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Theory of excitation of Rydberg polarons in an atomic quantum gas
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We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas.
The many-body Hamiltonian is solved with a functional determinant approach, and we extend this technique to
describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as
approximations of the many-body theory. The various approaches are applied to experimental observations of
polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.
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I. INTRODUCTION

When an impurity is immersed in a polarizable medium,
the collective response of the medium can form quasiparti-
cles, labeled as polarons, which describe the dressing of the
impurity by excitations of the background medium. Polarons
play important roles in the conduction in ionic crystals and
polar semiconductors [1], spin-current transport in organic
semiconductors [2], dynamics of molecules in superfluid he-
lium nanodroplets [3–5], and collective excitations in strongly
interacting fermionic and bosonic ultracold gases [6–8].

In this paper, which accompanies the publication heralding
the observation of Rydberg Bose polarons [9], we present
details of calculations and the interpretation of this observation
as a new class of Bose polarons, formed through excitation
of Sr(5sns 3S1) Rydberg atoms in a strontium Bose-Einstein
condensate (BEC). We begin with a general outline of different
polaron Hamiltonians and construct the Rydberg polaron
Hamiltonian used in this work. The spectral response function
in the linear-response limit is derived and the many-body mean-
field shift of the spectral response is obtained. The mean-field
theory particularly fails to describe the limits of small and
large detuning, where the detailed description of quantum
few- and many-body processes is particularly relevant. These
processes are fully accounted for by the bosonic functional
determinant approach (FDA) [10], which solves an extended
Fröhlich Hamiltonian for an impurity in a Bose gas. In the
frequency domain, the FDA predicts a Gaussian shape for the
intrinsic spectrum, which is a hallmark of Rydberg polarons.
A classical Monte Carlo simulation [11] which reproduces the
background spectral shape is shown to miss spectral features
arising from quantization of bound states. Agreement between
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experimental results and FDA theory for both the observed
few-body molecular spectra and the many-body polaronic
states is excellent.

In the companion paper [9], we provide experimental
evidence for the observation of polarons created by excitation
of Rydberg atoms in a strontium Bose-Einstein condensate,
with an emphasis on the determination of the excitation
spectrum in the absence of density inhomogeneity. Here we
provide a detailed discussion of the theoretical methods and
experimental analysis.

II. BOSE POLARON HAMILTONIANS

With ultracold atomic systems, various quantum impurity
models can be studied in which an impurity interacts with
a bosonic bath. Here we focus on models that follow from
the general Hamiltonian describing an impurity of mass M

interacting with a gas of weakly interacting bosons of mass m:

Ĥ =
∑

p

εI
p d̂†

pd̂p +
∑

k

εkâ
†
kâk + gbb

2V
∑

k,k′,q

â
†
k′+qâ

†
k−qâk′ âk

+ 1

V
∑

k,k′,q

V (q)d̂†
k′−qd̂k′ â

†
k+qâk

ĤIB

. (1)

Here, the first two terms describe the kinetic energy of the
impurities (d̂p) and bosons (âk) with dispersion relations εI

p =
p2

2M
and εk = k2

2m
, respectively. (Unless explicitly stated we set

h̄ = 1.) The third term accounts for the interaction between
the bosons. Assuming weak coupling between bosons, the
microscopic coupling constant is given by the relation gbb =
4πabb/m, with abb the s-wave scattering length describing
the low-energy boson-boson interactions. The last term, ĤIB ,
describes the impurity-boson interaction in momentum space,
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which, in the real space, reads

ĤIB =
∫

d3rd3r ′ n̂I (r′) V (r′ − r) n̂B (r). (2)

Here n̂I (r) = ψ̂
†
I (r)ψ̂I (r) = 1

V
∑

k,q d̂
†
k+qd̂ke

−iq·r and

n̂B(r) = ψ̂
†
B(r)ψ̂B(r) = 1

V
∑

k,q â
†
k+qâke

−iq·r are the impurity
and boson density, respectively.

As we consider the limit of a single impurity, it is convenient
to switch to the first quantized description of the impurity,
which is characterized by its position and momentum operator
R̂ and p̂. The density becomes n̂I (r) → δ(3)(r − R̂) and Eq. (1)
takes the form

Ĥ = p̂2

2M
+

∑
k

εkâ
†
kâk + gbb

2V
∑

k,k′,q

â
†
k′+qâ

†
k−qâk′ âk

+ 1

V
∑
k,q

V (q)e−iq·R̂â
†
k+qâk. (3)

From this Hamiltonian various polaron models can be
derived, and we briefly explain their relevance and regimes
of validity. At T = 0 a large fraction of bosons is condensed
in a BEC. This condensate can be regarded as a coherent state
such that the zero-momentum mode 〈âk〉 = √

N0δk,0 takes on
a macroscopic expectation value.

Within the Bogoliubov approximation the bosonic creation
and annihilation operators in Eq. (3) are expanded in fluctua-
tions B̂p around this expectation value

√
N0 (â0 = √

N0 + B̂0

and âp = B̂p when p �= 0), and terms of higher than quadratic
order are neglected in the resulting Hamiltonian. The purely
bosonic part of the Hamiltonian can then be diagonalized by
the Bogoliubov rotation

B̂p = upb̂p + v∗
−pb̂

†
−p , B̂†

p = u∗
pb̂

†
p + v−pb̂−p, (4)

where ωk = √
εp(εp + 2gbbρ) is the Bogoliubov dispersion

relation and up,v−p = ±
√

εp+gbbρ

2ωp
± 1

2 . The density of the

homogeneous condensate is given by ρ. The transformation
(4) yields the Bose-impurity Hamiltonian

Ĥ = p̂2

2M
+

∑
k

ωkb̂
†
kb̂k

+ ρV (0) + 1√
V

∑
q

g(q)e−iq·R̂(b̂†q + b̂−q)

Fröhlich interaction

+ 1

V
∑
k,q

V (q)e−iq·R̂B̂
†
k+qB̂k

extended Fröhlich interaction

, (5)

where we introduced the “Fröhlich coupling” g(q) =√
ρεq

ωq
V (q) and in the last term we kept the untransformed

expression for notational brevity. In Eq. (5) the term ρV (0) =
ρ

∫
d3rV (r) describes the mean-field energy shift of the

polaron in the Born approximation. By neglecting the constant
mean-field shift and the last term in Eq. (5) one arrives at the
celebrated Fröhlich model [12]:

Ĥ = p̂2

2M
+

∑
k

ωkb̂
†
kb̂k + 1√

V
∑

q

g(q)e−iq·R̂(b̂†q + b̂−q).

(6)

In initial attempts to describe impurities in the weakly in-
teracting Bose gases, this Hamiltonian was used for systems
close to Feshbach resonances [13,14]. However, as shown in
[15], the Fröhlich Hamiltonian alone is insufficient to describe
impurities that interact strongly with atomic quantum gases
(for an explicit third-order perturbation theory analysis, see
Ref. [16]). Indeed the major theoretical shortcoming of Eq. (6)
is that from this model one cannot recover the Lippmann-
Schwinger equation for two-body impurity-Bose scattering.
Hence it fails to describe the underlying two-body scattering
physics between the impurity and bosons including molecule
formation.

Similarly, the Fröhlich Hamiltonian cannot account for
the intricate dynamics leading to the formation of Rydberg
polarons. For such strongly interacting systems the inclusion
of the last term in Eq. (5) becomes crucial. This term accounts
for pairing of the impurity with the atoms in the environment
and accounts for the detailed “short-distance” physics of the
problem, which is completely neglected in the Fröhlich model
that is tailored for the description of long-wavelength (low-
energy) physics.

So far it has been experimentally verified that the inclusion
of this term is relevant for the observation of Bose polarons
[7,8], where the impurity-Bose interaction can be modeled by
a potential that supports only a single, weakly bound two-body
molecular state. In the present work we encounter a new type
of impurity problem where the impurity is dressed by large sets
of molecular states that have ultra-long-range character. This
yields the novel physics of Rydberg polarons that is beyond
the physics of Bose polarons so far observed in experiments
and discussed in the literature. To account for the relevant
Rydberg molecular physics theoretically, we analyze the full
Hamiltonian Eq. (5).

We note that the physics of the Rydberg oligomer states
is different from that of Efimov states in the Bose polaron
problem [15,17–19]. While Efimov states are also multibody
bound states, they arise due a quantum anomaly of the un-
derlying quantum field theory [20–22]. Indeed, the Efimov
effect [23–25] gives rise to an infinite series of three-body
states (and also states of larger atom number [26,27]) that
respect a discrete scaling symmetry. The Efimov effect arises
for resonant short-range two-body interactions in three dimen-
sions. In previous experiments studying Bose polarons close
to a Feshbach resonance it was found that these Efimov states
do not strongly influence the polaron physics [7,8]. In our
case the multimolecular states are not related to the Efimov
effect, and dimer, trimer, etc. states are rather comprised of
nearly independently bound two-body molecular states that
feature only very weak three- and higher-body correlations.
In contrast, in Efimov physics, a single impurity potentially
mediates strong correlations between two particles in the Bose
gas. Due to large binding energies of Rydberg molecular states,
this induced interaction is expected to be small for Rydberg
polarons [28].

Polaron formation

The formation of a polaron can be understood as dressing
of the impurity by excitations of the bosonic bath, which
entangles the momentum of the impurity with that of the bath
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FIG. 1. Illustration of polaron formation in terms of Feynman di-
agrams. The impurity Green’s function fully determines the impurity
spectral function and hence its absorption spectrum, mobility, and
other single-particle properties. The impurity properties are changed
due to the dressing by bosonic excitations signified by the self-energy
corrections depicted here as diagrams. The extended Fröhlich model
features two types of excitations. In “Fröhlich processes” bosons are
excited out of the BEC by scattering with the impurity (square box).
Such scattering contributes a factor of

√
ρ. The excited bosons then

reenter the BEC after an additional scattering off the impurity. A
second type of process (gray disks) is ignored in the Fröhlich model.
Here an excited boson can scatter off the impurity repeated times
and in each such scattering process it changes its momentum. These
processes account for strong-coupling physics in cold atomic gases
including bound-state formation.

excitations. This can be illustrated with a simple wave-function
expansion for a polaron of zero momentum,

|�〉 =
√

Z |BEC〉 |p = 0〉I +
∑

k

αkb̂
†
−kb̂0 |BEC〉 |k〉I

+
∑
k,q

αk,qb̂
†
−kb̂

†
k−qb̂0b̂0 |BEC〉 |q〉I + · · · , (7)

where |p〉I denotes impurity momentum states. The unper-
turbed impurity-bath state in the first terms becomes supple-
mented by “particle-hole” fluctuations of the BEC state given
by the second, etc. terms. These terms describe the polaronic
dressing of the impurity by bath excitations that leads to the
formation of the polaron. A Fourier transformation of the
parameter αk to real space reveals the creation of density
modulations in the medium, which represent the formation
of a dressing cloud that is built around the impurity particle.
In fact, wave functions of the type in Eq. (7) were found to
yield a rather accurate description of impurities coupled to a
fermionic bath of cold atoms via Feshbach resonances [29–33]
and also describe exciton impurities in two-dimensional semi-
conductors [34]. When truncated at the one-excitation level,
such an ansatz leads to limited agreement with experimental
observations for impurities in a Bose gas [35,36].

Dressing can also be understood from a perturbative ex-
pansion in terms of Feynman diagrams as shown in Fig. 1.
Here solid lines represent the propagating impurity, and the
dashed lines denote bosons that are excited from the BEC.
The Fröhlich model considers only processes where bosons
are excited out of the condensate and then reenter the BEC in
their next scattering event with the impurity.

However, these “Fröhlich scattering processes” can neither
account for molecular bound-state formation nor for intricate
strong-coupling physics found close to Feshbach resonances.
To describe these phenomena, the last term in Eq. (5) has to
be considered. This term allows for scattering of bosons where
an excited boson does not directly reenter the BEC but can
scatter off the impurity arbitrarily many times. In this process,
illustrated as a gray disk in Fig. 1, the boson changes its
momentum. The infinite repetition of such scattering processes
represents the Lippmann-Schwinger equation in terms of
Feynman diagrams and accounts for molecular bound-state
formation.

III. RYDBERG POLARON HAMILTONIAN

We now specialize to the case of Rydberg impurities. When
a bath atom is excited into a Rydberg state of principal quantum
number n, it interacts with the surrounding ground-state atoms
through a pseudopotential, first proposed by Fermi [37], in
which molecular binding occurs through frequent scattering
of the nearly free and zero-energy Rydberg electron from
the ground-state atom. In this picture, the Born-Oppenheimer
potential for a ground-state atom at distance r from the
Rydberg impurity, retaining s-wave and p-wave scattering
partial waves, is given as [37–41]

VRyd(r) = 2πh̄2

me

as |�(r)|2 + 6πh̄2

me

a3
p|−→∇ �(r)|2, (8)

where we kept explicit factors of h̄ and �(r) is the Rydberg-
electron wave function, as and ap are the momentum-
dependent s-wave and p-wave scattering lengths, and me is
the electron mass. When as < 0, V (r) can support molecular
states with one or more ground-state atoms bound to the
impurity [38,42,43]. A Rydberg polaron is formed when the
Rydberg impurity is dressed by the occupation of a large
number of these bound states in addition to finite momentum
states. This process gives rise to an absorption spectrum
of a distribution of molecular peaks with a Gaussian enve-
lope, which is the key spectral signature of Rydberg polaron
formation.

The large energy scale of the Rydberg molecular states
involved in the formation of Rydberg polarons allows us
to simplify the extended Fröhlich Hamiltonian Eq. (5): the
typical energy range of Rydberg molecules is 0.1–10 MHz for
high quantum number n, while the typical energy scale for
Bose-Bose interactions is 1–10 kHz. Therefore bosons that
are bound to a Rydberg impurity probe momentum scales
deep in the particle branch of the Bogoliubov dispersion
relation, in a regime where the Bogoliubov factors up = 1
and vp = 0. Hence we can neglect the Bose-Bose interactions
and Eq. (5) reduces to the simplified, extended Fröhlich
model [11]:

Ĥ = p̂2

2M
+

∑
k

εkâ
†
kâk + 1

V
∑
k,q

V (q)e−iq·R̂â
†
k+qâk

= p̂2

2M
+

∑
k

εkb̂
†
kb̂k + ρV (0)
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+ 1√
V

∑
q

√
ρV (q)e−iq·R̂(b̂†q + b̂−q)

Fröhlich interaction

+ 1

V
∑
k,q

V (q)e−iq·R̂b̂
†
k+qb̂k

extended Fröhlich interaction

, (9)

where in the second equivalent expression we expanded the
boson operators â

†
k around their expectation value

√
N0, which

highlights the connection to the Fröhlich model. In order to
describe Rydberg impurities the interaction V (q) is given
as the Fourier transform of the Rydberg molecular potential
V (q) = ∫

d3rVRyd(r)eiq·r. The molecular potentials and inter-
acting single-particle wave functions (|βi〉) are calculated as
described in [10,43]. We note that the depletion of a BEC by a
single electron in a BEC has been studied in [44] including only
the linear Fröhlich term in Eq. (9). While such an approach
can approximately account for the rate of depletion of the
condensate, it fails to describe the formation of molecules that
is essential for the formation of Rydberg polarons.

IV. LINEAR-RESPONSE ABSORPTION
FROM QUENCH DYNAMICS

One way to probe polaron structure and dynamics is absorp-
tion spectroscopy. Here one utilizes the fact that before being
excited to a Rydberg state, an atom is in its ground state |5s〉,
and its interaction with the surrounding Bosons is negligible.
The system is described by the Hamiltonian Ĥ0 given by the
first two terms in Eq. (9). In contrast, when the atom is in
its Rydberg state |ns〉 the potential V (q) is switched on. In
experiments [9], transitions between both states are driven by
a two-photon excitation.

Within linear response, the corresponding absorption of
laser light at frequency ν is given by Fermi’s golden rule,

A(ν) = 2π
∑
i,f

wi | 〈f | V̂L |i〉 |2 × δ[ν − (Ei − Ef )]. (10)

Here the sum extends over all initial and final states of the
impurity plus bosonic bath that fulfill Ĥ0 |i〉 = Ei |i〉 and
Ĥ |f 〉 = Ef |f 〉, where Ĥ is given by Eq. (9), so that the
final states |f 〉 are eigenstates in the presence of the strong
perturbation from Rydberg-boson interactions. In the states
|i〉, all atoms (including the impurity atom) are in the |5s〉
state, while in final states |f 〉 the impurity is in the atomic |ns〉
state. The laser operator that drives the two-photon transition
between these two atomic states |5s〉 and |ns〉 is given by
V̂L ∼ |ns〉 〈5s| + H.c.

Using the Fourier representation of the δ function in
Eq. (10), one can show that the absorption spectrum follows
from [10] (for details see [45]),

A(ν) = 2 Re
∫ ∞

0
dt eiνt S(t), (11)

with the many-body overlap (also called the Loschmidt echo)
S(t).

In the general case of finite temperature, the wi in Eq. (10)
are the thermodynamic weights of each initial state given by

the diagonal elements of the density matrix ρ̂ini = e−βH0/Zp,
for sample temperature kBT = 1/β and partition function Zp.
For finite temperature the Loschmidt echo is then given by

S(t) = Tr[ρ̂ini e
iĤ0t e−iĤ t ], (12)

where Tr denotes the trace over the complete many-body
Fock space. This expression shows that the overlap function
S(t) encodes the nonequilibrium time evolution of the system
following a quantum quench represented by the introduction of
the Rydberg impurity at time t = 0. From this time evolution
then follows the absorption spectrum by Fourier transforma-
tion.

The relevant time scales for the dynamics of Rydberg
impurities in a BEC is given by the Rydberg molecular
energies, which exceed both the temperature scale kBT and the
energy scale associated with boson-boson interactions. Thus
temperature and boson interaction effects can be neglected
in the calculation of S(t) for Rydberg polarons. In this limit
the initial state of the system is given by |i〉 = |BEC〉 ⊗
|p = 0〉I ⊗ |5s〉I and Rydberg polarons are well described by
the T = 0 limit of Eq. (12),

S(t) = I 〈p = 0| 〈�BEC| eiĤ0t e−iĤ t |�BEC〉 |p = 0〉I , (13)

where |�BEC〉 represents an ideal BEC of atoms.
The accurate calculation of the absorption response presents

a formidable theoretical challenge. In the following we will
present three different approaches of different degrees of
sophistication. In a simple approximation one may employ
mean-field theory (Sec. V), where the impurity-boson inter-
actions are solely described by the mean-field result ρV (0) in
Eq. (9). In this approach all quantum effects and fluctuations are
neglected. Furthermore, one may employ a classical stochastic
model (Sec. VII), which at least can treat fluctuations to a
certain degree. Finally, we employ a functional determinant
approach, which was developed in [10] and which we review
in Sec. VI. This approach treats all interaction terms in
Eq. (9) fully on a quantum level and allows us to explain the
intricate Rydberg polaron formation dynamics observed in our
experiments.

V. MEAN-FIELD APPROACH

The simplest treatment of the polaron excitation spectrum
is to neglect all interaction terms other than ρV (0) in Eq. (9),
which yields the mean-field approximation. Hence at a given
constant density ρ(r) in the trap the absorption spectrum is
obtained by Fourier transformation of [cf. Eq. (13)]

S(t,
r) = e−iρ(r)V (0)t = e−i�(r)t , (14)

which yields a δ-function Rydberg absorption response
A(ν,r) = δ[ν − �(r)] for a given local, homogeneous density
ρ(r) at a detuning from the atomic transition,

�(r) = ρ(r)V (q = 0) = ρ(r)
∫

d3r′V (r − r′). (15)

In the experiment, the density ρ(r) varies with position r.
Since the excitation laser illuminates the entire atomic cloud,
it excites Rydberg atoms in regions of varying density. To
theoretically model the resulting average over various con-
tributions from the atomic cloud, we perform a local density
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FIG. 2. Calculated values of as,eff from Eq. (18) versus n∗ = n −
δ, where δ = 3.371 is the quantum defect.

approximation (LDA), which assumes the density variation is
negligible over the range of the Rydberg interaction V (r) given
by Eq. (8).

The spectrum for creation of a Rydberg impurity is then
given by

A(ν) ∝
∫

dr3ρ(r)A(ν,r). (16)

In the mean-field approximation this yields the response

A(ν) ∝
∫

d3r ρ(r)δ[ν − �(r)] (17)

for laser detuning ν from unperturbed atomic resonance. Note
that the mean-field treatment is similar to the description of
1S − 2S spectroscopy of a quantum degenerate hydrogen gas
given in [46].

An intuitive way to express this shift is in terms of an
effective s-wave electron-atom scattering length that reflects
the average of the interactions over the Rydberg wave function
[47],

as,eff =
∫

d3r ′ 2πme

h2
V (r′), (18)

yielding

h�(r) = h2as,eff

2πme

ρ(r). (19)

as,eff varies with principal quantum number through the vari-
ation in the Rydberg-electron wave function and the clas-
sical dependence of the electron momentum on position.
Figure 2 shows calculated values of as,eff for the interaction
of Sr(5sns 3S1) Rydberg atoms with background strontium
atoms [43]. To obtain this result, Eq. (18) is only integrated
over |r′| > 0.06n2a0 because the approximation breaks down
near the Rydberg core, where, among other modifications, the
ion-atom polarization potential becomes important.

Figure 3 shows the mean-field description of experimental
results for excitation of Sr(5sns 3S1) Rydberg atoms in a
strontium Bose-Einstein condensate. For the prediction of
the absorption response the effect of temperature enters by
determining the local density of the cloud. In fact, in the
local-density-approximation model of the impurity excitation
spectrum [Eq. (17)], the density of atoms in the trap, ρ(r) =
ρBEC(r) + ρth(r), has contributions from thermal, noncon-
densed atoms and condensed atoms. The contribution from the
thermal gas is restricted to the sharp peak near zero detuning
and a very small contribution towards the red in each data
set in Fig. 3. Thus the BEC and thermal contributions can be
calculated separately in the mean-field approximation.

The profile of the condensate density is well approximated
for our conditions with a Thomas-Fermi (TF) distribution
for a harmonic trap [48]. If we neglect the contribution of
thermal atoms to the density, the condensate contribution to
the spectrum is

AMF(ν) ∝ NBEC
−ν

�2
max

√
1 − ν/�max (20)

for �max � ν � 0 and zero otherwise [46]. Here, �max =
has,eff

2πme
ρmax, and the peak BEC density is ρmax = μT F /g, where

the chemical potential is μT F = (h̄ω/2)(15NBECabb/aho)2/5

and g = 4πh̄2abb/m for harmonic oscillator length aho =
(h̄/mω)1/2 and mean trap radial frequency ω = (ω1ω2ω3)1/3.
This functional form is used to fit several data sets in Fig. 3 with
�max and the overall signal amplitude as the only fit param-

FIG. 3. Mean-field description of the excitation spectrum of Sr(5sns 3S1) Rydberg atoms in a strontium Bose-Einstein condensate (BEC)
for (left) n = 49, (middle) n = 60, and (right) n = 72. Symbols are the experimental data. Blue bands represent the confidence interval for
the mean-field fit of the BEC contribution to the spectrum corresponding to the uncertainties in parameters given in Table I. The central black
line indicates the best fit. The dashed red line is the mean-field prediction for the contribution from the low-density region of the atomic cloud
formed by thermal atoms. This contribution is calculated using the parameters given in Table I, including a sample temperature adjusted to
reproduce the observed BEC fraction.
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TABLE I. Parameters for data and fits shown in Fig. 3. Peak detuning of the mean-field fit (�max) and BEC fraction (η) are determined
from the spectra. Number of atoms in the condensate (NBEC) and mean trap frequency ω̄ are determined from time-of-flight absorption images
and measurements of collective mode frequencies for trapped atoms, respectively, and they determine the peak condensate density (ρmax) and

chemical potential (μ). The second-to-last column provides the ratio of �max to �̃max = ω

4π
( 15Nabb

aho
)
2/5 m

me

as,eff

abb
, the peak shift predicted using

information independent of the mean-field fits. The sample temperature (T ) is the result of a fit of the observed BEC fraction using a numerical
calculation of the number of noncondensed atoms in the trap, fixing all the BEC parameters at values given in the table.

n �max [MHz] η NBEC ω̄/2π [Hz] ρmax[cm−3] μ/kB [nK] �max/�̃max T [nK]

49 −19±2 0.72±0.06 (2.8±0.3) × 105 107±10 (3.2±0.3) × 1014 (150±20) 0.95±0.1 160±10
60 −24±1 0.77±0.03 (3.7±0.4) × 105 112±10 (3.8±0.4) × 1014 (180±20) 0.93±0.05 170±10
72 −24±1 0.80±0.03 (3.6±0.4) × 105 117±10 (3.9±0.4) × 1014 (190±20) 0.88±0.05 170±10

eters. When the frequency is scaled by �max, the mean-field
prediction for a BEC in a harmonic trap is universal, making
�max an important parameter for describing the spectrum. The
resulting fit parameters are given in Table I. We ascribe the
difference between the mean-field fit and the observed spectra
at small detuning to the contribution from the low-density
region of the atomic cloud formed by thermal atoms. From the
ratio of the areas of these two signal components, we extract
the condensate fraction. Given the clean spectral separation
between the contributions from thermal and condensed atoms,
this is a promising technique for measuring very small thermal
fractions and thus temperature of very cold Bose gases. Once
the BEC parameters are set, for a consistency check, we then
calculate the contribution to the spectrum from thermal atoms
using the mean-field approximation and adjusting the sample
temperature to match the BEC fraction. Additional details of
the fitting process are described in the Appendix.

For n = 72, the mean-field approach is quite accurate in
describing the overall shape of the response across the entire
spectrum. However, at lower principal quantum numbers, the
data and fit deviate significantly, especially at larger detunings.
Generally, mean-field fails both at small detuning (i.e., for
response from low-density regions of the cloud), where the de-
viation arises from the formation of few-body molecular states,
and at large detuning, where fluctuations in the macroscopic
occupation of molecular states become important. Fluctuations
correspond to a spread in binding energies of the polaron states
excited for a given average density. All of these effects are
neglected in the mean-field description.

VI. FUNCTIONAL DETERMINANT APPROACH

The mean-field approach is insufficient to describe the main
features found in the absorption spectrum, both at small and
large detuning from the atomic transition. For instance, its
failure at low detuning (low densities) has its origin in the
formation of Rydberg molecular states, which is not described
in mean-field theory. The low-density regime can be most
conveniently studied in detail by working at a low principal
quantum number (here n = 38) where only few atoms are in
the Rydberg orbit, and the signal is thus dominated by the low-
density response. To calculate S(t) efficiently we evaluate it
within the FDA. In [10] the FDA was developed to include
(for impurities of infinite mass) also the finite-temperature
corrections that are however irrelevant for our experiment.
Thus we can restrict ourselves to the description of the zero-
temperature response given by Eq. (13), where the bosonic

ground state can be expressed as a state of fixed particle num-
ber |BEC〉 = (â†

0)N0/
√

N0! |0〉. For sufficiently large particle
number we may equally use its representation as a coherent
state |BEC〉 = exp[

√
N0(â†

0 − â0)] |0〉 where |0〉 is the boson
vacuum. The FDA, as developed in Ref. [10], did not include
the description of impurity recoil, which is, however, essential
for an accurate prediction of Rydberg molecular spectra. In the
following section we develop a extension of the FDA approach
that overcomes this limitation.

A. Canonical transformation: Mobile Rydberg impurity

The FDA can be applied to time evolutions described by
a Hamiltonian bilinear in creation and destruction operators.
This is fulfilled for the Hamiltonian Eq. (9) in the case of
an infinitely heavy impurity M = ∞. However, for a mobile
Rydberg impurity, the presence of the noncommuting operators
p̂ and r̂ effectively gives rise to nonbilinear terms.

To remedy this challenge, we combine the FDA with
a canonical transformation. Here we focus on the zero-
temperature case. In this case the response is obtained from
the time evolution using Eq. (9), where the Hamiltonian
includes bosonic and impurity operators. To deal with the
impurity motion we perform a canonical transformation first
proposed by Lee et al. [49] which effectively transforms into
the system comoving with the impurity. To this end we define
the translation operator [49]

U = exp

{
iR̂

∑
k

kâ
†
kâk

}
, (21)

which is inserted in the time evolution

S(t) = 〈p = 0|I 〈�BEC| UU−1e−iĤ tUU−1 |�BEC〉 |p = 0〉I
= 〈p = 0|I 〈�BEC| e−iĤt |�BEC〉 |p = 0〉I . (22)

In the first line we used that the term eiĤ0t can be dropped as the
initial state is a zero-energy state. Furthermore, in the second
line we made use of the fact that the total boson momentum
of the BEC state is zero and we defined the transformed
Hamiltonian

Ĥ = U−1ĤU =
(

p̂ − ∑
k kâ

†
kâk

)2

2M
+

∑
k

εkâ
†
kâk

+ 1

V
∑
k,q

V (q)â†
k+qâk. (23)
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By virtue of the transformation U the impurity coordinate is
eliminated in the interaction and only the impurity momentum
operator p̂ remains. It thus commutes with the many-body
Hamiltonian and is replaced by a c-number, p̂ → p. Since in
our case we are interested in the polaron at zero momentum,
p → 0. After normal ordering, we arrive at

Ĥ =
∑
k,k′

k · k′

2M
â
†
k′ â

†
kâkâk′ +

∑
k

k2

2μred
â
†
kâk

+ 1

V
∑
k,q

V (q)â†
k+qâk. (24)

The above transformation has the effect that the boson disper-
sion relation εk → k2/2μred now has the reduced mass μred =
mM/(M + m) of boson-impurity partners, and the Hamilto-
nian includes an induced interaction of bosons described by the
first term in Eq. (24). Due to spherical symmetry and the large
energy scale of the Rydberg impurity-Bose gas interaction, we
may neglect this term. The reliability of this approximation
has been demonstrated in recent work of some of the authors
[36] where a time-dependent variational principle has been
applied to the evaluation of the time evolution of Eq. (24). In the
approximation where the time-dependent wave function |�(t)〉
evolved by exp(−iĤt) is taken to be a product of coherent
states of the form |�(t)〉 = e

∑
k(γk(t)â†

k+H.c.) |0〉, one finds from
the equation of motions of the variational parameters γq that the
expectation value 〈�(t)|∑k,k′

k·k′
2M

â
†
k′ â

†
kâkâk′ |�(t)〉 always

remains zero and this term hence does not contribute to the
dynamics. For our case of Rydberg impurities the FDA solution
presented here reproduces the variational result of Ref. [36]
and again shows excellent agreement with experimental data
attesting a posteriori to the accuracy of the method and the
neglect of the first term in Eq. (24). To which extent this remains
valid for other Bose polaron scenarios is an open question and
subject to ongoing theoretical studies [50]. In summary, we
finally arrive at the Hamiltonian

Ĥ =
∑

k

k2

2μred
â
†
kâk + 1

V
∑
k,q

V (q)â†
k+qâk |ns〉 〈ns| , (25)

whose dynamics we simulate to obtain Rydberg polaron
excitation spectra. Note, in Eq. (25), we make explicit that the
impurity-boson interaction is only present when the impurity
is in its excited atomic Rydberg state |ns〉. In this state the
Rydberg electron scatters off ground-state atoms in the en-
vironment, leading to the strong Rydberg Born-Oppenheimer
potential V (q). For simplified notation we will now switch
again to the symbol Ĥ → Ĥ .

B. Time domain S(t)

The strength of the FDA is that it allows one to express
overlaps of many-body states in terms of single-particle
eigenstates [10,51–54]. In our case this implies that we must
calculate single-particle eigenstates and energies of the free
and “interacting” Hamiltonian, i.e., ĥ0 |n〉 = εn |n〉 and ĥ |β〉 =
ωβ |β〉, respectively (where ĥ0 and ĥ are the single-particle
representatives of the many-body operators Ĥ0 and Ĥ , respec-
tively). The single-particle eigenstates and energies |β〉 and ωβ

are calculated using exact diagonalization. Here we solve the

radial Schrödinger equation for a spherical box of radius R

discretized in real space. Since the BEC is initially in a zero
angular state and the Rydberg molecular potential is spherically
symmetric, we can restrict the analysis to single-particle states
with zero angular momentum. We include the 300 energetically
lowest eigenstates, which leads to convergent results. In terms
of these states and energies the overlap S(t) becomes [10]

S(t) =
⎛
⎝∑

β

|〈β|s〉|2ei(εs−ωβ )t

⎞
⎠

N

, (26)

where |s〉 denotes the lowest single-particle eigenstate [55] of
ĥ0, and N is the number of atoms in the spherical box of radius
R chosen to reproduce a given local experimental density of a
Bose gas. We choose R = 106a0 with a0 the Bohr radius so that
we find negligible finite-size corrections. We emphasize again
that the temperature enters the calculation only in determining
the local density of the atomic cloud. For the dynamics and
thus the prediction of the absorption spectra at a given local
density the temperature T is irrelevant. This is due to the
fact that the energy scales of the dynamics of the system is
determined by the binding energy of Rydberg molecular states,
which exceed kBT .

We obtain absorption spectra by predicting the many-body
overlap, or Loschmidt echo, S(t). This calculation corresponds
to solving the full-time evolution of the system following a
quantum quench, where at time t = 0 the Rydberg impurity is
suddenly introduced into the BEC. The overlap S(t) describes
the dephasing dynamics of the many-body system and thus
the evolution of the dressing of the Rydberg impurity by bath
excitations. It is one of the virtues of cold atomic systems
that the signal S(t) can be directly measured experimentally
by Ramsey spectroscopy where via a π/2 rotation at time
t = 0, the impurity is prepared in a superposition state of |5s〉
and |ns〉. Following a time evolution of duration t , a further
π rotation is performed and σz is measured. This gives the
Ramsey contrast |S(t)|. Changing the phase of the final π

rotation, the full signal S(t) = |S(t)|eiϕ(t) can be measured
[45,56,57]. In Fig. 4 we show the predicted Ramsey signal that
underlies the calculation of the Rydberg polaron absorption
spectrum for n = 49 at peak density, here shown in absence
of a finite Rydberg lifetime. We observe a fast decay in the
contrast that indicates strong dephasing and thus efficient
creation of polaron dressing by particle-hole excitations. This
decay is accompanied by fast oscillations of the complex
signal S(t) as visible in the shown evolution of the Ramsey
phase ϕ(t) restricted to the branch (−π,π ). The combination
of the oscillations at the Rydberg molecular binding energies
and the decay of the Ramsey signal S(t) gives rise to the
distinct Rydberg polaron features of molecular peaks that are
distributed according to a Gaussian envelope, to be discussed
below. The Ramsey signal thus provides an alternative pathway
to observing Rydberg polaron formation dynamics in real time.
The time scales of this coherent dressing dynamics are ultrafast
compared to the typical time scales of collective low-energy
excitations of ultracold quantum gases. This again highlights
that effects arising from Bose-Bose interaction as well as finite
temperature will play only a minor role in the prediction of the
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FIG. 4. Exemplary Ramsey signal S(t) = |S(t)|eiϕ(t) including contrast |S| and phase ϕ underlying the calculation of the Rydberg polaron
absorption spectrum for n = 49 at peak density in absence of a finite Rydberg lifetime. A fast decay visible in the contrast accompanies
fast oscillations of the full complex system. The combination of both gives rise to the distinct Rydberg polaron features of molecular peaks
that are distributed according to a Gaussian envelope. The Ramsey signal thus provides an alternative pathway for observing Rydberg polaron
formation dynamics in real time. The time scales of this coherent dressing dynamics are ultrafast compared to the typical time scales of collective
low-energy excitations of ultracold quantum gases, allowing study of ultrafast dynamics in a new setting.

absorption response, as those start to influence dynamics only
on much longer time scales.

Using the data of the nonequilibrium quench dynamics, the
FDA can accurately capture the formation of Rydberg molec-
ular dimers, trimers, tetramers, etc. This is demonstrated by
comparing the FDA spectrum and experimental measurement
for low principal quantum number, as shown in [9]. Indeed,
from a many-body wave-function perspective, capturing the
trimer, tetrameter, and higher-order oligomer state requires the
inclusion of the corresponding higher-order terms in Eq. (7).
This attests to the challenge of describing Rydberg polarons
which are formed by the dressing with many deeply bound
atoms, rather than just a small number of bath excitations. In
fact, due to the magnitude of the binding energies involved,
coherent formation of Rydberg polarons takes place on a
microsecond time scale, which is short compared to typical
ultracold-atom time scales.

C. FDA absorption spectra

The accurate description of molecular formation underlies
the precise analysis of Rydberg-polaron absorption response.
As the principal quantum number is increased to n = 49, more
atoms are situated on average within the Rydberg orbit and
many-body effects become relevant. The density-averaged pre-
diction using FDA is shown in Fig. 6. For all density-averaged
spectra, we rely on density profiles such as shown in Fig. 5 for
parameters used for the FDA prediction of the n = 60 Rydberg
absorption spectrum. We include Hartree-Fock corrections
[48,58] as discussed in the Appendix. Furthermore, the absorp-
tion spectrum is calculated from the Fourier transformation
according to Eq. (11), where in the time evolution of S(t)
we choose a temporal cutoff determined by the experimental
laser-pulse duration, and in the Fourier transform we account
for the finite laser linewidth (400 kHz).

In Fig. 7, we show again the n = 49 absorption spectrum
obtained theoretically but with a simulated laser linewidth of
100 kHz (solid blue line). The shaded region shows the result
of an FDA calculation of the spectrum for a central region of
the atomic cloud with roughly constant density. We find that
the signal from this region shows a series of molecular peaks
whose weights follow a Gaussian envelope. This distribution

of molecular peaks is one of the key signatures of Rydberg
polarons, as predicted theoretically in the accompanying work
[10]. The comparison of experiment and theory in Fig. 6 in turn
shows that the response is indeed composed of many individual
molecular lines. While due to the finite lifetimes of Rydberg
molecules and the fact that their binding energies decrease for
increasing principal number these individual molecular peaks
cannot be resolved experimentally for high principal numbers,
their Gaussian envelope is a robust signature of the formation
of Rydberg polarons.

As our simulation shows, the broad tail to the red and the
characteristic Gaussian profile of the signal are both clear sig-
natures of Rydberg polarons. The excellent agreement between
many-body theory and experiment confirms the presence of
Rydberg polarons in the Sr experiment.

The Gaussian signature of the Rydberg-polaron spec-
trum becomes more pronounced when exciting n = 60 states
(Fig. 8). In the accompanying work [10] we observe this
Gaussian response experimentally for Rydberg polarons of

FIG. 5. Density profile of bosonic atoms in a harmonic trap for
parameters T = 180 nK, NBEC = 3.7 × 105, Ntot = 5.2 × 105, ωr =
104 Hz, and ωa = 111 Hz, used for the prediction of the spectrum of
the n = 60 Rydberg excitation shown in Fig. 8. In blue is shown the
contribution from the condensed atoms, while the red area represents
the contribution from thermal atoms.
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FIG. 6. (a) LDA absorption spectrum for n = 49 as calculated by
FDA (solid blue) in comparison with experimental data (symbols).

large principal number n = 60 and n = 72. While due to the
finite lifetimes of Rydberg molecules and the fact that their
binding energies decrease for increasing principal number,
these individual molecular peaks cannot be resolved experi-
mentally for high principal numbers, their Gaussian envelope
is a robust signature of the formation of Rydberg polarons.
The comparison of experiment and theory in Fig. 6 in turn
shows that the response is indeed composed of many individual
molecular lines.

The FDA calculation of the absorption spectra takes as
input the experimentally determined number of atoms in the
condensate NBEC and the trap frequencies ωi . The tempera-
ture T and the total number of atoms Ntot are taken as fit
parameters, and results are consistent with their determination
using the mean-field model and absorption imaging described
in Sec. V. For the n = 60 spectrum, we also show a range of
FDA predictions resulting from varying the trap frequencies
within experimental uncertainty, which illustrates the impact
of these uncertainties. Table II lists the parameters used in the

FIG. 7. LDA absorption spectrum for n = 49 as calculated from
the classical Monte Carlo sampling model (black) compared to the
FDA prediction. The shaded area, which corresponds to the prediction
of absorption response from the cloud center at peak density, reveals
that the Gaussian line shape of the response is due to discrete,
Gaussian-distributed molecular peaks and not a continuous response
as described by a simple classical model.
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FIG. 8. Experimentally observed absorption spectrum (symbols)
for n = 60 in comparison with the theoretical prediction from FDA
(lines). The experimental input parameters such as the trap frequencies
are varied within the experimental uncertainty, giving rise to the gray
band around the solid red line. The specific set of values is given in
Table II. The inset shows the signal on a logarithmic scale.

theoretical simulation. Note that the requirement to explain
the spectrum over the whole frequency regime places tight
constraints on the fit parameters T , and Ntot. (For Rydberg
polaron response at n = 72, refer to Ref. [9].)

As discussed in Ref. [10], the emergence of the Gaussian
response can be understood from a direct, analytical calculation
of S(t) in terms of single-particle eigenstates and energies.
Indeed, expanding the sum in Eq. (26) explicitly in a multi-
nominal form leads, after Fourier transform, to the expression

A(ν) = N !
∑

�ni=N

|〈α1|s〉|2n1 × · · · · |〈αM |s〉|2nM × · · ·
n1! . . . nM ! . . .

×δ(−ν + n1ω1 + · · · + nMωM + · · · ). (27)

This expression captures not only the bound states but also
continuum states. Expressing the spectrum in this explicit form
again highlights the fact that the actual spectrum is indeed built
by δ peaks corresponding to the many configurations in which
bound molecules can be formed and thus dress the impurity.
It also explains the emergence of the Gaussian line shape as a
limit of the multinominal distribution of δ-function peaks for
large particle number N . We note the fact that the spectrum
is built by molecular excitation peaks (of up to hundreds of
atoms bound to a single impurity) is missed by the classical
description of the Rydberg polarons discussed in Sec. VII.

We note that while Eq. (27) is appealing, as it qualitatively
explains the observed spectral features, it is less useful for
quantitative calculations due to the exponential growth of the
number of terms in the sum (reflecting the exponential growth
of Hilbert space for increasing particle number). In contrast,
the calculation of the time evolution in Eq. (26) is numerically
efficient (when limited to finite evolution times) and only
requires a final Fourier transformation.
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TABLE II. Parameters used for the prediction of the theoretical spectrum shown in Fig. 5(b) for the Rydberg n = 60 excitation. Inferred
quantities are the condensate fraction η = NBEC/Ntot, peak BEC density ρpeak,BEC, and chemical potential μ. Densities are given in cm−3.

Data ω̄/2π [Hz] ωi/2π [Hz] η NBEC Ntot ρpeak,BEC ρpeak,tot μ/kB [nK] T [nK]

Experiment 112 (109,109,117) 0.77 3.7×105 4.8×105 3.8×1014 – 170 –
Figure 5 (gray, solid) 111.6 (109,109,117) 0.77 3.7×105 4.8×105 3.72×1014 3.78×1014 175.5 166
Figure 5 (red) 106.0 (103.6,103.6,111.2) 0.71 3.7×105 5.2×105 3.5×1014 3.57×1014 165 180
Figure 5 (gray) 100.4 (98.1,98.1,105.3) 0.77 3.7×105 4.8×105 3.3×1014 3.58×1014 155 150

VII. FROM QUANTUM TO CLASSICAL DESCRIPTION OF
RYDBERG ABSORPTION RESPONSE

For a sufficiently large average number of atoms within
the Rydberg-electron orbit, the overall line shape of Rydberg
spectra can be described with classical statistical arguments. In
Fig. 9, we show the experimental spectrum obtained for n = 60
in comparison with the prediction from the FDA (dashed red
line) and a classical statistical approach (solid black). In the lat-
ter approach, using a classical Monte Carlo (CMC) algorithm
[11], we randomly distribute atoms in three-dimensional space
around the Rydberg ion such that the correct density profile is
obtained. Due to statistical fluctuations in the random sampling
of coordinates (sampled from a uniform distribution), the
local density within the Rydberg-electron radius fluctuates. For
each of the random configurations of atoms C = (r1,r2, . . .)
we calculate the classical energy of the configuration EC =∑

i V (ri), where ri are the atom coordinates. The resulting
energies EC are collected in an energy histogram and shown
as the black solid line in Fig. 9.

The validity of the classical description reflects the fact that
the macroscopic occupation of the molecular bound and scat-
tering states probes the Rydberg molecular potential uniformly
over its entire range. This process is also well described by a
repeated sampling of different classical atom configurations
drawn from a homogeneous density distribution.

The quantum-classical correspondence also becomes evi-
dent when considering the specific approximation that under-
lies the classical statistical approach. The Rydberg absorption
response is given as a Fourier transform of the full quantum
quench dynamics as given by Eq. (13). The classical statistical
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FIG. 9. LDA absorption spectrum for n = 60 as calculated by
the FDA (dashed red) and classical statistical Monte Carlo sampling
method (black). The inset shows the signal on a logarithmic scale.

model arises as an approximation of the time evolution of
S(t) where the kinetic energy of both the impurity and the
Bose gas is completely neglected. Hence both bosons and
the impurity are treated as effectively infinitely heavy objects;
their motion is “frozen” in space. The disregard of the kinetic
terms has the consequence that the Hamiltonian now commutes
with the position operators r̂j of impurity and bath atoms
(noncommuting p̂j operators are now absent), and hence the
dynamics becomes completely classical. In this approximation
the Hamiltonian becomes (without loss of generality, we
assume that the impurity is at the center of the coordinate
system)

Ĥ =
∫

d3rV (r)â†(r)â(r). (28)

Furthermore, Ĥ0 = 0, and hence ρ̂ini = 1/Z in Eq. (12).
Since all boson coordinates r̂j now commute with the Hamil-
tonian, the many-body eigenstates are given by |φ(j )〉 =
|r(j )

1 ,r(j )
2 , . . . ,r(j )

N 〉. The trace in Eq. (12) reduces to the sum
over the set of all basis states {|φ(j )〉}. The |φ(j )〉 are eigenstates
of Ĥ with eigenvalues Ĥ |φ(j )〉 = ∑

{r(j )
i } V (r(j )

i ) |φ(j )〉 andS(t)
becomes

Scl(t) = N
∑
{r(j )

i }
e
i
(
ν−∑

i V (r(j )
i )

)
t
, (29)

where the sum extends over all possible atomic configurations
in real space, and N is a normalization factor (representing the
partition function Z in the density operator ρini). Finally, by
performing the Fourier transform of S(t) one arrives at

A(ν) = N
∑
{r(j )

i }
δ

(
ν −

∑
i

V (r(j )
i )

)
. (30)

A finite lifetime of the Rydberg or laser excitation, as well as
a finite linewidth of the laser, leads to a broadening of the δ

function in Eq. (30). The sum in Eq. (30) is exactly the object
sampled in the classical Monte Carlo (CMC) approach derived
from first principles.

Moreover, we note that for impurities interacting with an
ideal Bose gas with contact interactions, the Gaussian spectral
signature of polarons [10] would remain, while in the classical
model, a sharp excitation at the atomic transition frequency is
expected. Indications of a Gaussian response have been seen
in a recent experiment performed independently at Aarhus [8]
and JILA [7], in agreement with theory [36]. The classical
statistical approach fails to describe the Bose polarons close to
a Feshbach resonance [7,8]. Here the impurity indeed interacts
with the bath via a contact interaction, and, due to a diverging
scattering length, the single bound state present in the problem
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is highly delocalized and extends in size far beyond the range
of the potential. This effect cannot be captured by a classical
approach.

While Rydberg absorption spectra find an effective, yet
approximate description in terms of classical statistics, such
an approach does not reveal the quantum-mechanical origin
of Rydberg polarons. The classical sampling model treats
both the Rydberg and the ground-state atoms as infinitely
heavy objects. Zero-point motion and the discrete nature of
the bound energy levels are absent in this treatment so that
it cannot describe the formation of Rydberg molecular states.
This shortcoming of the classical approach is evident in Fig. 7,
where we show the absorption spectrum for n = 49. The
FDA (solid blue) fully describes the quantum mechanical
formation of molecules (dimers, trimers, tetrameters, excited
molecular states, etc.), which gives rise to discrete molecular
peaks visible in the spectrum. In contrast, and as evident
from Fig. 7, the existence of molecular states, which are the
quantum mechanical building block of Rydberg polarons, is
not described by the classical approach (solid black). The fact
that the classical model can only describe the envelope of the
Rydberg polaron response but not the underlying distribution
of molecular peaks is further emphasized by the comparison
of FDA and CMC simulation from the center of the atomic
cloud, shown as the shaded region in Fig. 7.

VIII. CONCLUSION

In this work, we have detailed the descriptions of polarons
as encountered in condensed matter and in ultracold atomic
systems. We time evolve an extended Fröhlich Hamiltonian as
relevant for Rydberg excitations, Eq. (9), unitarily to obtain
the overlap function, Eq. (12), whose Fourier transform leads
to the spectral function for Rydberg impurity excitation in a
Bose gas, Eq. (11). We show how different approximations
to the many-body quantum description, such as mean-field
and classical Monte Carlo treatments, can be derived. Here
we extend the bosonic functional determinant approach to the
Rydberg polaron problem to account for recoil of the impurity.
We show that the FDA approach can correctly and accurately
account for the few-body molecular bound-state formation, as
well as the macroscopic occupation of many-body bound and
continuum states. The various treatments are compared with
experimental data for Rydberg excitation in a 84Sr BEC [9],
with the FDA results reproducing the observed data over a wide
range of Rydberg line spectral intensities.

Rydberg polarons are exemplified on the one hand by
their large energy scales, 1–10 MHz, that allow for coherent
polaronic dressing on correspondingly short time scales, and
on the other hand by their large spatial extent, 1 μm, leading to
large-scale variations of the density in the many-body medium.
Another key feature of Rydberg polarons is the coherent
dressing of the quantum impurity, not by collective low-energy
excitations but by a large number of molecular bound states.
This is a new dressing mechanism, distinguishing them from
polarons encountered so far in the solid-state physics context.

Our FDA time domain analysis suggests a way to investigate
the dynamical formation of the Rydberg polarons. A natural
extension will be to explore the feasibility of observing Pauli
blocking in a degenerate Fermi atomic gas with nontrivial

spatial correlations. Note that one can study polarons with
nonzero momentum by keeping all terms in Eq. (23) and
allowing p to be finite. The effective polaron mass can then
be analyzed as previously demonstrated [59].
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APPENDIX: DETERMINATION OF BEC PARAMETERS
AND MEAN-FIELD DESCRIPTION OF THE IMPURITY

EXCITATION SPECTRUM IN A STRONTIUM BEC

The mean-field approximation neglects fluctuations in the
density around the Rydberg impurity, which correspond to
a spread in binding energies of the polaron states excited
for a given average density. This explains the discrepancy
between data and fit at large detuning. But as shown in [9], the
broadening resulting from these fluctuations is proportional
to

√
ρ and vanishes as detuning approaches zero. Thus, we

assume that the difference between data and the mean-field
fit in Fig. 3 for small detuning (ν/�max < 0.5) arises from
noncondensed atoms.

We adjust the area of the mean-field BEC contribution
so the sum of the noncondensed and mean-field-BEC signal
matches the total experimental spectral area. Because the
deviations between the mean-field fit and the BEC spectrum
are significant, the fit of the peak shift �max is less rigorous.
We adjust it to qualitatively match the data and so that the
mean-field fit and the data have approximately equal area
for (ν/�max > 0.5). This uncertainty in the fitting procedure
decreases with increasing principal quantum number as the
experimental data converges towards the mean-field form. In
the mean-field description we neglect the laser linewidth of
400 kHz in this analysis.

The fit parameters are given in Table I. The condensate
fraction η is directly determined from the spectrum. The
uncertainties correspond to values calculated for the extremes
of the confidence intervals shown as bands in Fig. 3, except
for uncertainties in ωi and total atom number, which reflect
uncertainties from the independent procedures for measuring
these quantities. The fit value of the peak shift �max can be
compared to the predicted peak shift �̃max calculated from
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independent, a priori information: the number of atoms in the
condensate NBEC determined from time-of-flight absorption
images, the trap oscillation frequencies ωi determined from
measurements of collective mode frequencies for trapped
atoms, and the value of as,eff found theoretically from VRyd(r).
The values of �max are all about 10% below �̃max. This may
point to something systematic in our analysis procedure, but
it is also a reasonable agreement given our uncertainty in the
determination of ωi and total atom number. The calculation
of as,eff from VRyd(r) [Eq. (18)] could also account for some
of this discrepancy through approximations made to describe
the Rydberg-atom potential at short range. Residual deviations
in the description of the short-range details of the Rydberg
molecular potential lead, for instance, also to the minor
discrepancies between the FDA and CMC simulation of the
Rydberg response from the center of the atomic cloud, shown
in Fig. 7.

For a noninteracting gas in a harmonic trap, the temperature
is easily found from η and ω̄ [60], and the standard expressions
imply a temperature of approximately 240 nK for the data
presented in Fig. 3. However, the situation is much more com-
plicated than this for an interacting gas. There are corrections to
the condensate fraction that are independent of the trapping po-
tential, and these are often discussed in terms of the shift of the
critical temperature for condensation [48,61,62], but these are
all small in our case, reflecting the smallness of relevant expan-
sion parameters: ρmaxa

3
bb = 10−4,abb/λth = 10−2 at 100 nK,

and aho/RT F = 10−1, where λth is the thermal de Broglie
wavelength and aho is the trap harmonic oscillator length.
For a gas trapped in an inhomogeneous external potential
Vext(r), the Hartree-Fock approximation (as described in detail
in Refs. [63] and [60]) yields a mean-field interaction between
thermal and BEC atoms that creates an effective potential for
thermal atoms, Veff(r) = Vext(r) + 2g[ρBEC(r) + ρth(r)] that is
of a “Mexican hat” shape rather than parabolic [60,63,64]. This
effect is particularly important when the sample temperature
is close to or lower than the chemical potential, which is the
case here. It increases the volume available to noncondensed
atoms and implies a lower sample temperature for a given
value of η compared to the noninteracting case. In other words,
the number of thermal atoms can significantly exceed the
critical number for condensation predicted for an ideal gas
[58,64], and 240 nK is thus an upper limit of the sample
temperature. Sample temperatures extracted from bimodal fits
to the time-of-flight absorption images are 100–190 nK.

Both the mean-field and the FDA fits use a local density
approximation for the spectrum. Here the temperature and
interaction between bosons enter by determining the precise
form of the overall density distribution of the atomic gas. As
discussed above, the density profile has contributions from both
the condensed and thermal, noncondensed atoms:

ρ(r) = ρBEC(r) + ρth(r). (A1)

The BEC density ρBEC and resulting chemical potential are
assumed to be given by the Thomas-Fermi expressions [63]

ρBEC(r) = m

4πh̄2abb

[μT F − Vext(r)], (A2)

with μTF = h̄ω/2(15NBECabb/aho)2/5. NBEC is the total num-
ber of condensed atoms, abb = 123a0 for 84Sr, and aho =
(h̄/mω)1/2 is the harmonic oscillator length. (In this section
we make explicit factors of h̄ and kB .)

The density distribution for atoms in the thermal gas can be
calculated from known trap and BEC parameters using a Bose
distribution,

ρth(r) = 1

λ3
T

g3/2

{
e
− 1

kB T
[Veff(r)−μT F ]

}
, (A3)

where λT =
√

2πh̄2

mkBT
is the thermal wavelength and g3/2(z)

the polylogarithm PolyLog[ 3
2 ; z] [63], and the chemical po-

tential is set to μT F . The parameters T and μT F are varied
self-consistently to fit that spectrum, which can be seen as
matching the experimentally observed total particle number
Ntot = NBEC + Nth and BEC fraction η = NBEC/Ntot.

The mean-field calculations use the full geometry of the
external trapping potential as determined by the optical-dipole-
trap lasers. Integrals involving Vext(r) are evaluated numeri-
cally. This procedure yields temperatures of 155–170 nK, in
good agreement with other determinations. The modification
of the potential seen by thermal atoms due to Hartree-Fock
corrections has an important consequence for our analysis.
The peak shift in the Rydberg excitation spectrum should in
principle reflect the peak condensate density plus the density
of thermal atoms at the center of the trapping potential.
The contribution from thermal atoms would be a significant
correction if the mean-field repulsion of thermal atoms from
the center of the trap were ignored. But because the sample
temperature is close to the chemical potential, the density of
thermal atoms is suppressed at the trap center and we neglect
it in discussions of the peak mean-field shift in the spectrum.

For the FDA simulation, the dipole trap potential is approx-
imated by Vext(r) = m(ω2

r r
2 + ω2

zz
2)/2. In Fig. 5(a) we show

the density profile along the radial direction for parameters as
used for the FDA prediction of the n = 60 Rydberg absorption
spectrum including Hartree-Fock corrections. We emphasize
again that the temperature and interaction between bosons are
relevant only for the determination of the density profile of
atoms. In the simulation of the absorption spectrum, which
is obtained within a local density approximation, this density
distribution of atoms enters as input. In this simulation,
when locally performed for constant density, both temperature
effects and boson-interaction effects can be neglected due to
the short time scales associated with Rydberg polaron dressing
dynamics (that are given by the Rydberg molecular binding
energies).
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