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Quantum-tunneling isotope-exchange reaction H2 + D− → HD + H−
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The tunneling reaction H2 + D− → HD + H− was studied in a recent experimental work at low temperatures
(10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017)]. An upper limit of the rate coefficient was
found to be about 10−18 cm3/s. In the present study, reaction probabilities are determined using the ABC program
developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000)]. The probabilities for ortho-H2 and
para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the
total angular momentum J = 0–15 and extrapolated below 50 meV using a WKB approach. Thermally averaged
rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 × 10−20 cm3/s,
which agrees with the experimental results.
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I. INTRODUCTION

In the interstellar medium (ISM), the H− ion could be
responsible for the formation of molecular anions, several of
which have recently been observed [1–9]. For example, the
CN− ion [9] could be formed in the reaction H− + HCN →
H2 + CN− [10,11]. However, H− has never been observed
in the ISM by photoabsorption spectroscopy. Its detection is
difficult because it has only one bound electronic state. A few
unsuccessful efforts were made to search for it in the ISM,
such as using far-ultraviolet autodetachment transitions [12].
The existence of H− can also be inferred indirectly via the
spectroscopy of the H−

3 ion, which could be formed by radiative
association of H2 and H− in diffuse molecular clouds [13].

For an eventual indirect detection of H− in the ISM via
detection of H−

3 , studying the structure and formation of the H−
3

system with its isotopologues is important [13,14]. Recently,
reactive scattering of the D− ion in collisions with H2,

H2 + D− → HD + H−, (1)

was studied in an experiment by Endres et al. [15]. This
exothermic reaction has a reaction barrier of 330 ± 60 meV
[16], which cannot be overcome by thermal activation at low
temperatures. Therefore, at low temperatures in cold molecular
clouds in the ISM, the reaction can proceed only by quantum
tunneling and cannot be described with the classical Langevin
theory. As H2D− is one of the simplest anionic triatomic
molecules, the reaction could serve as a benchmark process
for quantum tunneling at low temperatures. The experiment of
Ref. [15] was performed in a cryogenic 22-pole ion trap. From
D− loss-rate measurements, it was concluded that the upper
limit of the rate coefficient at 10 K is 2.6 × 10−18 cm3/s.
The absence of the H− signal gave a smaller upper limit of
9 × 10−19 cm3/s.

There have been several theoretical investigations of the
reaction (1). However, the majority of the studies considered

collision energies from about 0.3 to 2 eV. For example, a time-
dependent wave-packet method with and without Coriolis cou-
pling was used in Refs. [17,18] and a quasiclassical trajectory
method was used in Ref. [19]. The cross section for the process
using both a time-dependent and time-independent method
was reported by Giri and Sathyamurthy [20]. A comparison
of reaction cross sections obtained using different available
potential-energy surfaces was made at collision energies above
0.3 eV in Ref. [21]. There is also a study using the variational
transition-state method, which gave the rate coefficient of the
order of 10−23 cm3/s at 30 K [22]. At ultracold and cold tem-
peratures, a similar reaction H2(v = 0 − 5,j = 0,1) + D →
HD + H was reported by Simbotin and Côté [23]. Giri and
Sathyamurthy have also reported [24] theoretical results for
the H− + HD collisions with the HD molecule being in the
first excited vibrational level. The present study is focused on
a quantum mechanical approach to obtain the cross section of
reaction (1) at low energies, below the potential barrier.

II. THEORETICAL APPROACH

In this study, we employ the H−
3 potential-energy surface

(PES) calculated by Ayouz et al. [14]. The PES has a barrier of
about 450 meV above the dissociation limit of H− + H2, when
H2 is at the equilibrium geometry, along the minimum-energy
pathway of the reaction (1) (see Fig. 1). The barrier is about
two orders of magnitude larger than a typical collision energy
at 10 K in the experiment by Endres et al. [15]. Therefore, the
reactive scattering is highly suppressed at 10 K. Figure 2 shows
the hyperspherical adiabatic (HSA) energy curves of H2D− as
a function of the hyper-radius (for details, see Ref. [25]). As
Fig. 2 demonstrates, at low energies of collisions between D−
and the H2 molecule in the rotational level j = 0 or 1, the
possible reaction channels are H− + HD with HD being in the
rotational state j = 0, 1, or 2.
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FIG. 1. H−
3 /H2D− PES as a function of two internuclear distances

r12 and r23 for linear geometries. The absolute energy minimum of
the PES is indicated with M and the peak of the potential barrier is
labeled with B. Successive energy contours differ by 0.16 eV.

At low collision energies, the reaction probability is ex-
tremely small, which requires a theoretical approach able to
provide the required accuracy for the probabilities. To assess
and compare the accuracy of different numerical methods,
we have performed a restricted calculation of the reaction
probabilities for parahydrogen in the ground rovibrational state
with the total angular momentum J = 0 using three different
approaches: the time-independent hyperspherical adiabatic
approach [26], the multiconfiguration time-dependent Hartree
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FIG. 2. Hyperspherical adiabatic potential-energy curves for
H2D−. At low collision energies between H2(v = 0 ,j = 0,1) and
D−, there are three open exit channels for HD(v,j ) with v = 0 and
j = 0, 1, 2 [25].
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FIG. 3. Reaction probabilities of the reaction H2(0,0) + D− →
HD + H− with the total angular momentum J = 0, obtained from
the HSA approach (black solid curve), the MCTDH method (blue
solid curve with circles), and the ABC program (red dashed curve).

(MCTDH) method [27], and the ABC program [28]. Only a
brief overview of the three methods is provided below; details
can be found in [26–28] and the references therein.

The HSA approach represents different arrangements of the
system by using a single set of hyperspherical coordinates.
As a first step in this method, one calculates HSA energies
and wave functions at many fixed hyper-radii. At large values
of the hyper-radius, the energies and wave functions represent
the rovibrational states of the dimer, as shown in Fig. 2.
The nonadiabatic couplings between the HSA channels are
represented using the modified slow variable discretization
[29]. Using the eigenchannel R-matrix approach, the scatter-
ing matrix is extracted at the last grid point of the hyper-
radius without performing a coordinate transformation, as
is performed in Refs. [30,31]. The MCTDH method is a
general algorithm for solving the time-dependent Schrödinger
equation for multidimensional systems. It has been successful
in treating reactive scattering for different systems [32,33].
This method propagates the incoming wave packet along the
PES. The outgoing flux is absorbed by placing a complex
absorbing potential at the reaction coordinate, and the reaction
probability is extracted from the outgoing flux. The ABC
program is also able to represent the reactive scattering of
a dimer and an atom. It has been successfully applied to
many three-body systems [23,34,35]. It is based on solving the
Schrödinger equation using the coupled-channel approach in
Delves hyperspherical coordinates. The coupled-channel basis
functions are constructed on the surface of the hypersphere at
each hyper-radius. Finally, the parity-adapted scattering matrix
is obtained by applying boundary conditions.

Figure 3 compares the results obtained using the three
methods. At collision energies above 0.2 eV, the reaction
probabilities from all three methods are in good agreement.
Below that energy, in the tunneling regime, the results diverge.
In the MCTDH calculation below 0.1 eV, the outgoing flux
is extremely small, which sets a limit on accuracy of the
calculation. To achieve a better accuracy in the MCTDH
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approach, one needs to significantly increase the propagation
time and the length of the grid, which makes the calculation
much more expensive compared to the ABC method. In the
spectrum of the H2 + D− collisions, one expects to observe
rovibrational resonances similar to the ones computed in
Ref. [25]. Such resonances are situated at collision energies
above 25 meV. Indeed, in the HSA spectrum shown in Fig. 3,
the peaks at energies about 0.1 and 0.15 eV correspond to
the two series of resonances predicted in [25]. At energies
below 0.1 eV, the HSA results show the oscillations that do not
correspond to any resonance. These are artifacts of the present
HSA method, which is currently unable to represent very
small tunneling probabilities below 0.1 eV. A disadvantage
of the ABC program is that it does not represent rovibrational
Feshbach resonances due to the restricted basis of coupled-
channel functions employed in the approach. Because we are
interested only in the thermally averaged rate coefficient at
temperature about 10 K, the resonance structures at higher
collision energies are irrelevant. Therefore, numerical stability
of the method at low energies is the most important factor. At
energies below 0.1 eV, the ABC program produced smooth
reaction probability as expected since there is no resonance
present in this region. Therefore, the ABC program was chosen
to perform calculations for all values of J needed to be included
in the study.

In the ABC program, the total reaction cross section is
obtained as

σP
λ′←λvj (Ei) = π

k2
i

∑
J

(2J + 1)PJ (Ei),

PJ (Ei) = 1

2j + 1

∑
v′j ′

∑
k′

∑
k

∣∣SJ,P
λ′v′j ′k′←λvjk

∣∣2
, (2)

where Ei is the collision energy; ki = √
2μEi/h̄, with μ

being the reduced mass of the D− ion and the H2 molecule;
λ and λ′ are the initial, H2 + D−, and the final, HD + H−,
rearrangements correspondingly; J and k are the total angular
momentum and its projection on a fixed axis in the molecular
reference frame; v,j and v′,j ′ are the initial and final rovibra-
tional levels of the H2 and HD molecules, respectively; and P

is the parity quantum number. In the above equation, PJ has
a meaning of the reaction probability for given values of J , λ,
λ′, v, and j .

At collision energies above 50 meV, the cross section
converges when channels with energies up to 2.3 eV above
the dissociation limit and 16 or 17 rotational states for para-
or ortho-H2 are included. A grid along hyper-radius ρ until
20 bohrs with a grid step of �ρ = 0.08 bohrs was used in
the calculation. The largest value of the quantum number k

is 4. At energies below 50 meV, convergence with respect to
the number of channels is poor because of the difficulty to
represent the very small reaction probability. To extend the
converged results obtained at energies above 50 meV into the
low-energy region, a WKB approach can be used. Although
the tunneling through the potential barrier occurs in the three-
dimensional space of internuclear distances of H2D−, for the
purpose of using a simplified WKB approach to extrapolate the
numerical results below 50 meV, we introduce a generalized
tunneling coordinate x, which could approximately be viewed
as a minimum-energy-path coordinate. Therefore, the WKB
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FIG. 4. The dashed lines and the solid lines show the reaction
probability of ortho-H2 [with P = (−1)J ] and para-H2 in their ground
rovibrational states j = 1 and 0 for the total angular momentum J =
0, 5, 10, 12, 14, and 15. The probabilities decrease with J . The dash-
dotted line shows the reaction probability of ortho-H2 with J = 1 and
P = 1. The inset shows only the para-H2 curves from the main graph
to illustrate the effect of the increasing J on the reaction probability.

formula

PJ=0(Ei) ∼ exp

{
− 2

h̄

∫ w2

w1

√
2μ[V (x) − Ei]dx

}
(3)

for the tunneling probability is used, where w1 and w2 are two
turning points along x.

In the Appendix, we show that at small Ei , the J dependence
of the probability behaves as

PJ (Ei) ≈ PJ=0(Ei)exp[−λJ (J + 1)]. (4)

The sum of reaction probabilities can then be expressed as∑
J

(2J + 1)PJ ≈ PJ=0

∑
J

(2J + 1)exp[−λJ (J + 1)]

≈ exp
[
AE2

i + BEi + C
]
, (5)

where A,B, and C are some constant obtained by fitting the
result from the ABC program at collision energies between 50
and 80 meV to the WKB formula.

III. RESULTS AND DISCUSSION

Figure 4 shows the reaction probabilities obtained by
solving the Schrödinger equation numerically for ortho-H2

and para-H2 in their ground rovibrational states j = 1 and
0, correspondingly, for different total angular momenta J as
a function of collision energy. For ortho-H2 with the total
parity P = (−1)J+1, only the k = 1 channel can contribute
to the reaction. However, the reaction probability for k =
1 is about three orders of magnitude smaller than for the
channel with P = (−1)J and k = 0 at J = 1. Because the
ground-state energy for ortho-H2 is about 15 meV higher
than for para-H2, the effective reaction barrier for ortho-H2

is lower and, therefore, its reaction probability is larger at low
collision energies, as it is evident in Fig. 4. At higher collision
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FIG. 5. The figure shows the ratio of (2J + 1)PJ /PJ=0 as as
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The inset shows the reaction probability at fixed energies of 60 meV
[red (gray) diamonds] and 80 meV (black squares) as a function of
J (J + 1). The dashed lines of the same color in the inset are the linear
fit according to Eq. (4).

energies, the difference between the ground-state energies is
insignificant and the probabilities are almost equal. But due to
the threefold degeneracy in the entrance channel for ortho-H2,
the overall reaction probability for para-H2 is somewhat larger
than for ortho-H2 at higher collision energies.

At low collision energies, only small values J of the total
angular momentum contribute to the total reaction probability
as Eq. (4) suggests. The numerical calculations confirm it:
The inset of Fig. 5 shows that at collision energies of 60 and
80 meV, the reaction probability for para-H2 indeed follows
the trend of Eq. (4). The main graph of Fig. 5 shows the
ratio (2J + 1)PJ /PJ=0 for different J . The degeneracy factor
2J + 1 was included in the ratio because it increases the
relative contribution of a particular J into the total cross
section. The figure demonstrates that J = 3 contributes the
most to the reaction, while for J > 10 the contributions to the
sum of reaction probabilities are small.

Figure 6 shows the the sum of reaction probabilities∑
(2J + 1)PJ for ortho- and para-H2 as a function of the

collision energy. The values of J = 0–15 were included in the
sum. In order to extrapolate to the low-energy region, we fit the
curves obtained numerically to Eq. (5) using the data points for
energies between 50 and 80 meV. The uncertainty associated
with the fit is within 2%, which justifies the approximation
made in the derivation of Eq. (5). Furthermore, because the
PES has a barrier of 450 meV and due to the H2 zero-point
energy of about 270 meV in the asymptotic H2 + D− region,
the effective reaction barrier is lowered to about 180 meV. As
the figure indicates, the sum of reaction probabilities becomes
significant around that energy and above.

Extrapolated to the low-energy region, the thermally aver-
aged rate coefficient is computed using Eq. (2), with the results
shown in Fig. 7. The rate coefficients for ortho- and para-H2 are
about 3.1 × 10−20 and 1.2 × 10−20 cm3/s, respectively, at tem-
peratures 10–30 K. The difference between ortho- and para-H2
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FIG. 6. The figure shows the sum of reaction probabilities∑
(2J + 1)PJ for ortho-H2 and para-H2 (solid lines) as a function

of the collision energy. The dashed lines of the same color are the fit
to the WKB formula of Eq. (5). The uncertainty is within 2%. The
inset is a zoom of the curves in the low-energy region.

values at low temperatures is explained by the difference in the
ground-state energy and, as a result, by a smaller effective
potential barrier for ortho-H2. The thermally averaged rate
coefficient for normal hydrogen is closer to ortho-H2 because
ortho-H2 has a three-times-larger statistical weight compared
to the para-H2. Therefore, our result is consistent with the
experimental upper limit obtained by Endres et al.

IV. CONCLUDING REMARKS

In the study, the thermally averaged rate coefficient for the
nuclei exchange reaction H2 + D− → HD + H− was com-
puted for temperatures up to 400 K. In the calculation, the
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FIG. 7. Thermally averaged rate coefficient for ortho-H2 and
para-H2 as a function of temperature. The circles and triangles
represent the experimental upper limits obtained from the D− signal
and from the H− signal at 10, 19, and 23 K [15].
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accurate PES [14] of the system and the ABC code for reactive
quantum scattering [28] were used. At low collision energies, a
WKB approach was used to extrapolate the results of the fully
quantum approach.

The obtained thermally averaged rate coefficient for ortho-
H2 is about three times larger than for para-H2 at temperatures
below 80 K, while at higher temperatures the coefficients
become almost equal. The present theoretical results are about
ten times smaller than the experimental upper limit [15],
suggesting that a further improvement of the sensitivity of the
signal in the experiment may lead to the observation of the
H− ions produced from this reaction. Also, the present results
suggest that an experiment performed at different temperatures
should reveal a strong temperature dependence of the tunneling
probabilities at temperatures 70–300 K.

Future experiments studying collisions of H2 with the H−
isotopes may help to eventually detect the H− ion in the
interstellar space. The ion cannot be detected directly by the
absorption or emission spectroscopy, but in collisions with H2

it may form the loosely bound H−
3 molecule. If detected, H−

3
could serve as a precursor for H−. The most likely process to
form H−

3 is the three-body collisions involving H2, H−, and a
third atom or molecule. In the interstellar space, the third body
could be another H2 molecule; in the laboratory, it could be a
buffer gas species, such as helium. Therefore, further experi-
ments studying collisions of H2 and H− are highly desirable.
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APPENDIX: EXTRAPOLATION USING A WKB
APPROACH

In this appendix, we derive Eqs. (4) and (5) and justify
the approximations made above. For collision energies much
smaller than the potential barrier, the probability can be
expanded in powers of small Ei ,

PJ=0(Ei) ≈ exp
[
aE2

i + bEi + c
]
, (A1)

with

a =
√

2μ

4h̄

∫ w2

w1

1

V (x)3/2
dx, b =

√
2μ

h̄

∫ w2

w1

1√
V (x)

dx,

c = −2
√

2μ

h̄

∫ w2

w1

√
V (x) dx,

where V (x) is the potential barrier. We assume that at x = 0,
the potential barrier reaches its peak. The quantities a,b,
and c depend on energy implicitly. To include their energy
dependence in Eq. (A1), one can again expand them in powers
of small Ei . Because the potential barrier is a very steep
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FIG. 8. The upper panel shows the reaction probability of H2(0,0)
with the total angular momentum J = 0 obtained from the fully
quantum approach and the WKB formula of Eq. (A1). The lower
panel shows the difference between the two curves in the upper panel.

function of x, increasing the collision energy Ei slightly
decreases the width of the barrier, i.e., brings the turning
points w1 and w2 closer to each other. It means that a,b, and
−c are positive quantities, decreasing slowly with Ei if the
energies are much smaller than the effective potential barrier
of about 180 meV. The matching between the WKB and fully
quantum results is performed near 50–80 meV. To evaluate the
uncertainty of the fit, the simple case of H2(0,0) with the total
angular momentum J = 0 was considered. Figure 8 shows the
fit using Eq. (A1). The lower panel of the figure demonstrates
that the difference between the fit and the fully quantum result
is about 2% or less, which justifies the validity of the WKB
extrapolation.

To account for the dependence of the probability on the
total angular momentum J , we note that the centrifugal energy
B(x)J (J + 1) at the top of the barrier at x = 0 with B(0) ∼
0.1 meV at low J (� 6) is much smaller than the potential
barrier itself. Therefore, we can simply change Ei to Ei −
B(x)J (J + 1) in Eq (A1). At Ei = 80 meV, Ei is about ten
times or more larger than the centrifugal energy. Therefore, the
larger contribution from the J dependence of the probability
can be accounted for as

PJ (Ei) ≈ PJ=0(Ei)exp[−λJ (J + 1)],

λ =
√

2μ

h̄

∫ w2

w1

B(x)√
V (x)

dx . (A2)

For large J , the above approximation is not accurate because
the centrifugal barrier is significant, but the reaction probabil-
ities are small for J > 6 (see Figs. 4 and 5). Finally, the sum
of reaction probabilities can be expressed as∑

J

(2J + 1)PJ ≈ PJ=0

∑
J

(2J + 1)exp[−λJ (J + 1)]

≈ exp
[
AE2

i + BEi + C
]
, (A3)

where we combined exponents in exp[−λJ (J + 1)] and PJ=0,
and introduced new constants A,B, and C.
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