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We present a simple two-dimensional model of the indirect dissociative recombination process. The model
has one electronic and one nuclear degree of freedom and it can be solved to high precision, without making
any physically motivated approximations, by employing the exterior complex scaling method together with
the finite-elements method and discrete variable representation. The approach is applied to solve a model for
dissociative recombination of H2

+ in the singlet ungerade channels, and the results serve as a benchmark to
test validity of several physical approximations commonly used in the computational modeling of dissociative
recombination for real molecular targets. The second, approximate, set of calculations employs a combination
of multichannel quantum defect theory and frame transformation into a basis of Siegert pseudostates. The cross
sections computed with the two methods are compared in detail for collision energies from 0 to 2 eV.
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I. INTRODUCTION

Dissociative recombination, one of the most fundamental
electron-induced chemical rearrangement processes, is impor-
tant for understanding the chemical dynamics of interstellar
clouds, as well as the chain of reactive processes in low-
temperature plasmas [1].

The frame transformation (FT) technique [2] is a well-
established procedure to model rovibrationally inelastic col-
lisions of electrons with neutral molecules and cations. More-
over, there has been a number of studies that successfully
employed this technique for the dissociative recombination
(DR) process

e− + AB+ → A + B. (1)

The molecular cations in these studies were H2
+ [3], H3

+

[4], LiH+ [5,6], NO2
+ [7], LiHe+ [8], LiH2

+ [9], and HeH+

[10,11]. All of these calculations, except the LiH2
+ and

HeH+ cases, used Siegert pseudostates [12,13] for the nuclear
vibrational basis and they all exploited the following two-step
procedure:

(1) The fixed-nuclei S matrix is frame transformed into
a subset of nuclear Siegert pseudostates φj (R). This sub-
set contains real-valued bound states and complex-valued
outgoing-wave states that discretize the nuclear continuum.
Stability of the results is typically tested for various sizes
of the nuclear box and number of the continuum states. The
frame transformation formula comes as a modification of the
well-known FT expression [2] with addition of a surface term
as

Sjj ′ =
∫ a

0
dRφj (R)S(R)φj ′(R) + i

φj (a)S(a)φj ′(a)

Kj + Kj ′
, (2)
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where S(R) represent a body-frame fixed-nuclei S-matrix and
the eigenmomenta Kj correspond to Siegert eigenenergies
Ej = K2

j /2M . This formula appears in the work of Hamilton
and Greene [3] in 2002 and in Hamilton’s Ph.D. thesis [14].
While it has a correct limit for small quantum defects (giving
orthogonality of the Siegert pseudostates), its derivation has
never been explained nor published. It has been called an ad
hoc formula in Ref. [10] where its validity was questioned.
Nonetheless, expression (2) is one of the cornerstones for most
of the studies listed above.

(2) After the elimination of the closed electronic channels
the DR rate is computed in a form of the missing electronic
flux. The physical S matrix Sphys appears to be subunitary
in the nuclear basis of the bound and outgoing-wave Siegert
pseudostates. This means that the electronic flux is being lost
during the collision. Hamilton and Greene [3] realized that
the only way to lose the electronic flux is through electronic
recombination and following dissociation.

All the studies listed above used this physical reasoning and
the DR cross section for the initial state labeled with j ′ was
calculated as

σj ′ = π

2(E − εj ′)

[
1 −

∑
j

S
phys
jj ′ (E)Sphys †

j ′j (E)

]
, (3)

where E is the total energy and εj ′ is the initial channel energy.
While this two-step computational strategy produced the

state-of-the-art theoretical DR cross-section data, it is clear
that it contains two major theoretical leaps that require phys-
ical explanation and/or well-controlled numerical evidence.
Therefore, the goal of the present study is to provide firmer
theoretical grounds for the expression (2) and to convince
the reader that the ideas behind the second step are indeed
correct. For the latter we choose to provide numerical evidence
by comparing the results with benchmark data which are
obtained with a numerically solvable model of H2

+ in two
dimensions, with one electronic and one nuclear coordinate.
The model is similar to the two-dimensional (2D) model of
resonant electron-molecule collisions, which was introduced
in Ref. [15] and used to test the local and nonlocal theory of
nuclear dynamics of these collisions [15,16]. The numerical
technique used to solve this model is based on the exterior
complex scaling approach combined with the finite-elements
method and discrete variable representation [17,18] and the
same numerical approach is also used in the present study with
limitations described below.

Adaptation of this 2D model of vibrational excitation and
dissociative electron attachment for dissociative recombina-
tion of H2

+ will be described in Sec. II. In Sec. III we
demonstrate how the FT formula (2) can be derived more
rigorously and we also describe the multichannel quantum
defect (MQDT) procedure applied to the present model system.
The DR cross sections are compared in detail in Sec. IV for the
collision energy range 0–2 eV. In Sec. V we comment on the
differences between the two approaches and we also discuss
possible improvement and outlook for the FT procedure.
Finally, the mathematical detail of the expansion in Siegert
basis pseudostates in our derivation of Eq. (2) are given in the
Appendix.

If not stated otherwise, all relations and values in tables
are in atomic units, in which h̄ = me = e = 4πε0 = 1. In-
ternuclear distances are given in units of the bohr radius
5.291 772 × 10−11 m, and cross sections in units of bohr2 =
2.800 285 × 10−21 m2.

II. NUMERICALLY SOLVABLE H2
+-LIKE MODEL

A. Theoretical description

Our goal is to abstain from all the physical approximations
(e.g., Born-Oppenheimer approximation) and solve a two-
dimensional problem in which the nuclei are represented by
the first dimension R and the electron is represented by the
second dimension r . The model Hamiltonian employed in the
present paper is

H (R,r) = H0(R,r) + V (R,r)

= HN (R) + He(r) + V (R,r), (4)

with

HN = − 1

2M

∂2

∂R2
+ V0(R), (5)

He = −1

2

∂2

∂r2
− 1

r
+ l(l + 1)

2r2
, (6)

where V0(R) is the ground-state potential curve of the 2�+
g

state of the H2
+ ion, approximated by the Morse potential in

the present study

V0(R) = D0[e−2α0(R−Re) − 2 e−α0(R−Re)], (7)

with D0 = 0.1027 hartree, α0 = 0.69 bohr−1, Re = 2.0 bohrs.
The symbol M = 918.076 a.u. denotes the reduced mass of
H2

+, and l is the angular momentum of the incoming electron.
The interaction V (R,r) coupling the electronic and nuclear
degrees of freedom is taken from Edward Hamilton’s Ph.D.
thesis [14]

V (R,r) = −α1

(
1 − tanh

α2 − R − α3R
4

7

)

× tanh4

(
R

α4

)
e−r2/3

r
, (8)

where α1 = 1.6435, α2 = 6.2, α3 = 0.0125, and α4 = 1.15.
The form of the potential in Eq. (8) taken together with the
potentials in Eqs. (5) and (6) is designed to mimic the 1�+

u

Rydberg states of H2 as will be described in detail below.
The total wave function ψ+

E (R,r) satisfying the Schrödinger
equation

(E − H )ψ+
E (R,r) = 0 (9)

can be split into the initial and scattered parts as

ψ+
E (R,r) = ψin(R,r) + ψsc(R,r), (10)

(E − H0)ψin(R,r) = 0. (11)

The scattered part is then a solution of the so-called driven
Schrödinger equation

(E − H )ψsc(R,r) = V (R,r)ψin(R,r) (12)
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with the initial state

ψin(R,r) = χj ′(R)�kj ′ ,l(r), (13)

constructed from a bound nuclear state χj ′ (R) and a free
incoming electronic state defined by the momentum kj ′ . These
states are eigenstates of the following Hamiltonians:

HN (R)χj ′(R) = εj ′χj ′(R), (14)

He(r)�kj ′ ,l(r) = k2
j ′

2
�kj ′ ,l(r). (15)

The function �kj ′ ,l is thus an energy-normalized spherical
Coulomb function and obviously E = εj ′ + k2

j ′/2.
The asymptotic boundary condition for the scattered wave

gives

ψsc(R,r) −−−→
R→∞

√
2

πkj ′

∑
n

f DR
j ′→n ρn(r) eiKnR, (16)

where f DR
j ′→n is the DR-scattering amplitude from the initial

vibrational state j ′ to the final Rydberg state ρn. The Rydberg
state function ρn(r) of the electron satisfies

[He + V∞(r)]ρn(r) = Enρn(r), (17)

where V∞(r) = limR→∞ V (R,r) and again E = En + K2
n

2M
.

In case of dissociative recombination the outgoing states
are a product of an unperturbed nuclear continuum state with
momentum Kn with zero angular momentum and a bound nth
Rydberg state of the electron ρn(r) with energy En

ψout,n(R,r) =
√

2M

πKn

sin(KnR)ρn(r). (18)

These states are energy-normalized solutions to the
Schrödinger equation with the DR channel Hamiltonian

HDR(R,r) = −1

2

∂2

∂r2
− 1

2M

∂2

∂R2
− 1

r
+ l(l + 1)

2r2
+ V∞(r),

(19)

which is the limit of the original full Hamiltonian (4) for large
internuclear distances R.

The T matrix for the DR channel is then expressed as

T DR
j ′→n(E) = 〈ψout,n|VDR|ψ+

E 〉, (20)

with the channel potential

VDR(R,r) = V (R,r) − V∞(r) + V0(R). (21)

Finally, the resulting DR cross section for the initial vibrational
state j ′ and the final Rydberg state n is given by

σ DR
j ′→n(E) = 4π3

k2
j ′

∣∣T DR
j ′→n(E)

∣∣2
. (22)

B. Relation to the DR of H2
+

The dissociative recombination of H2
+ cations is initiated

through several noninteracting (or weakly interacting) path-
ways [19,20]. The pathways can be divided into singlet and
triplet states. It has been shown [21] that the contribution
of the triplets is generally smaller than that of the singlets
by more than one order of magnitude. The next point to
consider is the fact that the gerade and ungerade symmetries
are qualitatively different. The singlet gerade symmetry 1�g

has a direct pathway associated with the lowest doubly excited
state (2pσu)2, which is accessible already at zero collision
energy. There have been numerous studies [22–26] describing
quantitatively how this resonance perturbs the Rydberg states
(1sσg nsσg) and (1sσg ndσg) leading to the double-minimum
structures of 2 1�+

g (EF ), 3 1�+
g (GK), and 4 1�+

g (HH̄ )
states.

While the direct pathway in the 1�g symmetry gives the
correct order of magnitude for the cross section, it cannot
describe by itself the oscillations seen in experimental cross-
section data below 1 eV collision energy [27–29]. These
oscillations, created by primarily destructive interference of
the direct and indirect mechanisms, underscore the importance
of the indirect process mediated by the higher Rydberg states
attached to the excited rovibrational states of the system.

The situation is somewhat different for the ungerade 1�u

states because the lowest doubly promoted (4f σ )2 state pro-
viding a direct mechanism is placed well outside of the Franck-
Condon region accessible at low collision energies [26,30,31].
Therefore, dissociative recombination in 1�u channels is dom-
inated by the indirect process. However, the importance of the
1�u pathway in the low-energy DR, to our knowledge, has not
been discussed quantitatively in the literature. Hence, the aim
of the present study is not only to provide numerical evidence
for the validity and accuracy of the frame transformation
technique but also to give a quantitative estimate of the strength
of the 1�u channels in the H2

+ dissociative recombination.
There are only three elements of the 2D model that need to

be set up in order to tailor it to the H2
+ dissociative recombi-

nation in 1�u symmetry. The cation potential energy curve (7)
and the partial wave l = 1 in the electronic Hamiltonian (6) are
the straightforward choices. The last quantity, the electronic
potential V (R,r) defined in Eq. (8), calls for more detailed
explanation. It has been chosen to approximately describe the
Born-Oppenheimer 1�u Rydberg states. These (1sσg npσ )
states of the united atom dissociate with the principal quantum
numbers lowered by one unit, into n − 1 ( often referred to as
the Mulliken orbital promotion) [30]. Hence, the effective po-
tential V (R,r) − 1/r + 1/r2, shown in Fig. 1, becomes more
attractive for larger R values. The attraction flattens out once
the internuclear distanceR reaches values above six Bohr radii.

In order to judge the realistic nature of the model one
can compare the resulting Born-Oppenheimer potential curves
shown in Fig. 2 with the 1�u curves of the H2 molecule.
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FIG. 1. The effective potentials V (R,r) − 1/r + 1/r2 are shown
as functions of the electronic distance r for seven internuclear
distances R = 0,1,2,3,4,5,6.

Equivalently, one can compare the negative-energy quantum
defects μ(En,R) extracted from the discrete set of Born-
Oppenheimer bound-state energies En(R) by use of the Ry-
dberg formula

En = V0(R) − 1

2[n − μ(En,R)]2 ,n > 1. (23)

The resulting R dependence of the quantum defect μ(E,R) is
shown in Fig. 3 for three selected energies E. The positive-
energy quantum defect was obtained with a one-dimensional
R-matrix method applied to the electronic part of the Born-
Oppenheimer Hamiltonian He(R) + V0(R) + V (R,r) which is
parametrically dependent on R. Comparison of the quantum
defects in Fig. 3 suggests that the present Born-Oppenheimer
potential curves shown in Fig. 2 represent reasonably well the
(npσu) states of H2 for n > 1. For n = 1 the model potential
gives an unphysical p-wave state with the asymptotic energy
of −37.5 eV (n = 1 curve in Fig. 2). It will become clear
below that the DR probability into this unphysical state can be
neglected, because it is strongly Franck-Condon suppressed.
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FIG. 2. Born-Oppenheimer potential energy curves of the H2
+

model. The curve of H + H+ (the potential V0(R) in the 2D model) is
shown by a red line, while the neutral excited states of H + H(n) are
displayed with the black lines. Blue lines display vibrational energy
levels of the cation.
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FIG. 3. Quantum defect μ(E,R) of the present model shown for
three different energies, E = −2 eV, 0 eV, +2eV. The black circles
are zero-energy quantum defects of 1�u states of H2 computed by
Jungen and Atabek (1977) [30]. Crosses represent quantum defects
for 5pσu state of H2 computed by the variational R-matrix method
[32].

C. Numerical implementation

The actual solution of Eq. (12) was obtained by using
a combination of the finite-element method (FEM), the dis-
crete variable representation (DVR), and the exterior complex
scaling (ECS) method [17]. The FEM-DVR method serves
to discretize the continuous variables (electronic and nuclear
coordinates) by dividing the assumed region into several
finite elements and then creating a basis function set on each
element (DVR). Specifically, the DVR basis is made up of
Lagrange interpolation polynomials through Gauss-Lobatto
quadrature points on each finite element (additionally altered
by certain boundary conditions). This basis can then be used
to approximate any function (with some degree of accuracy)
on the aforementioned assumed region.

Last, the exterior complex scaling (ECS) is a method of
bending a coordinate (let us say R) into the complex plane at
some point R0. This point should be far beyond the interaction
region. So the new coordinate R′ satisfies

R′(R) =
{

R, R < R0,

R0 + (R − R0)eiθ , R � R0,
(24)

where θ is a bending angle. The main advantage of the ECS
approach is that it unifies the asymptotic boundary conditions
for bound and outgoing continuum states. In the present two-
dimensional model we employ the ECS method for both the
electronic r and nuclear R coordinates.

The final values of parameters of the FEM-DVR grids for the
e− + H2

+ DR model are presented in Table I. They were settled
on after extensive tests of convergence. Noticeably large end
points of complex grids are needed to obtain converged results
near the Rydberg thresholds. During the tests procedures we
focused mainly on the energy regions where the new DR
channels open. Problems with convergence near vibrational
excitation thresholds are discussed below. We should note that
the bending angle θ for the nuclear coordinate R in the present
model must be less than π/8 and for the electronic coordinate
r less than π/4 to avoid divergence of V (R,r) for large R and
r , respectively. The spherical Coulomb functions are evaluated
using COULCC routines [33].

022704-4



DISSOCIATIVE RECOMBINATION BY FRAME … PHYSICAL REVIEW A 97, 022704 (2018)

TABLE I. The final values of parameters of the FEM-DVR grids used in calculations. Both grids start at 0.0. The number of elements
under each end point is the number of finite elements on the interval between the previous and the respective end point. For example, the first
real-part interval [0.0,1.0] is split into eight elements. All the listed “End points” values are in atomic units. The value nq is the Gauss-Lobatto
quadrature order and θ is the ECS bending angle.

Electronic coordinate parametrization, nq = 6, θ = 20◦

Real part
End points 1.0 4.0 20.0 100.0 1300.0 —
No. of elements 8 12 8 16 120 —
Complex scaled part
End points 1350.0 1400.0 1500.0 1700.0 2000.0 3000.0 100000.0
No. of elements 5 2 1 1 1 1 5

Nuclear coordinate parametrization, nq = 6, θ = 20◦

Real part
End points 1.0 3.0 4.0 12.0 —
No. of elements 12 24 12 120 —
Complex scaled part
End points 12.5 14.0 18.0 58.0 200.0 1000.0 10000.0
No. of elements 8 6 2 4 3 3 3

The strength of the present approach lies in the fact that
it makes no physical approximations. The only approxima-
tions are of a numerical nature (e.g., discretizing continuous
variables). There is, however, one drawback (aside from the
calculations being time-consuming) stemming from the chosen
numerical approach. Ideally, when plotting the energy depen-
dence of the cross section σ DR

j ′→n(E), there would be an infinite
number of closed-channel resonances accumulating just below
each vibrational threshold corresponding to an infinite number
of Rydberg states. Any numerical implementation, however,
works with a finite range of the electronic grid, giving only a
finite number of these Rydberg states. Therefore, there will
always exist a particular energy window, just below every
vibrational excitation threshold, where the computed cross
sections are incorrect and not converged. The cross section
in such a window is dominated by vibrational Feshbach
resonances describing a neutral state in which the molecule
is vibrationally excited (to a vibrational state corresponding
to the threshold) and the colliding electron becomes bound
in a high-n Rydberg state. One can shrink these regions by
enhancing the maximum electronic grid distance, but it is
impossible to remove these energy windows completely. These
shortcomings are demonstrated as light pink energy windows
in Fig. 4 displaying the computed DR cross section as a
function of the collision energy up to 2 eV. The number of
Rydberg states which are well represented on the final grid
given in Table I is about 20. Figures 2 and 4 show that at
zero collision energy, channels with n = 1,2 are open. In the
examined collision energy range 0–2 eV another two Rydberg
channels, n = 3 and n = 4, become open and they are labeled
by DR3 and DR4, respectively.

III. FRAME TRANSFORMATION

Having computed the DR cross sections (Fig. 4) of the
model Hamiltonian (4) with no physical approximation as-
sumed, we can now proceed to an approximate approach
employing the frame transformation (FT). We start with

the two-dimensional Schrödinger equation with the model
Hamiltonian (4)[

−1

2

∂2

∂r2
+ l(l+1)

2r2
−1

r
−E+HN (R)+V (R,r)

]
h(R,r)=0.

(25)
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FIG. 4. The dissociative recombination cross sections of the first
four Rydberg channels. The light pink regions show where the
calculated values are not converged (see the text). DRn labels the DR
cross section σ DR

j ′→n
(E) for nth Rydberg channel and initial vibrational

state j ′ = 0.
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Following the standard FT approach [2], this equation can
be solved inside a sphere r � r0 that confines the electronic
coordinate near the molecule. Within such confinement the in-
ternuclear distance R is a good quantum number and the Born-
Oppenheimer approximation holds. Since we assume that
the interaction is characterized by a pure Coulomb potential
outside the sphere [V (R,r) = 0 for r � r0], the Schrödinger
equation (25) becomes separable (in the electronic and nuclear
coordinates) for r � r0. Consequently, the j ′th independent
solution of (25) can be written as a linear combination of the
two separable solutions χj (R)f −

j (r), χj (R)f +
j (r) as

hj ′(R,r)
r�r0−−→

∑
j

χj (R)[f −
j (r)δjj ′ − f +

j (r)Sjj ′], (26)

where the asymptotic wave functions f −
j (r) and f +

j (r) are
incoming- and outgoing-wave Coulomb functions, respec-
tively. The nuclear functions χj (R) are the eigenstates of the
nuclear Hamiltonian HN , and the matrix elements Sjj ′ are
results of the standard frame-transformation integral [2]

Sjj ′ =
∫

dRχ∗
j (R)e2πiμ(R)χj ′(R), (27)

where μ(R) is quantum defect and χj (R) satisfy simple
orthonormality relations∫

dRχ∗
j (R)χj ′(R) = δjj ′ . (28)

A. Frame transformation into Siegert pseudostates

In Appendix we demonstrate that it is possible to solve the
Schrödinger equation (25) via expansion of its j ′th indepen-
dent solution into a presumably complete subset of N Siegert
pseudostates φj (R),

hj ′ (R,r) =
N∑

j=1

φj (R)gjj ′(r). (29)

This expansion allows us to solve the two-dimensional equa-
tion (25) in the form of a coupled set of N one-dimensional
equations (in the coordinate r)[

−1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
− (E − εj )

]
gjj ′(r)

+
N∑

m=1

Vjm(r)gmj ′(r) = 0, (30)

where the exact form of the coupling potential Vjm(R) can be
found in the Appendix. Note that the channel thresholds εj

and the channel-coupling elements Vjm are complex for the
nuclear basis formed from Siegert pseudostates.

Our next step concerns the frame transformation of the S

matrix into the basis of the Siegert pseudostates. The behavior
of the interaction coupling matrix Vjm(r) at short distances
makes the numerical solution of (30) very challenging. The
nuclear asymptotic channel functions φj (R) become strongly
coupled when the scattered electronic coordinate r approaches
the molecular target, say, for r � r0. In this regime the Born-
Oppenheimer quantization defined by the fixed R gives a better

description than the nuclear channel functions φj (R) for real
molecular applications, as mentioned above.

The remaining derivation follows the concept for the
energy-dependent frame transformation of Gao and Greene
[34]. The j ′th independent Born-Oppenheimer solution
hj ′ (R,r) of the full Hamiltonian (4) inside the sphere can be
written at its boundary r = r0 as a product of the electronic
solution at fixed R and the nuclear wave function φj ′(R):

hj ′(R,r0) = φj ′(R)[f −
j ′ (r0) − f +

j ′ (r0)e2πiμ(Ej ′ ,R)] , (31)

where f −
j ′ (r) and f +

j ′ (r) are the incoming- and outgoing-wave
Coulomb functions evaluated with the body-frame momentum
kj ′ = √

2Ej ′ = √
2(E − εj ′ ).

In the outer region, for r � r0, the solution of (25) is
expressed in terms of two separable solutions φj (R)f −

j (r)
and φj (R)f +

j (r). Since there is no special guide to match the
two independent solutions of the inner and outer regions (each
uses a different quantization scheme), one needs to construct
a general linear combination of the outer solutions. Therefore,
the matching equation has the following form:

φj ′(R)[f −
j ′ (r0) − f +

j ′ (r0)e2πiμ(Ej ′ ,R)]

=
∑
m

φm(R)[f −
m (r0)Amj ′ − f +

m (r0)Bmj ′] (32)

↓ Fj [ . ]

f −
j ′ (r0)δjj ′ − f +

j ′ (r0)Sjj ′ = f −
j (r0)Ajj ′ − f +

j (r0)Bjj ′ ,

(33)

where

Sjj ′ =
∫ a

0
dRφj (R)e2πiμ(Ej ′ ,R)φj ′(R)

+ iφj (a)

[(
Kj − i

d

dR

)−1

e2πiμ(Ej ′ ,R)φj ′ (R)

]
R=a

.

(34)

The form of the functional Fj [ . ], acting on the variable R

on both sides of Eq. (32), is presented in the Appendix. The
coefficients Ajj ′ and Bjj ′ can be obtained by using the facts
that the Wronskians of f ±

j are independent of r ,

Bjj ′ = −1

[f +
j ,f −

j ]
{[f −

j ′ ,f
−
j ]δjj ′ − [f +

j ′ ,f
−
j ]Sjj ′ }

energy−independent f +,f −
−−−−−−−−−−−−−−−→ Sjj ′

Ajj ′ = 1

[f −
j ,f +

j ]
{[f −

j ′ ,f
+
j ]δjj ′ − [f +

j ′ ,f
+
j ]Sjj ′ }

energy−independent f +,f −
−−−−−−−−−−−−−−−→ δjj ′ , (35)

where [f,g] = fg′ − gf ′ denotes the Wronskian of two func-
tions.

Therefore, if we neglect the energy dependence of the
Coulomb functions at the point r0, i.e., f ±

j = f ±
j ′ , then the

laboratory-frame j ′th independent solution of (25) can be
written, for r � r0, in terms of the body-frame quantum defect
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μ(Ej ′ ,R) as

hj ′(R,r) =
∑

j

φj (R)[f −
j (r)δjj ′ − f +

j (r)Sjj ′]. (36)

Finally, in the nuclear asymptotic region, where the quan-
tum defect μ(Ej ′ ,R) converges to an R-independent atomic
quantum defect, Eq. (34) can be simplified to

Sjj ′ =
∫ a

0
dRφj (R)e2πiμ(Ej ′ ,R)φj ′(R)

+ i
φj (a)e2πiμ(Ej ′ ,a)φj ′(a)

Kj + Kj ′
, (37)

which is the ad hoc formula utilized in some of the previous
DR studies [3–8,11]. Therefore, it is clear that the formula (37)
generates mathematically correct coefficients in expansion
(36) for r > r0.

In order to carry out the vibrational frame transformation
(37) one needs to know the short-range quantum defect μ(E,R)
obtained from the fixed-nuclei version of the Schrödinger
equation (25). Apart from any regime of narrow resonances, the
quantum defect μ(E,R) is usually a weak function of energy,
due to the presence of the strong Coulomb field. This weak
energy dependence of μ(E,R) was already demonstrated in
Fig. 3. Consequently, the energy dependence of the quantum
defect μ is neglected in the present study and all the presented
results are derived from an energy-independent frame trans-
formation of the zero-energy quantum defect μ(0,R).

The energy-independent FT presented here consists of two
important steps. In the first step the energy dependence of the
asymptotic Coulomb functions f ±

j is neglected in Eq. (35).
In the second step the energy dependence of the phase shift
or quantum defect μ(E,R) shown in Fig. 3 is neglected. It
is important to note that DR is dominated by the quantum
defect values from the Franck-Condon region of the initial
vibrational state. In case of the initial ground vibrational
state, centered around 2 bohrs, we observe a very weak
energy dependence of μ(E,R). However, for higher initial
vibrational states that reach out to larger values of R, Fig. 3
suggests that the energy dependence of μ may become more
important.

A final note is made concerning the third step that should
be considered for the energy-independent FT. Formally, the
left side of Eq. (32) should be multiplied by a normalization
function N (Ej ′ ,R) [34,35] because the Born-Oppenheimer
solution inside the electronic sphere r � r0 must be normal-
ized independently of R. However, the normalization factor
N (Ej ′ ,R) explodes to infinity in the unphysical limit in which
the energy dependence of f ±

j and μ(E,R) are neglected
simultaneously, as in the present case. Thus no simple limit for
the energy-independent FT exists here. Fortunately, it has been
shown previously [35] that in this case the normalization factor
N will drop out if the vibrational basis is complete. Therefore,
since the present derivation was focused on the introduction
of the Siegert pseudostates into the FT theory, we decided to
simplify the equations by omitting the normalization factor
from the beginning.

B. Cross section

It is important to emphasize here that the complex coeffi-
cients (34) in Eq. (36) are a result of mathematical operations
and calling them S-matrix elements in the physical sense may
be incorrect. Although the asymptotic expression (36) for
hj ′ (R,r) takes a familiar form, the nuclear states φj (R) are not
orthogonal in the conventional sense (28). As a consequence,
the frame transformed S-matrix elements Sjj ′ do not preserve
the original eigenphases—one of the properties that was
criticized in Ref. [10]. We believe, that although Sjj ′ probably
should not be called S-matrix elements, the asymptotic form
(36) is sufficient to determine the probability flux distribution
in different nuclear channels.

As a first step, however, one needs to eliminate the ex-
ponentially growing components of the hj ′(R,r) function in
(36). This is done by the standard MQDT technique called
“elimination of the closed channels” [36,37]. This procedure
brings a strong energy dependence into the physical S matrix
via (apart from a phase factor)

Sphys(E) = Soo − Soc[Scc − e−2iβ(E)]−1Sco, (38)

where β(E) is a diagonal matrix of effective Rydberg quantum
numbers with respect to the closed-channel thresholds εj ,

β(E)jj ′ = πδjj ′√
2(εj − E)

, (39)

and Soo, Sco, Soc, Scc are at present the energy independent
submatrices of the original energy-independent S matrix,

S =
(

Soo Soc

Sco Scc

)
, (40)

according to which channels are open and closed at the given
energy. The r → ∞ asymptote of the total wave function in
the electronic open-channel space, with an exponential decay
in the closed-channel space, can be written as (apart from a
phase factor)

h̄j ′(R,r)
r→∞−−−→ 1

2πkj ′

⎡
⎣φj ′(R)e−ikj ′ r −

No∑
j=1

φj (R)eikj rS
phys
jj ′

+
N∑

j=No+1

φj (R)e−kj rZjj ′

⎤
⎦, (41)

where No is the number of open channels. The closed-channel
coefficients Zjj ′ can be found in the literature [37].

Due to the complex nature of the Siegert pseudostates the
physical S matrix Sphys becomes subunitary. The subunitarity
is predominantly a result of the channel elimination procedure
that combines the channel solutions in such a way that only
exponentially decreasing parts of the electronic wave function
survive in the closed nuclear channels represented by the
outgoing Siegert pseudostates with a finite lifetime. While the
third term on the right-hand side of (41) clearly represents
a portion of the total wave function in which the electron
is described by a combination of the exponentially decaying
functions with the nuclear components having the outgoing-
wave boundary conditions, at present we are not able to recast
this term into Eq. (16) in which the electronic energies are
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discrete (atomic Rydberg states) and the nuclear energies are
continuous (nuclear kinetic energy release).

Hamilton and Greene [3] postulated that all of the proba-
bility flux lost from the open channels can be associated with
a trapped Rydberg electron in closed channels that represent
dissociative states. Thus the subunitarity of Sphys is caused by
missing dissociation probability following electron impact in
the incident channel j ′,

σj ′(E) = π

2(E − εj ′)

⎡
⎣1 −

∑
j

S
phys
jj ′ (E)Sphys †

j ′j (E)

⎤
⎦. (42)

This cross section does not differentiate between outgoing
Rydberg channels and thus it represents the DR cross section
summed over all the final Rydberg channels (electronic atomic
states).

The goal of the following section is to provide a numerical
evidence for the above described physically sound, yet intu-
itive, approach to compute dissociative recombination cross
sections.

IV. RESULTS AND DISCUSSION

To test the theory presented in the Sec. III we compare
the frame transformation (FT) results for the two-dimensional
model introduced in Sec. II with exact ones obtained from
a direct solution of this model. The results are compared
for electron collision energies in the interval from 0 to 2
eV. This energy range spans over nine vibrational thresholds
and contains two Rydberg thresholds for n = 3 and n = 4
states (see Fig. 2) of the neutral H(n) atom after the model
dissociation

H2
+(2�+

g ) + e−(l = 1,m = 0) → H(1s) + H(np). (43)

At first glance at Fig. 5, there is a good correspondence
between the FT calculated total DR cross section and the
exact results for the 2D model. As described in Sec. II the
pink vertical bars highlight the areas below the vibrational
thresholds where the FEM-DVR-ECS results for the 2D model
are not converged because the electron is trapped in high-n
Rydberg states which do not fit into the chosen electronic grid.
Thus to assess validity of the FT approach one should compare
the results only outside of these pink rectangles where the data
are converged with respect to all the parameters present in the
numerical implementations, i.e., with respect to nuclear and
electronic grid sizes and corresponding grid densities. In case
of the FT method with Siegert pseudostates, these parameters
contain the nuclear grid size a and the number of Siegert
pseudostates included in the frame transformation, i.e., the size
of the S matrix (37).

For a more detailed analysis we present several zoomed
graphs. In Figs. 6 and 7 we show that agreement between the
FT and exact results is very good. The FT approach together
with the hypothesis centered around Eq. (42) seems to count
the DR flux correctly and most of the resonant features are
accounted for.

The comparison becomes worse for the collision energies
just under the opening of the first (n = 3) Rydberg threshold.
The corresponding energy window between the fourth and
fifth vibrational thresholds is displayed in Fig. 8. On opening
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FIG. 5. Comparison of the calculated cross sections for the
collision energies from 0 to 2 eV. The total DR cross section obtained
with the frame transformation approach is displayed with the green
(light gray) curve. The exact results, shown by the blue (dark gray)
line, represent a sum of the DR cross sections over the open electronic
(Rydberg) channels computed with the 2D model. Note that the exact
results are not fully converged in the pink areas right below vibrational
excitation thresholds, see Sec. II C for explanation.

the n = 3 Rydberg threshold, the exact DR cross section rises
sharply and the highest open Rydberg channel becomes domi-
nant. The corresponding FT cross section does not distinguish
among different electronic channels as it accounts only for a
summed probability via the formula (42). Although the FT data
do not raise so sharply above the n = 3 threshold, they increase
for slightly higher energies, giving good agreement with the
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FIG. 6. Comparison of the calculated cross sections for the
collision energies up to the first vibrational threshold. The colors used
are the same as in Fig. 5.
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FIG. 7. Comparison of the calculated cross sections for the
collision energies between the first and second vibrational thresholds.
The colors used are the same as in Fig. 5.

exact results again. The corresponding comparison continues
in Fig. 9.

Similar behavior is also observed in the vicinity of the n = 4
threshold, displayed in Fig. 10. Below this threshold a visible
disagreement between the FT and exact results can be seen,
while above the threshold the FT approach works very well
again.

In order to assess the origin of the small discrepancies be-
tween the employed method we carried a simple computational
experiment in which we recalculated the cross section in the
first energy window (0–200 meV) with a quantum defect μ(R)
that was artificially increased by 2%. The size and sign of
the increase corresponds to typical energy dependence of the
quantum defect we observe in the present interval of collision
energies as can be seen in Fig. 3. Results of this computational
experiment are shown in Fig. 11. Comparison with the exact
results shows that the cross section for the artificially increased
quantum defect becomes closer to the exact values. Even the
double resonant structure at 140 meV (blue line in Fig. 11)
is reconstructed by this computational experiment. It is clear
that the small deviations of the FT approach from the exact
results can be easily explained by the energy dependence of
the quantum defect, an effect not included in the present study.
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FIG. 8. Comparison of the calculated cross sections for the
collision energies between the fourth and fifth vibrational thresholds.
The colors used are the same as in Fig. 5.
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FIG. 9. Comparison of the calculated cross sections for the
collision energies between the fifth and sixth vibrational thresholds.
The colors used are the same as in Fig. 5.

Furthermore, the following Fig. 12 demonstrates that even
larger discrepancies between two approaches, seen under the
n = 3 Rydberg threshold, can also be explained by energy
dependence of the quantum defect. In Fig. 12 we show results
of a similar experiment in which we again artificially increase
the quantum defect to simulate its energy dependence. In this
energy range, under the opening of the n = 3 channel, the DR
cross section appears to be very sensitive to accuracy of the
quantum defect. The artificial results are much closer to the
exact values and even the DR3 threshold behavior of the FT
approach becomes almost exact.

V. CONCLUSIONS

The aim of the present study is twofold. First, it is to present
modification of the numerically solvable two-dimensional
model of electron-molecule collisions for application to disso-
ciative recombination problems. Second, it attempts to justify
two theoretical steps in the frame transformation approach that
uses a basis of Siegert pseudostates.

The 2D model simulates collisions of electrons with H2
+

ions leading to the computationally most challenging channel,
the dissociative recombination. Apart from narrow energy
windows right below each vibrational threshold, we were able
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FIG. 10. Comparison of the calculated cross sections for the col-
lision energies between the eighths and ninth vibrational thresholds.
The colors used are the same as in Fig. 5.
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FIG. 11. Comparison of the calculated cross sections for the
collision energies from 0 to 200 meV. The total DR cross section
obtained with the FT approach is shown with the green curve. The
corresponding exact results are displayed by the blue curve. The cross
section for artificially increased (by 2%) quantum defect is shown by
the dotted black curve.

to obtain accurate and converged results in the collision energy
range from 0 to 2 eV. The DR process in these narrow energy
windows is governed by high-n Rydberg states that do not fit
into our limited electronic grid size. Therefore, while in theory
these unconverged energy windows can be made arbitrarily
small (in expense of CPU time), they cannot be completely
removed. Nonetheless, the 2D model presented in this work
has allowed a DR study that does not take into account any
kind of approximation in the electron-nuclear interactions. As
such, it serves here (and may serve in the future) as a useful
tool for benchmarking various frame transformation methods
developed in the past or possible approaches designed in the
future.

Frame transformation in combination with Siegert pseu-
dostates was previously applied to a number of molecular
targets (for the detailed list see the Sec. I). While some
of the theory’s footings were intuitive, the studies provided
high-quality DR cross sections that reproduced experimental
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FIG. 12. Comparison of the calculated cross sections for the
collision energies below the n = 3 Rydberg threshold. The total DR
cross section obtained with the FT approach is shown with the green
(light gray) curve. The corresponding exact results are displayed by
the blue (dark gray) curve. The cross section for artificially increased
(by 1.7%) quantum defect is shown by the dotted black curve.

data well. With respect to the frame transformation theory we
have demonstrated that under reasonable physical assumptions
the frame-transformed S matrix (2) provides coefficients that
combine nuclear channels represented by the complex Siegert
pseudostates with S-matrix asymptotes in the electronic coor-
dinate. Such channels are not orthogonal in the conventional
sense and therefore the resulting DR probabilities were judged
by a numerical comparison against the exact results of the 2D
model.

The dissociative recombination cross sections resulting
from the two approaches are found to be in very good
agreement for all the collision energies from 0 to 2 eV,
except two energy windows that are placed just below the
Rydberg thresholds defining the openings of channels with
higher electronic state n of the final hydrogen atom. Via a
simple computational experiment we have shown that the
larger discrepancies in these problematic energy windows are
most likely explained by an energy dependence of the quantum
defect, a feature that has been neglected in the present study.
Moreover, the small differences between the FT and exact
results over the full studied energy range from 0 to 2 eV
can most likely also be explained by this neglected energy
dependence.

The second possible origin of the discrepancies may lie
in the inaccuracy of the Born-Oppenheimer approximation
that is exploited (at the short range) by the present FT theory
while the 2D model is free of such approximations. Hence,
a natural next step in this project would be to consider the
weak energy dependence of the wave functions merged at
the FT boundaries and attempt to obtain the DR rates by so-
called energy-dependent frame transformation. However, an
implementation of the energy-dependent frame transformation
for the dissociative recombination processes appears to be a
nontrivial problem and we plan to make it subject of a future,
separate study.

Finally, the computed results represent a quantitative esti-
mate of the DR cross sections in the 1�u channels of H2. Our
model results indicate that the 1�u channels can be probably
neglected for most of the collision energies as was done in
some of the recent computational studies [19,20]. However,
we observe two low-energy windows (150–180 meV and
330–350 meV) where the size of the cross sections in the 1�u

channels becomes comparable with the cross sections in the
dominant singlet gerade channels.
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APPENDIX: EXPANSION INTO A NUCLEAR BASIS
REPRESENTED BY SIEGERT PSEUDOSTATES

We aim to solve the two-dimensional Schrödinger equation[
−1

2

∂2

∂r2
+ l(l+1)

2r2
−1

r
−E+HN (R)+V (R,r)

]
h(R,r)=0,

(A1)

where HN (R) is the nuclear Hamiltonian

HN (R) = − 1

2M

∂2

∂R2
+ V0(R) (A2)

and the coupling potential V (R,r) is defined by Eq. (8). Let us
now assume that we have already solved the one-dimensional
nuclear problem

HN (R)φj (R) = εjφj (R), (A3)

with the boundary conditions

φj (0) = 0,(
d

dR
− iKj

)
φj (R)

∣∣∣∣
R=a

= 0, (A4)

where εj = K2
j

2M
and a is some finite distance. These boundary

conditions define a basis of Siegert pseudostates [13]. Their
orthogonality relations are∫ a

0
φj (R)φj ′(R)dR + i

φj (a)φj ′(a)

Kj + Kj ′
= δjj ′ . (A5)

The orthogonality relations are valid for all the 2 × Nb

pseudostates that are provided by Nb basis set elements. It
is clear that the full set of 2 × Nb Siegert pseudostates is
overcomplete; in fact, it spans the Hilbert space of the original
basis set exactly twice [13]. From this overcomplete set we
select a subset of N Siegert pseudostates that contains all the
bound states plus the outgoing-wave continuum states. This
subset can be made complete to a sufficient numerical accuracy.

Assuming we have selected the complete subset of N

Siegert pseudostates φj (R) satisfying Eqs. (A3) and (A4), the
j ′th independent solution hj ′(R,r) of (A1) can be expanded as

hj ′ (R,r) =
N∑

j=1

φj (R)gjj ′(r). (A6)

Inversion of this equation and determination of the expansion
coefficients gjj ′(r) is not straightforward due to the nontrivial
orthogonality relations (A5). One needs to construct a well-
behaved one-index linear functional Fj [ . ], acting on the space
of functions f (R), that satisfies

Fj [φj ′] = δjj ′ for all j,j ′. (A7)

Basically, the functional Fj [ . ] applied to φj ′ needs to replicate
the left side of (A5).

One of the ways to define the functional Fj [ . ] is

Fj [f (R)] =
∫ a

0
dRφj (R)f (R)

+ iφj (a)

[(
Kj − i

d

dR

)−1

f (R)

]
R=a

, (A8)

which indeed simulates (A5) when applied to φj ′(R). The
inverted operator on the right-hand side of the equation above
needs to be interpreted as a complex function of the nuclear
operator D = −id/dR. Since the operator D is non-Hermitian
on the class of functions that are nonzero at R = a, one needs
to resort to its definition by a Taylor expansion

(
Kj + D

)−1 = 1

Kj

− 1

K2
j

D + 1

K3
j

D2 − . . . . (A9)

Even if we skip the discussion of a convergence of this
expansion we still need the Siegert pseudostates φj ′(R) to
satisfy

Dpφj ′(R)
∣∣
R=a

= K
p

j ′φj ′(a). (A10)

This is trivially satisfied for p = 1 by the boundary condi-
tion (A4). The second derivative can be obtained from the
Schrödinger equation (A3) as

D2φj ′(R)|R=a = K2
j ′φj ′(a) − 2MV0(a)φj ′(a), (A11)

where the potential term −2MV0(a) can be made arbitrarily
small by increasing the boundarya. All the higher-order deriva-
tives in (A9) can be generated by a combination of the boundary
condition (A4) and multiple applications of (A11). The devi-
ations from the sought property (A10) will be proportional to
the surface value of the potential V0(a) and its higher-order
derivatives at the boundary a. In the present case of the Morse
potential V0 we were able to obtain the expected properties
(A10) and (A7) within a very good numerical accuracy for
a � 20 bohrs. Realistic target cations involve asymptotically
the induced dipole interaction behaving as ∼−1/R4. However,
such asymptote leads to decreasing higher-order derivatives
at the boundary and the sought property (A10) can be easily
satisfied.

Application of Fj [ . ] then simulates the typical projection∫
dRφ∗

j (R) . . . used for the conventional orthonormality re-
lations. Consequently, the Fj [ . ] allows to invert Eq. (A6),
giving

gjj ′(r) = Fj [hj ′(R,r)] =
∫ a

0
dRφj (R)hj ′(R,r)

+ iφj (a)

[(
Kj − i

d

dR

)−1

hj ′(R,r)

]
R=a

. (A12)

Furthermore, application of the functional on both sides of the
two-dimensional Schrödinger equation (A1) leads to a set of
coupled one-dimensional equations via

[
−1

2

d2

dr2
+ l(l + 1)

2r2
−1

r
−E+HN (R)+V (R,r)

]
hj ′(R,r)=0,

↓ Eq. (A6)

∑
m

[
−1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
−E+εm

]
φm(R)gmj ′(r)

+
∑
m

V (R,r)φm(R)gmj ′(r) = 0,
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↓ Fj [ . ]

[
−1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
− (E − εj )

]
gjj ′(r)

+
∑
m

Vjm(r)gmj ′(r) = 0, (A13)

where

Vjm(r) =
∫ a

0
dRφj (R)V (R,r)φm(R)

+ iφj (a)

[(
Kj − i

d

dR

)−1

V (R,r)φm(R)

]
R=a

.

(A14)

The coupling interaction elements Vjm contain an additional
surface term which again can be made arbitrarily small in
practical applications by increasing the radius a.

Radial solutions gjj ′(r) of the coupled system (A13) form
the full two-dimensional solution hj ′(R,r) via the expansion
(A6) as long as this expansion is complete. This procedure
is called vibrational close-coupling expansion in the literature
[38] and its main objective is the numerical solution of the
coupled set of equations (A13) from r = 0 to r = r0, beyond
which V (R,r) = 0.

To summarize, we have just demonstrated that the vi-
brational close-coupling procedure can also employ the
nonorthogonal system of complex Siegert pseudostates φj (R)
and the two-dimensional solution hj ′ (R,r) can be recon-
structed from its complete subset. The channel-coupling po-
tential elements Vjm(r) (A14) have a typical C-norm form—no
conjugation on the bra element with an additional surface term
that can be made arbitrarily small.
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