω), 	1 = 1 + �2,
and 	2 = 1 + �2 + Im(ω). This decoupling occurs in the low-
field limit �2 � 1. Indeed, in this limit, we have

	0 = 2�2 (ε + q)2

1 + ε2
+ O(�4),

	2 = 2 + 2�2

[
1 − (ε + q)2

1 + ε2

]
+ O(�4),

023411-3



DANIEL FINKELSTEIN-SHAPIRO AND ARNE KELLER PHYSICAL REVIEW A 97, 023411 (2018)

and therefore, in this limit, 	0 � 	1 � 	2. Hence, in the range
1/	2 � t � 1/	0, P (t) can be written as

P (t) = 1 − |Ugg|2 � 1 − |a1|2e−	0t � 1 − |a1|2[1 − 	0t].

Furthermore, at the same order of approximation, |a1|2 = 1 −
�2

ε2+1 + O(�4). Consequently,

P (t) = �2

ε2 + 1
+ 2�2 (ε + q)2

1 + ε2
t + O(�4).

The fragmentation rate is therefore given by

dP

dt
= 2�2 (ε + q)2

1 + ε2
+ O(�4), (13)

which is indeed proportional to the Fano profile. In the
experiment described in Fig. 2, a molecular or atomic beam
with constant flux goes through an ionization region of duration

T . The total number of detected ions is

Nionized = flux × P (T ) ≈ flux × T
dP (t)

dt
|t=0+

= 2T �2 (ε + q)2

1 + ε2
, (14)

where the second line is an approximation that gives an exact
Fano profile and t = 0+ means that we consider a sufficiently
small time such that t � 1

	0
, which is realized if t � 1

(1+q2)�2 ,

but not too small in the sense that t 	 1 (in units of h̄/nπV 2).
This is possible for all values of ε, only if �2(1 + q2) � 1. It is
in this specific sense that we can say that for short interaction
times, but much bigger than 1, at weak fields, we measure
the Fano profile. The need for a short elapsed time for the
interference to build up is not usually recognized, but has been
measured experimentally [48].

Figure 3 shows the evolution of the ionization profile
at different times (in units of 1/nπV 2) for an asymmetry

FIG. 3. Ionization probability for q = 1 for three values of the field: � = 0.01 (top row), � = 0.1 (middle row), and � = 5 (bottom row).
For each field intensity, three times are shown. For weak fields (� = 0.01, top row), during the early times (of the order of 1/nπV 2) the
interference pattern is building up. The steady-state rate (middle column, in blue) spans a large time window (the rate P/T does not show a
significant change for a time window between T = 10 and T = 300). At large times, the profile tends towards a Fano-like shape with smaller-q
parameter, although the Fano equation is no longer exact. At intermediate field � = 0.1 (middle row), we observe a similar behavior, although
the time window in which the Fano equation is valid is much smaller. At strong fields � = 5 (bottom row), the profile is flat and increases with
time until the species have fully fragmented. All time values are given in units of 1/nπV 2.
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parameter of q = 1 for three values of the field: � = 0.01,
� = 0.1, and � = 5. For weak fields (� = 0.01 and � = 0.1),
the Fano profile does not appear right away but builds up
during a time 1/nπV 2. This transient corresponding to the
sampling time of the continuum by the discrete excited state
has been observed experimentally [48]. After this time, the
Fano expression then develops and is valid for T � 1/	0. At
long times, there is a saturation effect where the profile is Fano
like with a smaller asymmetry parameter, although we note
that this line shape cannot even approximately be described by
a Fano form. This evolution of the profile is absent for strong
fields (� = 5), which show a flat profile at all times.

To conclude this section, we would like to stress that the
explanation for the asymmetric profile originally given by
Fano is valid for very specific experimental conditions, namely,
scattering with weak field and observations at intermediate
times, which were well adapted to the experimental setup
available at that time. In this type of scattering experiment,
the incident flux of particles is constant. However, the Beutler-
Fano formula has been used in a plethora of experimental
contexts where these specific conditions are not fulfilled. One
of our objectives in this article is to understand if and why
the Beutler-Fano formula works in this variety of contexts.
Surprisingly, as we show in the next section, taking into account
dissipative processes broadens the conditions under which
Beutler-Fano profiles can be observed, justifies its choice as a
phenomenological fit, and explains its overwhelming success.

III. DISSIPATIVE FORMALISM

Let us consider a steady-state monochromatic irradiation
that impinges upon the system, as in the original Fano scatter-
ing case, but now we suppose that the “fragmented” species
(such as an electron in a continuum or in a conduction band) are
restored to the ground state by dissipative processes induced
by an environment. For instance, in the gas phase, this envi-
ronment can be collisions with others particles or vacuum field
fluctuation inducing spontaneous emission. In the condensed
phase, the environment may be constituted by phonons or by
the Coulomb interaction of the photogenerated electron-hole
pair. In any case, the environment here is considered as a
Markovian bath at zero temperature. In such case, the evolution
of the system state, represented by the density operator ρ(t),
fulfills a Liouville equation,

dρ

dt
= L(ρ) = − i

h̄
[H,ρ] + LD(ρ), (15)

where the generator of the dissipative evolution has the
Lindblad form, LD = ∑

i 	i(DiρD
†
i − 1

2 {D†
i Di,ρ}), where

Di are Krauss operators [49,50]. We will repeatedly use the
isomorphism from the column form to the tensorial product
[51] given by Lρ̃R → R̄ ⊗ Lρ, where ρ is the column form
of ρ̃ through the correspondence: ρ̃ = ∑

ij ρij |i〉〈j | → ρ =∑
ij ρij ||ij 〉, where ||ij 〉 ≡ |i〉 ⊗ |j 〉. We start by considering

that the dissipation induces population relaxation only from
the continuum states to the ground state, and from the discrete
excited state to the ground state (see Fig. 4).

The explicit expression of L has a Hamiltonian part H that
is given by Eq. (3), and a dissipative part LD = LD

pop + LD
pure,

where LD
pop describe the relaxation of excited-state populations.

|g

|e

|k

μe

μk

V (k)

Γc
Γe

FIG. 4. Energy levels and transitions of a Fano-type model with
dissipation. Hamiltonian coupling is indicated by straight arrows and
dissipative processes are indicated by twisted arrows. Only population
relaxations from continuum states, at a rate 	c, and from the discrete
excited state, at a rate 	e, to the ground state are considered.

Pure dephasing, in other words additional decay of coherence,
is described by LD

pure,

LD
pop =

∫
dk	(k){A(k,g) ⊗ A(k,g) − 1

2
[1 ⊗ A†(k,g)A(k,g)

+A†(k,g)A(k,g) ⊗ 1]} + 	e{A(e,g) ⊗ A(e,g)

− 1

2
[1 ⊗ A†(e,g)A(e,g) + A†(e,g)A(e,g) ⊗ 1]},

(16)

LD
pure = −γeg[|e〉〈e| ⊗ |g〉〈g| + |g〉〈g| ⊗ |e〉〈e|]

−
∫

dkγkg[|k〉〈k| ⊗ |g〉〈g| + |g〉〈g| ⊗ |k〉〈k|]

−
∫

dkγke[|k〉〈k| ⊗ |e〉〈e| + |e〉〈e| ⊗ |k〉〈k|],
(17)

A(i,j ) = |j 〉〈i| are the jump operators and 	(k) is the
population relaxation rate from state |k〉 to |g〉, as is 	e

for the |e〉 population. γij is the pure dephasing rate for
the ij coherence. As in the scattering case, we apply the
RWA approximation, which gives a time-independent Liou-
villian operator L in the rotating frame, obtained through
the unitary transformation L = ei�LtL(t)e−i�Lt , where L(t)
is the original time-dependent Liouville operator and �L

is a diagonal matrix whose elements are equal to ±ωL

for excited(ground)-ground(excited) coherences, and zero
elsewhere; that is, �L = ωL(||eg〉〈eg|| + ∫

dk||kg〉〈kg||) −
ωL(||ge〉〈ge|| + ∫

dk||gk〉〈gk||). The observable originally
addressed by Fano is the total population in the continuum set
of states under steady-state conditions and we will focus on this
observable. The absorption cross section Im(ρeg + ∫

dkρkg)
can just as easily be calculated as both it and the total population
are obtained from a knowledge of the steady-state density
matrix.

A. Feshbach projectors, resolvent, and effective Liouvillian

Our objective is to compute the steady state dρ

dt
= 0, which

is the kernel of L, that is the solution of L(ρ) = 0. In analogy
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to the scattering case, we define partition superoperators [41],

P = P ⊗ P, Q = P ⊗ Q + Q ⊗ P + Q ⊗ Q, (18)

where P and Q have been defined in Eq. (7). It can be shown
that the complete kernel of L can be obtained in two steps (see
Appendix A),

LeffPρ = 0, Qρ = QG0(0)QVPρ, (19)

where the effective Liouvillian is [41]

Leff ≡ PL0P + PVQG0(0)QVP ≡ PL0P + W, (20)

where L0 = PLP + QLQ is the block-diagonal Liouvillian
of the whole system, G0(z) = (z − L0)−1 is its resolvent,
and V = L − L0. The operator W = PVQG0QVP captures
the effect of the continuum on the two-level system. The
projection Pρ of the exact steady-state density matrix in the
four-dimensional subspace spanned by the discrete states and
their associated coherences is obtained through the kernel of
the effective Liouvillian, which is a 4 × 4 matrix. This is a
considerable simplification as it can be easily done numerically
or symbolically by the appropriate software. In a second step,
the population in the continuum set of states—the observable
of interest—is obtained from Eq. (19) as [41]

∫
dkρkk = tr(Qρ) =

∑
{ij}

C{ij}(Pρ0){ij}, (21)

where C{ij} = ∫
dk〈kk||QGQQLP||ij 〉 with ||ij 〉 = ||gg〉,

||eg〉,||ge〉,||ee〉 and QGQ = (Q(�L − L)Q)−1. In this way,
we have expressed the total population of the continuum as a
linear combination of the elements of the density matrix in the
subspace spanned by the discrete states only, with coefficients
Cij . Equations (19) and (21) give a method to calculate the
population in the continuum set of states. In general, this
is an involved calculation that does not always result in a
closed-form solution. We will show the conditions necessary
for Eq. (21) to conclude in a Fano profile, and will illustrate a
simple method of evaluation of the effective operators in (19)
that highlights the connection between the scattering problem
and the dissipative one.

B. Conditions for a Beutler-Fano profile

The Beutler-Fano line shape characterizes the dependence
of the continuum states population as a function of irradiation
frequency, which appears in the model as the dimensionless
parameter ε = (ωL − Ee)/h̄γ . To understand the origin of
the Fano form, we must understand the ε dependence of the
population in the continuum. We note that the Beutler-Fano
profile need not be exactly expressed as a function of ε, but can
be given as a function of an effective εeff that has been shifted
and rescaled with respect to ε, εeff = ε+�

σ
(see Appendix B).

This will give the same functional line shape. It can be shown
that a ratio of polynomials of the order of 2 in ε is equivalent
to writing it as a Beutler-Fano line shape plus a Lorentzian
function or, alternatively, as a Fano profile with a complex

asymmetry parameter, q = q + iqi (see Appendix B):

f (ε,q) = |εeff + q|2
ε2

eff + 1
= (q + εeff)2

ε2
eff + 1

+ q2
i

ε2
eff + 1

= a0 + a1ε + a2ε
2

b0 + b1ε + b2ε2
. (22)

Therefore, to prove that the profile is of a Beutler-Fano type
is equivalent to proving that the observable is the ratio of two
polynomials of the order of 2 in ε.

The effective Liouvillian is calculated by means of exact
resummation of perturbative expansions, as was carried out
in Refs. [40,41]. The result for the model that considers
dissipation from the continuum states |k〉 and from the discrete
excited state |e〉 to the ground state |g〉 with dissipation rates
	c and 	e is

Leff =

⎡
⎢⎣

0 K� K∗� 2	e + 2
−K∗� A 0 −K�

−K� 0 A∗ −K∗�
0 −K� −K∗� −2

⎤
⎥⎦, (23)

in units of nπV 2, where K = 1 + iq, A = −	e − �2 − iε −
γeg − 1, and � = Fμc/2V , γeg is the dephasing rate of the
two-level system (TLS), and all other parameters have been
previously defined. We note that the system is impervious to
the pure dephasing processes between the continuum and the
TLS in the wideband approximation. In preparation to tackling
more general cases, we will perform two key steps:

(1) Separate the effective Liouvillian into two parts: a scat-
tering contribution and a generalized quantum jump operator.

(2) Reduce the solution of the kernel of the 4 × 4 Leff matrix
to a linear equation of 3 × 3 matrices using the conditions for
relaxing maps (i.e., having a unique steady state) [52,53].

For the first step, we write

Leff = −i(1 ⊗ Heff − H̄eff ⊗ 1) + L̃, (24)

where we can recognize Heff as the effective Hamiltonian of
the scattering problem given by Eq. (8) and L̃ is a generalized
quantum jump operator that ensures the conservation of the
trace of the density matrix [45,54–56]. The quantum jump
approach was originally introduced in the modeling of fluo-
rescence decay. In our case, L̃ not only restores population
to the ground state from populations in the excited state, but
also from ground-excited coherences, as can be seen from
the elements in the upper row of L̃. The total population in
the continuum [Eq. (21)] as a function of the populations
of the discrete partition is fully specified by a column vector C
containing the coefficients Ci and an appropriate normalization∫

dkρkk + ρgg + ρee = 1. These three elements, Heff, L̃, and
C, fully specify the solution:

Heff =
[ −i�2 (q − i)�

(q − i)� −ε − i

]
,

L̃ =

⎡
⎢⎣

2�2 2� 2� 2
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, C =

⎡
⎢⎣

2�2

�

�

1

⎤
⎥⎦. (25)

The second step involves calculating the kernel of Leff by
transforming the problem to a linear equation, Mv = b. We
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can do this because the Lindblad form of a two-level system is
written in the basis of Pauli matrices, so it fulfills the condition
that the generators are self-adjoint and that only the identity
commutes with them [53]. As a consequence, there is a unique
steady state, one of the elements of the density matrix is
determined by the normalization condition, and the problem
reduces to the linear equation of dimension 3 × 3. We use ρ ′
to denote the unnormalized density matrix. Then,

M =

⎡
⎢⎣

0 Q� Q∗�
−Q∗� A 0

−Q� 0 A∗

⎤
⎥⎦, v =

⎡
⎢⎣

ρ ′
gg

ρ ′
ge

ρ ′
eg

⎤
⎥⎦,

b =

⎡
⎢⎣

−2	e − 2

Q�

Q∗�

⎤
⎥⎦. (26)

Cramer’s formula tells us that⎡
⎢⎢⎢⎣

ρ ′
gg

ρ ′
eg

ρ ′
ge

ρ ′
ee

⎤
⎥⎥⎥⎦ = 1

det(M)

⎡
⎢⎢⎢⎣

det(M1)

det(M2)

det(M3)

det(M)

⎤
⎥⎥⎥⎦, (27)

where det(Mi) is the determinant obtained from the matrix M

by replacing the ith column by the vector b. We can neglect
the overall prefactor 1

det(M) since it will cancel during the
normalization. We look at each element of the density matrix:

(1) The structure of the effective Liouvillian is such that the
various elements det(Mi) are polynomials in ε of order 0, 1,
and 2 [see Eq. (26)].

(2) The population of the continuum is a linear combination
of the density matrix in the P subspace with ε-independent
coefficients so that along with the normalization condition
ρgg + ρee + ∫

dkρkk = 1, we arrive at the end result.
The previous steps prove that∫

dkρkk =
∑2

n=0 anε
n∑2

n=0 bnεn
, (28)

which by a judicious normalization of the variables can
be brought back to a general Beutler-Fano profile (see
Appendix B). The dependence on the square of ε arises
from the determinant of M1 that involves the product of the
coherences. This is a direct consequence of the wideband
approximation and can be traced back to the fact that Leff − L0

does not depend on ε (the same reasons lead to ε-independent
Ci coefficients). After analyzing the possible generalizations
of the dissipation channels, we will revisit the structure of
Eq. (26).

The condition that allows us to express the kernel problem
as a linear equation is very general and stems from the
assumption of a steady state of dimension 1. This condition
can be broken whenever the relaxation mechanism is towards
a manifold of states that do not have dissipation within them
and is not typical of most physical systems. In this case, we
must solve for the kernel directly.

It is also important to clarify the nature of the steady state,
in particular in connection to photoelectron spectroscopy ex-
periments in the presence of radiative damping [30]. With pure
Hamiltonian evolution, the asymptotic limit of the population

|g

|e

|k

μe

μk

V (k)

Γe

J = dkΓcρkk = rρgg

FIG. 5. Energy levels and transitions of a Fano-type model with
dissipation for the electronic transport setup. Hamiltonian couplings
are indicated by straight arrows and dissipative processes are indicated
by curly arrows. Population relaxations from the discrete excited state,
at a rate 	e, to the ground are considered. The population relaxation
from the continuum set of states is now replaced by a stationary current
J flowing across the systems.

will be entirely in the continuum. In the dissipative case where
the generator of dynamics is a Lindblad operator, there will
always be a true steady state which consists of a fraction of
electrons in the ground state (which can be negligible if the
dissipation rate is much smaller than the Rabi frequency). A
more realistic description can be obtained by introducing a sink
state which acts as a detector. Alternatively, if the atoms are
continuously pumped into the system, it can be seen as a trans-
port experiment, a problem that is solved in the next section.

C. Nonequilibrium stationary transport

Beutler-Fano profiles has also been predicted and observed
in electronic transport [39,57,58], where a confined electronic
quantum system (atom, molecule, quantum dot, circuit) is con-
nected to electrodes. As noted in Refs. [59,60], the knowledge
of the equilibrium stationary state ρ, obtained in the previous
section through Eqs. (20) and (21), can also be used to describe
the following nonequilibrium stationary electronic transport
situation. Take the same system as above, but where population
from the continuum state to the ground state, at rate 	c, is
now replaced by a current J flowing across the system, with
J = ∫

dk	cρkk (see Fig. 5).
The master equation describing this transport setup can be

written as

ρ̇ = Ltρ + J, (29)

where Lt = L − ∫
dk	(k)A(k,g) ⊗ A(k,g) is the same

Liouvillian as the original L [see Eq. (16)], except that it does
not include the population relaxation from the continuum
set of states back to the ground state. It was shown that the
stationary solution of Eq. (29) is the same as the equilibrium
stationary solution Lρ = 0, if the current J is exactly taken as
J = ∫

dk	(k)ρkk [59,60]. This was carried out in the context
of electron transport through a molecular bridge. Moreover,
because the current is stationary, it can also be written as
J = rρgg , where the transfer rate r is from the ground state to
any of the continuum states. This transfer rate can therefore
be expressed as

r =
∫

dk	(k)ρkk

ρgg

. (30)
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The transfer rate r is an intrinsic characteristic of the system
coupled to the laser field. It is independent of 	(k), which is a
constant noted	c in the wideband approximation. The constant
	c only sets the time scale to reach the stationary regime. The
transfer rate r gives the probability per unit of time for an
electron to jump from the ground state to one of the continuum
states. We have shown in Ref. [41] that r as a function of ε

can also be written as the sum of a Beutler-Fano profile and a
Lorentzian function. Furthermore, in the limit of low field, with
� � 1 and setting 	e = 0 (that is, ignoring any dissipative pro-
cess), we exactly recover the scattering rate given by Eq. (13):

r(ε; 	e = 0) = dP

dt
+ O(�4) = 2�2 (ε + q)2

1 + ε2
+ O(�4).

Consequently, we can affirm that this transport setup
constitutes a well-defined generalization of the original
Fano scattering formalism, adapted to include dissipative
processes and intense incident laser field.

We have explicitly proved that in a very general way, a
Beutler-Fano profile is observed even for intense incident fields
and when dissipative processes are included. Doing so, we
have also developed a method to obtain the stationary state for
a dissipative system with continuum spectrum, which relies on
obtaining an effective Liouville operator in the discrete-state
subspace through partitioning and resummation of Dyson
equations. In the next section, we will use this method to tackle
the more general problems of multiple discrete levels coupled
to multiple continua with arbitrary Markovian dissipative
channels. In theses cases, we expect to observe a departure
from the strict Beutler-Fano profile.

The model presented in the last section is an example of a
discrete-continuum Hamiltonian with Markovian dissipation
channels, but both the Hamiltonian structure and Markovian
channels can be generalized. We start by reviewing the possible
additional dissipation channels and then move on to consider
an arbitrary discrete-continuum Hamiltonian.

D. Generalizing the dissipation: Incoherent hopping and
finite-temperature effects

A first extension is to include an incoherent decay at a rate
	ce from the continuum states to the discrete excited state
in addition to the decay to the ground state at a rate 	cg .
The effective Liouvillian can be obtained following the same
technique as before. For ease of readability, in this section and
what follows the explicit form of the effective Liouvillians
will be listed in Appendix D. In this case, Leff − L0 is also ε

independent and the system relaxes to the ground state (due
to e − g population decay), so that we may say that the final
profile will be in Fano form as well. We can follow a similar
line of reasoning as for the preceding section with the use of
Cramer’s rule. Here the general M matrix is

M =
⎡
⎣K C C∗

B∗ A 0
B 0 A∗

⎤
⎦, (31)

where K = 2�2(β − 1), with β = 	cg

	cg+	ec
; and B = −�(1 +

iq), C = �(β − 1 + iq). The same order of ε dependences
indeed leads to a Fano profile plus a Lorentzian.

Finite-temperature effects, or incoherent terms that will
take population from the discrete states and transfer it to
the continuum partition, are also physically important. Let us
consider the rate from ground state to the continuum, 	g→k .
The total injection into the continuum,

∫
dk	g→k , diverges

in the wideband approximation. It is a problem that only
exists when the accepting states are not finite. This is resolved
because physically the continuum does not extend to infinity.
This means that incoherent pathways into the continuum
cannot be included within the wideband approximation and
go beyond the ambitions of this work. Extending beyond the
wideband approximation in Liouville space is considerably
more complicated than in the Hilbert space and will be
presented in the future.

Once having established the possible most general relax-
ation channels, we move on to generalize the solution of
Fano interference in Hamiltonians of arbitrary complexity,
meaning multiple discrete levels and multiple continua where
the wideband approximation is still valid.

E. Multiple discrete-continuum Hamiltonian with Markovian
dissipation channels

In Fano’s seminal 1961 article [5], these multilevel mul-
ticontinua structures were addressed, but in the weak-field
Hamiltonian scattering approach of Sec. I. To our knowledge,
no general solution have been published to date in Liouville
space. As we will see, while their solution does not conform
to the Beutler-Fano profile, they can be worked out by the
effective Liouvillian approach explained in this article. The
method of solution is similar to what has been presented before
and we provide a recipe to calculate the continuum population
in the most general case.

We obtain the solution by first calculating the effective
Liouvillian in the discrete-state subspace. We consider an N -
level system coupled to M separate continua. The continuum
a will relax to the discrete level b with a rate 	

(a)
b . We have

(See Eqs. (24) and (25))

H0 =
N∑

i=1

Ei |i〉〈i| +
N∑

i,j = 1
i �= j

μij |i〉〈j |,

Heff − H0 = −i

M∑
a=1

N∑
i,j=1

n(a)πV
(a)
i V

(a)
j |i〉〈j |,

LD =
∑

k

	k

(
DkρD

†
k − 1

2
{D†

kDk,ρ}
)

,

L̃ =
M∑

a=1

N∑
i,j=1

N∑
b=1

2	
(a)
b∑N

l=1 	
(a)
l

n(a)πV
(a)
i V

(a)
j ||bb〉〈ij ||,

C
(a)
{ij} =

N∑
i,j=1

n(a)2πV
(a)
i V

(a)
j∑N

l=1 	
(a)
l

,

×
M∑

a=1

∫
dkaρkaka

+
N∑

b=1

ρbb = 1, (32)
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|0

|1

|2

|A|B

FIG. 6. Populations in a general Fano system consisting of three
discrete levels (0, 1, and 2) and two continua a and b. The parameters
and couplings are E1 = 10, E2 = 20, μ01 = 0.3, μ02 = 0.4, V12 =
0, 	31 = 0.05, 	21 = 0.04, V

(A)
1 = 0.05, V

(A)
2 = 0.1, V

(A)
3 = 0.2,

V
(B)

1 = 0.1, V (B)
2 = 0.3, V (B)

3 = 0.02, 	(A) = 0.5, and 	(B) = 0.7. μij

is the transition dipole moment between states i and j , Vij is the
electronic coupling, and 	 are the relaxation rates.

where V
(a)
i is the coupling (including radiative coupling)

between level i and the continuum (a), and 	
(a)
b is the relaxation

rate from the continuum a to the discrete state b. LD is the
dissipation within the discrete manifold and here Di are the
Krauss operators corresponding to the discrete manifold only.
The transformation into the dimensionless constants appearing
throughout this article is straightforwardly obtained by nor-
malizing by the effective width of choice, γ = nπV 2 (where
the chosen coupling V varies depending on the Hamiltonian
structure). This is one of the main results of this article and a
complete result in the Fano literature. It is the generalization
of the Fano problem to any discrete-continuum Hamiltonian
in a Markovian environment at zero temperature within the
wideband approximation. Figure 6 shows the population in
the continuum of a general Fano system consisting of three
discrete levels (0, 1, and 2) and two continua A and B, along
with the characteristic asymmetric line shapes.

We summarize the difference between the approach fol-
lowed in this article and in particular the one followed in
the papers by Agarwal and co-workers [30]. A fundamental
difference stems from the construction of the dissipation
superoperator, which is tied to the radiation field in the case
of Agarwal et al. and is purely phenomenological in the case
presented. Both suffer from the local approximation, which

requires a reinterpretation of the value of the dissipation rates
as the values of the Hamiltonian couplings are varied. The
approaches to a solution also differ. In [30], the solution is
obtained by an elegant density factorization matrix that gives
the time evolution of the populations. In this case (and our other
works [41]), we use Feshbach projection methods that directly
solve for the steady state by working in the superoperator
space. The advantage is that the extension to any number of
arbitrary continua and discrete states is straightforward, i.e.,
both populations and coherences are simultaneously solved.
The dynamics is also obtainable from this approach and will
be addressed in subsequent work. A disadvantage worth noting
is that deviations of the wideband approximation (for example,
an energy-dependent dissipation rate) can only be solved
perturbatively, while in [30] some energy dependences can be
solved exactly.

IV. CONCLUSION

The celebrated Fano profile describes a phenomenological
dependence on the irradiation wavelength that is common to
many theories. Often times, the apparent simplicity of this form
makes it easy to forget the host of phenomena that unfolds
as the field becomes more intense. This behavior is strongly
dependent on the experimental system and configuration of
the experiment, and dictates the fundamentally important
decision to use Hilbert-space or Liouville-space descriptions.
The results are quite different. The Liouville-space solution
is solved via an effective superoperator method that reduces
the problem of taking the kernel of an infinite matrix to taking
the kernel of a 4 × 4 matrix. We have analyzed this structure
in detail and shown the mathematical arguments to obtain a
Fano profile. We have also generalized the approach to any
discrete-continuum Hamiltonian coupled to a Markovian bath
under the wideband approximation. Population in the continua
of these systems can now be straightforwardly obtained (see
Fig. 6).
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APPENDIX A: PROJECTIONS

Hilbert space. We can project the Dyson equation onto the
discrete and continuous states using P and Q operators so that
G = G0 + G0V G = G0 + GV G0 becomes

PGP = PG0P + PG0P (PV QG0QV P )PGP,

QGP = QG0QV PGP,

PGQ = PGPPV QQG0Q,

QGQ = QG0Q + QG0Q(QV PGPV Q)QG0Q. (A1)

Multiplying the first equation by z − H0, we obtain
(z − Heff)PGP = 1, where Heff = PH0P + PV QG0QV P .
In this way, we can compute the projection of the exact
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resolvent in the P subspace as the resolvent of Heff, an operator
that acts only in this subspace.

Liouville space. Here the projection superoperators are
defined as

P = P ⊗ P, Q = P ⊗ Q + Q ⊗ P + Q ⊗ Q, (A2)

and the same idea can be applied. Interested in the steady
state, we concentrate on the kernel of the Liouvillian, Lρ = 0.
Inserting the identity P + Q and projecting in each subspace
yields

PLPρ + PLQρ = 0, (A3)

QLPρ + QLQρ = 0. (A4)

We define L0 = PLP + QLQ and V = L − L0. Multiplying
the second line of Eq. (A4) by QG0(z)Q, where

QG0(z)Q = Q(z − L0)−1Q = (z − QL0Q)−1,

and taking the limit z = 0 yields

Qρ = QG0(0)QLPρ = QG0(0)QVPρ.

Insertion of this last equation into the second term of the
first line of Eq. (A4) give the expressions in the main
text.

APPENDIX B: LINE SHAPE AS A QUOTIENT
OF POLYNOMIALS

We show that there is a one-to-one correspondence between
a generalized Fano profile and a quotient of polynomials of
the order of 2 in the laser wavelength, or the parameter ε =
(ωL − Ee)/nπV 2. For now, we assume that the population in
the continuum nc can be written as∫

dkρkk =
∑2

n=0 anε
n∑2

n=0 bnεn
. (B1)

We rework these expressions to show that the above expression
is equivalent to a Fano plus a Lorentzian. We begin by rescaling
the parameter ε so that ε′ = (ε + �)/σ , with � = b1/2b2 and
σ =

√
b0/b2 − b2

1/4b2
2. Then,

denominator = K(ε′2 + 1), (B2)

where K = b0 − b2
1/4b2. The denominator by itself describes

a Lorentzian shifted in resonance from ωL by � and further
broadened by a factor σ .

The population of the continuum now reads∫
ρkkdk =

∑2
n=0 anε

n

K(ε′2 + 1)
. (B3)

Given that we have rescaled the denominator, we now work on
the numerator, which we write as

numerator =
2∑

n=0

anε
n =

2∑
n=0

an(σε′ − �)n

≡
2∑

n=0

cn(ε′)n = c2[(ε′ + q)2 + D], (B4)

where we have defined c2 = a2σ
2, c1 = a1σ − 2a2σ�, and

c0 = a0 − a1�, with q = c1/2c2 and D = c0/c2 − c2
1/4c2

2.
This last form corresponds, along with a denominator, to a
Fano profile plus a Lorentzian. Thus we see that there is a
one-to-one correspondence between a Fano plus Lorentzian
term and the quotient of two polynomials of the order
of 2. We now have to show that the population of the
continuum is a ratio of two polynomials of the order
of 2.

APPENDIX C: THE WIDEBAND APPROXIMATION IN
LIOUVILLE SPACE

The wideband approximation takes on different forms in
Hilbert and Liouville space. In Hilbert space, projecting out the
continuum involves one integral whose principal part vanishes
in the wideband approximation. In Liouville space, projecting
out the continuum involves an infinity of integrals that are
products of simple poles. These poles always lie on one side of
the real axis, so that the wideband approximation allows one
to draw a contour in a semi-infinite plane, resulting in all of
the integrals containing more than one pole vanishing and all
of the rest with one pole evaluating to the energy-independent
value of −inπ .

APPENDIX D: EXPLICIT FORM OF THE OPERATORS

General dissipation. The general form of the dissipation is

Heff =
[

−i�2 (q − i)�

(q − i)� −ε − i

]
, (D1)

L̃ = β

⎡
⎢⎢⎢⎣

2�2 2� 2� 2

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

+ (1 − β)

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

2�2 2� 2� 2

⎤
⎥⎥⎥⎦, (D2)

where β = 	cg

	cg+	ce
.

We can follow a similar line of reasoning as for the
preceding section with the use of Cramer’s rule. Here the
general M matrix is

M =
⎡
⎣K C C∗

B∗ A 0
B 0 A∗

⎤
⎦, (D3)

which gives a determinant det(M) which does depend on ε

so that the final expression now includes higher-order terms
and can, in principle, no longer be expressed as a Fano line
shape.

Multiple discrete levels coupled to a continuum. We fully
specify the solution for the case of three discrete states coupled
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to one continuum:

Heff =

⎡
⎢⎣

−i�2 (q1 − i)� (q2−i)�
β

(q1 − i)� −ε − i − i
β

(q2−i)�
β

− i
β

−ε + δ − i
β2

⎤
⎥⎦, (D4)

L̃ = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2 � �/β � 1 1/β �/β 1/β 1/β2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∫
dkρkk = 2

	c

[
�2ρgg + 2Re

(
�ρge1 + �

β
ρge2 + 1

β
ρe1e2

)
+ ρe1e1 + 1

β2
ρe2e2

]
, (D5)

where β = V1
V2

, δ = (E2 − E1)/nπV 2
1 , and the density matrix is subject to the appropriate normalization condition.

Multiple continua for one level. In the case where the discrete excited state is coupled to more than one continuum, the effective
Liouvillian is written as

Heff =
[ −i

∑
n γ 2

n �2
n q − i

∑
n γ 2

n �n

q − i
∑

n γ 2
n �n −ε − i

]
, (D6)

L̃ =
2∑

n=1

γ 2
n

⎡
⎢⎣

2�2
n 2�n 2�n 2

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, Cn = 2γ 2

n

	cn

⎡
⎢⎣

�2
n

�n

�n

1

⎤
⎥⎦, (D7)

where γ 2
i = V 2

i

V 2
1 +V 2

2
, with

∑
n γ 2

n = 1. The effective Liouvillian can almost be written as the one for a single continua except that

the decay term
∑

n γ 2
n �2

n is not the square of the off-diagonal elements
∑

n γ 2
n �n. The structure of the Liouvillian is such that

the determinant of the submatrix (see preceding section) does not depend on ε so that the functional form is still in Fano form.
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