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Integral representation for scattering phase shifts via the phase-amplitude approach
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An integral representation for scattering phase shifts is obtained based on a modified version of Milne’s
phase-amplitude approach [W. E. Milne, Phys. Rev. 35, 863 (1930)]. We replace Milne’s nonlinear differential
equation for the amplitude function y with an equivalent linear equation for the envelope ρ = y2, which renders
the integral representations highly amenable to numerical implementations. The phase shift is obtained directly
from Milne’s phase function, which in turn is expressed in terms of the envelope function. We illustrate the
advantages of the representation with two scattering potentials. The integral representation presented in this work
is fully general and it can be used for any type of scattering potential, including the Coulomb potential.
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I. INTRODUCTION

The phase-amplitude approach for Schrödinger’s radial (or
one-dimensional) equation was pioneered by Milne [1], and
has since been used extensively in atomic and molecular
physics [2–14], in chemical physics [15–17], and in other
areas of physics [18–28]. Although it was originally intended
for tackling bound states, the phase-amplitude method is also
applicable for scattering problems; indeed, Milne’s approach
is especially suitable in the framework of many-channel
quantum defect theory [29–32] because it makes it possible
to construct optimal reference functions in each scattering
channel.

The virtues of Milne’s approach stem from the fact that
phases and amplitudes are quantities which are well behaved in
the energy domain, even across channel thresholds. Moreover,
the phase-amplitude method allows for highly efficient numer-
ical implementations, because the direct computation of highly
oscillatory wave functions can be avoided entirely; instead, any
solution of the radial equation is evaluated accurately in terms
of the amplitude and phase functions, which have a simple
radial dependence.

In this work we use a modified version of Milne’s method
to derive an integral representation which yields the true value
of the scattering phase shift, despite the modulo π ambiguity
inherent in its usual definition. We apply our approach to scat-
tering potentials with long-range inverse power-law behaviors,
which commonly appear in atomic, molecular, and optical
physics, such as in our previous studies of R−3 atom-wall
interactions [33,34], excited electronic states in homonuclear
molecules [35] or anisotropic dipolar interactions [36], the
R−4 potential in atom-ion collisions [37] or R−5 between two
Rydberg atoms in specific states [38,39], the R−6 van der
Waals interactions between atoms [40–42], and the inverse
quadratic interaction appearing in Efimov physics [43]. We
begin with a simple integral representation in Sec. II A, which
we generalize for the Coulomb case in Sec. II B. We give a brief
discussion of envelope and phase functions in Sec. II C, with
additional details of the phase-amplitude approach presented
in the Appendices. In Sec. II D we derive a two-envelope
formula for phase shifts, which is essential for high partial

waves. The computational approach is discussed in Sec. III,
and we illustrate the usefulness of our integral representations
with numerical applications in Sec. IV for R−1 and R−3

long-range potentials. Finally, we give concluding remarks in
Sec. V. Technical details and derivations are also given in the
Appendices.

II. THEORY

We consider the radial Schrödinger equation for a spheri-
cally symmetric potential V (R),

ψ ′′ = Uψ, U = 2μ(Veff − E), (1)

where Veff (R) = V (R) + �(�+1)
2μR2 is the effective potential, μ is

the reduced mass of the two particles undergoing scattering,
and E > 0 is the energy in the center-of-mass frame. Atomic
units are used throughout.

Assuming that the interaction potentialV (R) vanishes faster
than R−1 asymptotically, the physical solution ψ(R) has the
well known asymptotic behavior

ψ(R)
R→∞−−−→ sin

(
kR − �

π

2
+ δ�

)
, (2)

which yields the scattering phase shift δ� for partial wave �.
In the equation above, k = √

2μE is the momentum for the
relative motion. The phase shift is usually obtained from the
matching condition,

ψ(R) = Af (R) + Bg(R), (3)

where f and g are exact solutions of the radial equation,
specified by their asymptotic behavior,

f (R)
R→∞−−−→ sin

(
kR − �

π

2

)
, (4)

g(R)
R→∞−−−→ cos

(
kR − �

π

2

)
. (5)

From the equations above we have δ� = arctan(B/A), which
yields the phase shift modulo π , i.e., δ� ∈ [−π

2 , π
2 ]. To simplify

our notation, we shall omit the label � for ψ , f , g, and other
related quantities, except for the phase shift δ�.

2469-9926/2018/97(2)/022701(10) 022701-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.022701&domain=pdf&date_stamp=2018-02-01
https://doi.org/10.1103/PhysRev.35.863
https://doi.org/10.1103/PhysRev.35.863
https://doi.org/10.1103/PhysRev.35.863
https://doi.org/10.1103/PhysRev.35.863
https://doi.org/10.1103/PhysRevA.97.022701


D. SHU, I. SIMBOTIN, AND R. CÔTÉ PHYSICAL REVIEW A 97, 022701 (2018)

A. Integral representation for the full phase shift

We now derive an expression for δ� which does not rely on
the explicit evaluation of wave functions; instead, the phase
shift will be extracted from an R-dependent phase function.
Our approach follows Milne’s phase-amplitude method [1],
which we review in Appendices A, B, and C. We emphasize
that the true value of δ� will be obtained, despite the modulo
π ambiguity inherent in its customary definition.

We first introduce the envelope function

ρ = f 2 + g2, (6)

with f and g exact solutions of the radial equation (1) obeying
the asymptotic behavior in (4) and (5). The phase function θ

is constructed by integrating

θ ′ ≡ dθ

dR
= k

ρ
. (7)

We remark that θ (R) is defined up to an integration constant,
which can be chosen freely; a judicious choice guided by the
computational strategy shall be made in Sec. II C.

As shown by Milne [1], the general solution of the radial
equation (1) can be represented exactly in terms of ρ and θ . In
particular, the physical solution reads

ψ(R) =
√

ρ(R) sin[θ (R) − θ (0)]. (8)

Note that ψ(R) vanishes explicitly at R = 0, while Eqs. (4)
and (5) ensure a very simple asymptotic behavior for ρ and θ ,

ρ(R)
R→∞−−−→ 1, (9)

θ (R)
R→∞−−−→ kR + const. (10)

We now define the reduced phase

θ̃ (R) ≡ θ (R) − kR, (11)

and use Eqs. (9) and (10) to find the asymptotic behavior of
Milne’s parametrization (8),

ψ(R)
R→∞−−−→ sin[kR + θ̃ (∞) − θ (0)],

which is identical to the asymptotic behavior of ψ in Eq. (2).
Consequently, we obtain

δ� − �
π

2
= θ̃(∞) − θ (0). (12)

Making use of Eq. (11) we have θ (0) = θ̃ (0), and Eqs. (7) and
(11) yield θ̃ ′ = k

ρ
− k. Hence, Eq. (12) can be recast as an

integral representation,

δ� − �
π

2
= θ̃ (∞) − θ̃ (0) = k

∫ ∞

0
dr

[
1

ρ(r)
− 1

]
. (13)

We remark that the reduced phase θ̃ (R) defined in Eq. (11)
cannot be regarded as the nontrivial phase contribution, as it
also includes the Bessel contribution (due to the centrifugal
term). Therefore, strictly speaking, the equation above yields
the full phase shift (δ� − �π

2 ).

B. Generalization to potentials with a Coulomb term

So far, we have assumed that the potential V (R) vanishes
faster than R−1 asymptotically. In this section we consider the

general case when V (R) contains a Coulomb term,

VC(R) = Z1Z2

R
. (14)

with Z1,2 the electric charges of the two colliding particles. The
remainder (V − VC) of the interaction potential is responsible
for the phase shift δ�, which is obtained from the well known
asymptotic behavior

ψ(R)
R→∞−−−→ sin

[
kR − C

k
ln(2kR) + η� − �

π

2
+ δ�

]
,

(15)

where η� = arg 	(� + 1 + i C
k

) is the Coulomb phase shift [44]
and C ≡ μZ1Z2. Following the same steps as in the previous
section, we use again Milne’s parametrization (8) for the phys-
ical wave function, namely ψ(R) = √

ρ(R) sin[θ (R) − θ (0)],
with the phase θ behaving asymptotically as

θ (R)
R→∞−−−→ kR − C

k
ln(2kR) + const, (16)

which is the generalized version of Eq. (10). Accordingly,
the reduced phase is again defined such that it is finite
asymptotically,

θ̃ (R) ≡ θ (R) − kR + C

k
ln(2kR), (17)

and thus the full phase shift reads

δ� − �
π

2
+ η� = θ̃ (∞) − θ (0), (18)

which is the general form of Eq. (12).
In the Coulomb case, an integral representation can only be

written if we divide the radial domain in two intervals. Indeed,
unlike the previous section, θ̃ now diverges logarithmically
when R → 0. Thus, we shall employ θ (R) for R � R0 and
θ̃ (R) for R � R0, with R0 fixed arbitrarily. Specifically, we
have

θ (R0) − θ (0) = k

∫ R0

0

dr

ρ(r)
,

θ̃(∞) − θ̃ (R0) = k

∫ ∞

R0

dr

[
1

ρ(r)
− 1 + C

k2r

]
.

Adding the two equations above, and making use of Eq. (17)
at R = R0, we find

δ� − �
π

2
+ η� = θ̃ (∞) − θ (0)

= k

∫ R0

0
dr

[
1

ρ(r)
− 1

]
+ C

k
ln(2kR0)

+ k

∫ ∞

R0

dr

[
1

ρ(r)
− 1 + C

k2r

]
, (19)

which represents the generalization of Eq. (13). Indeed, in
the absence of the Coulomb term, i.e., setting C = 0 in the
equations above, we have η� = 0, and we recover the results
of Sec. II A. We emphasize that the expression in Eq. (19) is
independent of R0, which we illustrate with numerical results
in Sec. IV A. Finally, we remark that Eqs. (13) and (19) yield
the true value of δ� unambiguously (not modulo π ), and, in the

022701-2



INTEGRAL REPRESENTATION FOR SCATTERING PHASE … PHYSICAL REVIEW A 97, 022701 (2018)

case of a purely Coulombic potential, Eq. (19) yields the true
value of η�.

C. Envelope and phase functions

In order to use the approach outlined above in numerical
applications, it is necessary to devise a reliable method for
computing the envelope directly, rather than using Eq. (6). As
shown in Appendix B, ρ obeys a linear differential equation,

ρ ′′′ − 4Uρ ′ − 2U ′ρ = 0. (20)

Therefore, we now regard the envelope ρ = f 2 + g2 in Eq. (6)
as a particular solution of Eq. (20). Namely, we impose the
asymptotic boundary condition ρ(R) → 1, which makes
the solution unique. As we shall see in Sec. III, we initialize the
envelope at R = ∞ and we propagate it inward; accordingly,
we also propagate the reduced phase θ̃ inward from R = ∞.

Recall that Eq. (7) allows for an integration constant to be
chosen freely when constructing the phase θ (R) or θ̃(R). The
integration constant can be fixed, e.g., by setting the value
of θ (0) or the value of θ̃(∞). We prefer the latter, which is
suitable when employing the inward propagation mentioned
above; specifically, we choose

θ̃(∞) = 0,

and thus Eq. (12) reads

δ� = �
π

2
− θ (0). (21)

The reduced phase is constructed by direct integration; in
the absence of a Coulomb interaction term, we have

θ̃(R) = k

∫ ∞

R

dr
ρ̃(r)

ρ(r)
, (22)

where ρ̃ denotes the reduced envelope

ρ̃ ≡ ρ − 1.

In the Coulomb case we make use of θ̃ ′(r) = k
ρ(r) − k + C

kr

[see Eqs. (7) and (17)], and thus the reduced phase reads

θ̃(R) = k

∫ ∞

R

dr

[
1 − 1

ρ(r)
− C

k2r

]
. (23)

In order to show that the integral above is well defined and
yields a reduced phase obeying θ̃(∞) = 0, and also to justify
that the full phase θ (R) has the asymptotic behavior (16), we
write the envelope as an asymptotic series,

ρ(R) = 1 +
∑
n�1

bn

Rn
. (24)

Assuming the potential has the long-range behavior

V (R) =
∑
n�1

Cn

Rn
with C1 = C = μZ1Z2,

we substitute the ansatz (24) in Eq. (20), and we obtain the
coefficients bn. In particular, for n = 1 we have b1 = C/k2,
and thus the asymptotic behavior of the envelope reads

ρ(R) ≈ 1 + C

k2R
+ b2

R2
+ · · · .

Substituting the result above in Eq. (7) yields θ ′ ≈ k − C
kR

+
O( 1

R2 ), which upon integration confirms Eq. (16), while the
reduced phase in Eq. (23) has the asymptotic behavior

θ̃ (R) ≈ b̃1

R
+ b̃2

R2
+ · · · R→∞−−−→ 0,

where the coefficients b̃n are expressed in terms of bn, e.g.,
b̃1 = b2 − b2

1.
For computational purposes, it is advantageous to employ

the reduced envelope

ρ̃ ≡ ρ − 1 − C

k2r
. (25)

Thus, we recast Eq. (23) in terms of ρ̃,

θ̃ (R) = k

∫ ∞

R

dr
1

ρ(r)

[(
1 − C

k2r

)
ρ̃(r) −

(
C

k2r

)2
]
. (26)

The full phase shift in Eq. (19) can now be expressed in a form
suitable for computation,

δ� − �
π

2
+ η� = −θ (0) = k

∫ R0

0

dr

ρ(r)
− kR0

+ C

k
ln(2kR0) − θ̃ (R0). (27)

We emphasize that θ̃ should be computed using Eq. (26),
because the integrand in Eq. (23) suffers from cancellation at
large r . Thus, in the asymptotic region, ρ̃ should be obtained
directly, rather than ρ itself; namely, we substitute ρ = ρ̃ +
1 + C/k2R in Eq. (20) which becomes an equation for ρ̃.
The numerical approach for solving the envelope equation is
described in Sec. III, where we show that the entire asymptotic
region can be treated in a numerically exact fashion by mapping
it onto a finite interval and using a spectral Chebyshev method.

D. Two-envelope formula for phase shifts

We now derive a formula involving two scattering po-
tentials; if one of them is used as a reference case, this
two-envelope integral representation makes it possible to
compute the phase shift δ� directly. Recall that the simple
integral representations (13) and (19) yield the full phase shift
(including Bessel and Coulomb contributions). As shown in
Sec. IV B, accurate values of δ� at high � cannot be obtained
using Eq. (13). Thus, in this section we formulate a two-
envelope approach which can be used to compute accurate
phase shifts for all partial waves. For the sake of generality, we
consider two different potentials V1 and V2, each containing
the same Coulomb interaction term (if present). For a given
scattering energy E > 0 and a partial wave �, we make use
of Eq. (18) for each potential, and we employ the convenient
choice θ̃1(∞) = θ̃2(∞) to find

δ
(2)
� − δ

(1)
� = θ1(0) − θ2(0), (28)

Using θ ′
1, 2 = k/ρ1, 2 [see Eq. (7)], the phase difference above

can be recast as an integral,

δ
(2)
� − δ

(1)
� = k

∫ ∞

0
dr

[
1

ρ2(r)
− 1

ρ1(r)

]
. (29)
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Although both θ1, 2(R) diverge when R → ∞, the integral
above is finite because the phase difference θ1(R) − θ2(R) =
θ̃1(R) − θ̃2(R) vanishes asymptotically. Note that in the asymp-
totic region we have ρ1 ≈ ρ2, which can also hold in the inner
region if V1 ≈ V2. Thus, Eq. (29) will suffer from catastrophic
cancellation, rendering it unsuitable for numerical applica-
tions. Nevertheless, we show next that a computationally robust
integral representation based on the two-envelope approach
can be formulated.

We choose V1 ≡ Vref as a reference potential (with the
corresponding effective potential including both the centrifugal
and Coulomb terms; see below), while V2 ≡ V = Vref + V̂

is the full interaction potential. The reduced envelope and
phase are now defined relative to the corresponding reference
quantities:

ρ̂ = ρ − ρref , θ̂ = θ − θref . (30)

We employ a nontrivial reference problem by setting

Uref (R) = −k2 + �(� + 1)

R2
+ 2C

R
, C = μZ1Z2, (31)

and we use of Eqs. (28) and (29) with U1 = Uref given
above andU2 = U = Uref + 2μV̂ . Thus, the Bessel phase shift
(−�π

2 ) and the Coulomb phase shift η� are both eliminated, and
the phase shift δ� reads

δ� = −θ̂ (0) = −k

∫ ∞

0
dr

ρ̂(r)

ρ(r)ρref (r)
. (32)

The reference envelope is the solution of Eq. (20),

ρ ′′′
ref − 4Uref ρ ′

ref − 2U ′
ref ρref = 0, (33)

with Uref (R) given in Eq. (31), while the reduced envelope
obeys a nonhomogeneous differential equation,

ρ̂ ′′′ − 4Uρ̂ ′ − 2U ′ρ̂ = 4Ûρ ′
ref + 2Û ′ρref , (34)

which was obtained by combining Eqs. (20) and (33). In the
equation above we used the notation Û ≡ U − Uref = 2μV̂ .
Note that, in the absence of a Coulomb term, we use Uref =
−k2 + �(�+1)

R2 , with Vref = 0 and V̂ = V , which is illustrated
with numerical results in Sec. IV B. Finally, we remark that
in the absence of a Coulomb term one can also use the trivial
choice Uref = −k2 with θref (R) = kR, which yields θ̂ identical
to θ̃ in Eq. (11), thus recovering the integral representation of
the full phase shift given in Sec. II A.

In practical applications, one first solves Eq. (33) for the
reference envelope, which is subsequently used in Eq. (34).
The latter is solved to obtain ρ̂, and thus the full envelope
is obtained: ρ = ρref + ρ̂. We remark that the numerical
approach used for the homogeneous envelope equation (see
Sec. III), can also be employed for the nonhomogeneous
differential equation (34). The two-envelope approach is fully
general, but is especially useful when Û = 2μV̂ is small, such
that |ρ̂| 	 ρ ≈ ρref , and thus θ̂ and δ� will also be small.

III. COMPUTATIONAL APPROACH

The integral representations derived in this article are valid
in general; however, they are useful in numerical applications
only if the integrands are well behaved. Specifically, the
envelope should behave in a nonoscillatory fashion, which in

turn ensures the smoothness of the phase function. In practice,
there is considerable difficulty in finding the smooth envelope
[4,45], because the general solution of the envelope equation
has an oscillatory behavior, as mentioned in Appendix A. In
this section, a computational strategy for obtaining the smooth
envelope in the asymptotic region is presented. We emphasize
that finding the unique, smooth solution is critically important
for the efficiency and accuracy of numerical schemes using
our integral representations, and for using the phase-amplitude
method in general.

For clarity, we assume that V (R) vanishes faster than
R−1 asymptotically. As discussed in Sec. II A (see also Ap-
pendix C), we employ the initial condition ρ = 1 at R = ∞
when solving Eq. (20). However, rather than using the radial
variable, it is highly advantageous to reformulate the envelope
equation by mapping the asymptotic radial domain onto a finite
interval. We developed a convenient and efficient numerical
implementation based on a simple change of variable,

x = 1

R
,

which allows us to take fully into account the long-range tail of
any potential. Thus, the infinite radial interval R1 < R < ∞ is
now mapped on a compact interval, x1 > x > 0, with x1 = 1

R1
.

The boundary R1, i.e., the size of the interval [0, x1], will be
chosen to ensure the desired level of accuracy.

We now regard the envelope as anx-dependent function, and
we present the computational approach for finding the smooth
solution of the envelope equation inside the interval [0, x1].
First, we rewrite Eq. (20) using x = 1

R
as the independent

variable:

x4...
ρ + 6x3ρ̈ + 6x2ρ̇ − 4Uρ̇ − 2U̇ρ = 0, (35)

where dots above symbols denote derivatives with respect to
x, e.g., ρ̇ = dρ/dx. Recall that U = 2μVeff − k2. Next, we
define

u ≡ ρ̇,

and we regard it as the unknown function. Making use of the
initial condition ρ = 1 at x = 0, we write

ρ(x) = 1 +
∫ x

0
dt u(t),

which we substitute in the last term of Eq. (35) to obtain(
4k2 − 8μVeff + x4D2

x + 6x3Dx + 6x2 − 4μV̇effSx

)
u

= 4μV̇eff . (36)

The operators Dx and Sx read

Dxu = u̇ = du

dx
, Sxu =

∫ x

0
dt u(t).

We solve Eq. (36) using a spectral Chebyshev method
[46–51], i.e., we employ a small number of Chebyshev poly-
nomials Tn(x) with n = 0,1,2, . . . ,N − 1, which are mapped
onto the interval [0,x1]. We expand the unknown function
u(x) in the Chebyshev basis, and the operators Dx and Sx are
represented as finite (N × N ) matrices [48,49]. Thus, Eq. (36)
becomes a simple linear system,

MA = B, (37)
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FIG. 1. Upper: convergence test for an attractive Coulomb poten-
tial with C = −1, for � = 5 and k = 0.1 a.u. The horizontal axis is
the size N of the Chebyshev basis, while the vertical axis is the error
for the envelope. Lower: same as the upper panel, for the potential
V (R) given in Eq. (40), for � = 475 and E = 0.002 a.u.

where the column A contains the Chebyshev coefficients of
our unknown function,

u(x) =
N−1∑
n=0

AnTn(x),

B contains the Chebyshev coefficients for the expansion

4μV̇eff (x) =
N−1∑
n=0

BnTn(x),

and M is the matrix of the operator in Eq. (36),

M = 4k2 − 8μVeff + x4D2
x + 6x3Dx + 6x2 − 4μV̇effSx.

Although the operator M is singular, its associated matrix (M)
in the finite Chebyshev basis is well conditioned and yields
highly accurate solutions; indeed, the matrix M does admit
an inverse, and the solution of Eq. (37) reads A = M−1B.
Figure 1 depicts the error 
ρ = |ρ(N)(x1) − ρ(Nmax)(x1)| for
the envelope evaluated at x1 = 0.04. We varied the size of
the Chebyshev basis from N = 5 to Nmax = 200, as shown in
Fig. 1, which makes it readily apparent that the convergence
with respect to N is robust. The smooth envelope is thus
obtained as the unique solution; indeed, all the other solutions
oscillate infinitely fast near x = 0 (R → ∞) and they are
eliminated simply because highly oscillatory behavior cannot
be accommodated by the finite number of polynomials.

We emphasize that the linearity of the envelope equation is
crucially important for the feasibility of the approach presented
here. Finally, the solution obtained inside the interval [0, x1]
can now be used to initialize the propagation for x > x1, i.e.,

−0.003

0

0.003

V ef
f  (

a.
u.

)

∞5020108 0376
R  (a.u.)

0

1

2

ρ,
  |

ψ
|2 ρ(x)

|ψ(x)|2

00.050.10.15
x = 1/R  (a.u.)

0

100
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300

θ∼

E = 0.002 a.u.

Veff(x)

θ(x)∼

FIG. 2. Upper: effective potential (for � = 475) as a function of
x = 1

R
. V (R) is given in Eq. (40). The values of R are indicated at the

top. The horizontal dashed line marks the energy E. Middle: thin line
(gray) for the wave function, thick line (red) for the envelope. Lower:
reduced phase θ̃ (x).

R < R1. A detailed description of our computational approach
will be published elsewhere.

The advantage of the phase-amplitude method combined
with the change of variable x = 1

R
is readily apparent in

Fig. 2, where we show the x dependence of the reduced phase
θ̃ (x) and the envelope ρ(x) along with |ψ |2 for � = 475 and
E = 0.002 a.u., for the potential energy used in Sec. IV B; see
Eq. (40). Note that the wave function in Fig. 2 was evaluated
numerically using Eq. (8), i.e., ψ = √

ρ sin(θ − θR=0).
When the potential has a repulsive wall at short range, the

formulation of the phase-amplitude approach based on the
change of variable x = 1

R
can be employed for the entire radial

domain, as shown in Fig. 2. Indeed, the repulsive wall makes
it possible to stop the inward propagation at Rmin > 0, which
corresponds to a finite value xmax = 1

Rmin
. We remark that, when

the inward propagation of the reduced phase θ̃ approaches
the repulsive wall, it is convenient to convert it to the full
phase θ using Eq. (11) at a point R0 just outside the inner
wall; for the remainder of the radial domain (R < R0), one
should propagate θ (R) instead of θ̃(R), because the former
converges much faster than the latter. Indeed, if Veff → +∞
when R → 0, we have ρ → ∞ and θ ′ → 0, while θ̃ ′ → −k.
In other words, θ (0) should be computed as

θ (0) = kR0 + k

∫ ∞

R0

dr
ρ̃(r)

ρ(r)
− k

∫ R0

Rmin

dr

ρ(r)
, (38)

which is independent of R0. We remark that the integration
need not extend fully to R = 0, because Rmin is chosen inside
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FIG. 3. Relative error of the computed Coulomb phase shift η� for
C = −1, k = 0.1, and � = 5. Equation (39) yields a highly accurate
result that is independent of R0.

the repulsive wall to ensure the contribution of the interval
0 < R < Rmin is entirely negligible. Consequently, the radial
domain can be safely restricted to Rmin < R < ∞, which is
mapped onto the compact interval xmax > x > 0.

IV. EXAMPLES

We now apply the integral representations and show that
they yield highly accurate results. Our first example is the
Coulomb potential, which we use as a test case for the integral
representation (27). The two-envelope formula [see Eqs. (28)
and (32)] will be employed and tested in Sec. IV B.

A. The Coulomb potential

In the case of a purely Coulombic potential, Eq. (27) yields
the Coulomb phase shift,

η� = �
π

2
− kR0 + C

k
ln(2kR0) + k

∫ R0

0

dr

ρ(r)
− θ̃ (R0),

(39)

with θ̃ given Eq. (26). The result above is independent of R0,
as depicted in Fig. 3. Indeed, we show that our approach is
robust and accurate by comparing the value of η� obtained
using Eq. (39) with the exact value η	

� ≡ arg 	(� + 1 + i C
k

)
for C = −1, k = 0.1, and � = 5. Our integral representation
yields the value η� = −20.22421961527, while the analyt-
ical expression gives its value modulo 2π , namely η	

� =
−1.3746636937335435. Their difference equals an integer
multiple of 2π to a high degree of precision: (η� − η	

� )/2π =
−3(1 ± 10−13). Figure 3 depicts the relative error |(η� − η	

� +
6π )/η�| as a function of R0.

B. Results for an inter-atomic potential with long-range
behavior of the type V (R) ∼ − C3

R3

For our second example we use both integral representa-
tions, i.e., Eq. (13) for the full phase shift and the two-envelope
formula (32) which yields the phase shift directly. We employ
the potential energy

V (R) = Cwall exp

(
− R

Rwall

)
− C3

R3 + R3
core

, (40)

0
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FIG. 4. Phase shifts and cross section terms σ� = 4π

k2 (2� +
1) sin2 δ� for the potential energy in Eq. (40) for E = 0.01 a.u.

with Cwall = 10, Rwall = 1, Rcore = 5, and C3 = 18 (all in
atomic units), and the reduced mass μ = m

2 , where m is the
mass of 88Sr. We computed phase shifts for E = 0.01 a.u. ≈
0.272 eV for a wide range of partial waves. The upper
panel in Fig. 4 depicts the � dependence of the phase shift,
while the lower panel shows the partial-wave terms of the
elastic cross section, σ� = 4π

k2 (2� + 1) sin2 δ�. An exceedingly
large number of partial waves contribute to the cross section;
note that the dominant contribution stems from very high
partial waves (� > 5000). For a fully converged value of
the elastic cross section, we have computed phase shifts
up to � = 105.

Recall that our integral representations yield the true value
of the phase shift (not modulo π ) which has a rather simple
� dependence; this suggests that interpolation schemes could
be used to drastically reduce the number of partial waves for
which phase shifts need to be computed. This added advantage
is illustrated in Fig. 5, where we compare the true phase shift
with its modulo π version. Moreover, our approach is not
restricted to integer values of �, and makes it possible to use
non-integer values of � as interpolation points; thus, highly
accurate interpolation methods with nonuniform grids, e.g.,
Chebyshev interpolation, can be employed.

Regarding the practical aspects of the computation, some
remarks are in order. We first emphasize that, using the com-
putational approach presented in Sec. III, the simple integral
representation (13) and the two-envelope formula (32) can be
implemented numerically such that they both yield accurate
results. However, when using the integral representation (13)
for the full phase shift, the value of δ� obtained from Eq. (21)
will gradually lose precision at very high �. Indeed, for � →
∞ we have δ� → 0 while θ (0) ≈ �π

2 . Therefore, the simple
integral representation (13) must be avoided at high � because
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FIG. 5. Phase shift δ� corresponding to the R−3 potential in
Eq. (40) and E = 0.01 a.u., for discrete integer values of �. Upper:
true value of δ�. Lower: δ� mod π . Note the vastly different scales
used for the vertical axis in the two panels.

of the catastrophic cancellation in Eq. (21), even though
θ (0) can still be computed accurately. Consequently, when �

becomes extremely large, δ� should instead be computed using
the two-envelope formula derived in Sec. II D.

Although the two-envelope formula is highly accurate for
all partial waves, Eq. (13) has the advantage of much greater
simplicity and could be used at low �, provided that it is
sufficiently accurate. A simple rule of thumb exists for finding
the highest partial wave for which Eqs. (13) and (21) yield
accurate results. Namely, the two-envelope formula needs to
replace the simple formula only if � is high enough for the
centrifugal term to become dominant over V (R). We show
next that the simple formula is indeed accurate at low �;
moreover, it is less expensive computationally compared to
the two-envelope approach, which requires twice the amount
of numerical work. The highest partial wave, �max, for which
the simple formula is still accurate can be estimated as follows:
we extract �max by equating the depth of the potential well,
VD = |V (Rbottom)|, which sets the energy scale at short range,
with the centrifugal term evaluated at Rbottom, the location of
the minimum of V (R). Namely, we have �max(�max + 1) =
2μR2

bottomVD . Thus, for the potential used in our example we
estimate the simple formula to maintain high accuracy for
� � 460 = �max, which we confirm below. Note that in the
high energy limit we have |V (R)| 	 E, and the two-envelope
formula should be used for all partial waves �, because all
phase shifts δ� are vanishingly small when E → ∞.

We first performed a test for the Bessel case, Veff = �(�+1)
2μR2 ,

with V = 0, in order to show that the two-envelope formula
is robust and accurate even for very high �. Namely, we
computed directly the vanishingly small difference between
the Bessel phase shifts for �1 and �2 which are nearly equal.
We used �1 = � and �2 = � − 1

�2 , for which the exact value of

000100101
l
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FIG. 6. Relative error for the Bessel test. The blue line is the
difference of the exact Bessel phase shifts; see text. The black line is
the two-envelope formula.

δ� = δB(�2) − δB(�1) is δ� = π
2�2 , where δB(�) = −�π

2 denotes
the Bessel phase shift. The relative error of the numerical value
δ� obtained with the two-envelope formula is shown in Fig. 6,
confirming that high accuracy is preserved at high �, despite
the smallness of δ�. In contrast, if the exact values of δB(�1,2)
are subtracted numerically, the loss of accuracy is significant
and becomes catastrophic at very high �; see Fig. 6. This
also illustrates that the failure of Eq. (21) at high � cannot
be avoided, as it is due to the cancellation of nearly equal
quantities. Nevertheless, Eq. (21) is sufficiently accurate at
low �. Indeed, we performed a test for the simple integral
representation (13). Assuming the two-envelope formula is
numerically exact, the relative error for δ� computed using
Eqs. (13) and (21) for the nontrivial potential energy (40)
is shown in Fig. 7, which makes it readily apparent that
the simple formula is highly accurate for partial waves � �
460, while significant loss of precision only occurs for much
higher �.
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FIG. 7. Comparison of the simple integral representation (13) and
the two-envelope formula (32). The simple integral representation is
highly accurate for � � 460, and then gradually loses accuracy for
higher �.
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V. CONCLUSIONS AND FUTURE WORK

In this work we presented an integral representation for
scattering phase shifts. A simple version, Eq. (13), yields
the so-called full phase shift, while the two-envelope formula
can be used to obtain δ� directly. We emphasize that, unlike
standard approaches which only yield δ� mod π , our integral
representations give the true value of the phase shift. The inte-
gral representations are very useful in numerical applications,
as shown in Sec. IV; indeed, they can be easily implemented
to obtain highly accurate results. Moreover, our approach
is based on the phase-amplitude method, which avoids the
explicit computation of highly oscillatory wave functions;
thus, our numerical implementations are very efficient, and
are consistently accurate even for very high partial waves.

We remark that our integral representations are always valid,
but the computational advantages mentioned above rely on the
assumption that the envelope is globally smooth. However, a
globally smooth solution of the envelope equation (20) does
not always exist; indeed, as is well known [15], when a barrier
separates two classically allowed regions, the solution which
is smooth on one side of the barrier will oscillate on the other
side. To overcome this computational difficulty, it is necessary
to develop an optimization procedure for finding the locally
smooth envelopes. In addition, one needs to find a way to
combine the different solutions which are locally optimized
in each classically allowed region. This is a nontrivial task,
as it requires certain functional relationships be established
between the envelopes and phases corresponding to disjoint
regions which are separated by a barrier. If such an approach
could be rendered computationally feasible, it would yield
the true phase-shift even in the absence of a globally smooth
envelope.
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APPENDIX A: THE PHASE-AMPLITUDE APPROACH

A brief overview of Milne’s phase-amplitude approach is
presented here. According to Milne [1], the general solution
ψ of the radial equation (1) can be expressed in terms of an
amplitude y and a phase θ ,

ψ(R) = c y(R) sin[θ (R) + θ0], (A1)

where c and θ0 are arbitrary constants. The amplitude satisfies
the nonlinear equation

y ′′ = Uy + q2

y3
, (A2)

with U = 2μ(Veff − E), and the phase θ (R) is constructed by
integrating

θ ′ = q

y2
. (A3)

In the equations above, q is arbitrary; the only restriction is
q2 > 0 in the amplitude equation (A2). We emphasize that

the amplitude and phase appearing in Milne’s parametrization
(A1) are not unique; indeed, any solution y of Eq. (A2) together
with the associated phase θ will give a valid representation
of ψ . This undermines the advantage of Milne’s method in
numerical applications, because the general solution y(R)
of Milne’s nonlinear equation has an oscillatory behavior in
classically allowed regions, and the unique smooth amplitude
is very difficult to find [4,45,52]. Despite this difficulty, Milne’s
nonlinear equation (A2) has long been used for computational
work. We remark that an equivalent formulation based on a
linear equation exists [53,54], but it remained overlooked in
the physics community until recently [55]. As we show in
Appendix B, the linear equation can be obtained by simply
replacing the amplitude with the envelope function ρ,

ρ(R) = y2(R). (A4)

The envelope obeys a third-order linear differential equation,

ρ ′′′ = 4Uρ ′ + 2U ′ρ. (A5)

In Appendix B we present two different derivations for the
envelope equation (A5), and in Appendix C we discuss its
equivalence with Milne’s nonlinear equation (A2).

Although Eq. (A5) is of third order, its linearity makes it
much more convenient than Milne’s nonlinear equation (A2).
However, finding the nonoscillatory solution is still a difficult
task. To overcome this obstacle, we devised a computational
strategy for scattering problems (E > 0) which yields the
smooth envelope in the asymptotic region; see Sec. III.

APPENDIX B: THE ENVELOPE EQUATION

We present here two different derivations of the envelope
equation (20) or (A5). The first derivation is very brief; namely,
we substitute y = √

ρ in Eq. (A2) and we find

ρ ′′ = 2Uρ + 1

ρ

[
1

2
(ρ ′)2 + 2q2

]
.

Next, we multiply both sides by ρ to obtain

ρρ ′′ = 2Uρ2 + 1
2 (ρ ′)2 + 2q2, (B1)

which is still a nonlinear equation. However, we now take the
derivatives of both sides,

ρρ ′′′ = 4Uρρ ′ + 2U ′ρ2,

and we divide by ρ to finally obtain Eq. (A5).
The second approach is similar to Milne’s derivation [1] of

Eq. (A2). Namely, we consider two solutions (φ and χ ) of the
radial Schrödinger equation (1), and we try to find a differential
equation for their product

p ≡ φχ.

Making use of Eq. (1) for φ and χ , we obtain

p′′ = 2Up + 2φ′χ ′,

and we now evaluate its derivative,

p′′′ = 2U ′p + 2Up′ + 2U (φχ ′ + φ′χ ),

where we recognize p′ = φχ ′ + φ′χ , and we find again the
envelope equation (A5),

p′′′ = 4Up′ + 2U ′p.
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As the product of any two solutions of the radial equation obeys
the envelope equation, φ2 and χ2 are also valid solutions of
Eq. (A5), as well as any linear combination of φ2, χ2, and φχ

[31,56]. In particular, ρ = φ2 + χ2 is a valid solution, which
corresponds to Milne’s ansatz y =

√
φ2 + χ2.

APPENDIX C: MILNE’S AMPLITUDE EQUATION AS A
CONSTRAINT FOR THE ENVELOPE EQUATION

The parameter q appears explicitly in Milne’s nonlinear
equation (A2). However, q is absent from the envelope equa-
tion (A5), even though it is used when integrating Eq. (7) to
obtain the phase θ . This creates some ambiguity, which stems
from the fact Eq. (A2) is a second-order differential equation,
while Eq. (20) is of third order. We now try to dispel the
ambiguity and show that the two equations are equivalent. We
first remark that although q does not appear in Eq. (20), it
should be assumed implicitly; indeed, if we recast Eq. (B1) in
the form

1
2ρρ ′′ − Uρ2 − 1

4 (ρ ′)2 = q2, (C1)

the expression on the left-hand side can be interpreted as an
invariant of the envelope equation (A5), and any solution ρ will
also obey Eq. (C1) with a particular value of q2. Recall that
the equation above is equivalent with Milne’s equation (A2),
which can thus be regarded as a constraint for the envelope
equation. Indeed, as we discuss below, Eq. (C1) should be
used to enforce the correct initial conditions for ρ, such that
they correspond to a fixed value for q.

To fully clarify the equivalence of Eqs. (A2) and (A5), let
us compare the sets of initial conditions required in each case.
When we initialize ρ at R = R0, we consider given

ρ(R0), ρ ′(R0), ρ ′′(R0),

which can be used in the constraint equation (C1) evaluated at
R = R0 to obtain the value of q. Conversely, if q is considered
given, we have

ρ(R0), ρ ′(R0), q = fixed,

which we commonly employ in practice. Equation (C1) is
now used to obtain ρ ′′(R0), and thus initialize the solution
of the envelope equation. Equivalently, for Milne’s amplitude
equation we consider given

y(R0), y ′(R0), q = fixed.

Moreover, the families of solutions for different values of q

are all equivalent. Indeed, if y1 is a solution of Eq. (A2) for
a given parameter q1, then y2 = (q2/q1)

1
2 y1 is a solution for

q2. Similarly, we have ρ2/q2 = ρ1/q1 and θ ′
2 = θ ′

1. Varying
the parameter q is entirely redundant, as the phase θ remains
unchanged, therefore justifying the convenient choice q = k

used throughout this article.
Finally, we make use of the constraint in Eq. (C1) to show

that the choice q = k is consistent with the initial condition
ρ = 1 at R = ∞, which gives a convenient normalization for
the envelope. Indeed, when R → ∞, we have Veff (R) → 0 and
thus U (R) ≈ U (∞) = −k2 and U ′ ≈ 0, while for the envelope
we have

ρ(R) ≈ ρ(∞), ρ ′(R) ≈ 0, ρ ′′(R) ≈ 0.

Substituting these asymptotic values in Eq. (C1) we obtain

−U (∞)ρ2(∞) = q2,

and, using U (∞) = −k2, we find the parameter q,

q = kρ(∞).

Conversely, if one prefers to choose a certain value for q, the
equation above yields ρ(∞) = q/k. However, as shown above,
the normalization constant ρ(∞) is irrelevant; indeed, we have

θ ′(R) = q

ρ(R)
= k

ρ(∞)

ρ(R)
,

which ensures

θ ′(R) ≈ k when R → ∞,

and thus the phase function suitable for scattering problems,
as defined in Sec. II A, has the desired behavior:

θ (R) ≈ kR when R → ∞.
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