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High-precision measurements and theoretical calculations of indium excited-state polarizabilities
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We report measurements of the scalar and tensor static polarizabilities of the 115In 7p1/2 and 7p3/2 excited
states using two-step diode laser spectroscopy in an atomic beam. These scalar polarizabilities are one to two
orders of magnitude larger than for lower-lying indium states due to the close proximity of the 7p and 6d states.
For the scalar polarizabilities, we find values (in atomic units) of 1.811(4)×105 a3

0 and 2.876(6)×105 a3
0 for the

7p1/2 and 7p3/2 states, respectively. We determine the tensor polarizability component of the 7p3/2 state to be
−1.43(18)×104 a3

0 . These measurements set high-precision benchmarks of the transition properties for highly
excited states in trivalent atomic systems. We also present ab initio calculations of these quantities and other
In polarizabilities using two high-precision relativistic methods to make a global comparison of the accuracies
of the two approaches. The precision of the experiment is sufficient to differentiate between the two theoretical
methods as well as to allow precise determination of the indium 7p-6d matrix elements. The results obtained in
this paper are applicable to other heavier and more complicated systems, and provide much needed guidance for
the development of even more precise theoretical approaches.

DOI: 10.1103/PhysRevA.97.022507

I. INTRODUCTION

Accurate knowledge of atomic properties has been critical
for a number of applications, including the search for physics
beyond the standard model [1], time and frequency metrology
[2,3], the suppression of decoherence in quantum information
processing [4,5], degenerate quantum gases [6], and many
others. Progress in the development of high-precision theory
[7–9] has yielded accurate predictions of many needed proper-
ties while high-precision measurements, such as [2,10–14],
have provided experimental benchmarks for the refinement
and improvement of theory. Further progress in atomic theory
is needed for the design and interpretation of experiments,
the development of concepts for next-generation experiments
and precision measurement techniques, and the quantification
and reduction of uncertainties and decoherence. For example,
recent proposals for the development of clocks and tests of
fundamental physics with highly charged ions [15,16] have
highlighted the urgent need for new, more precise theoretical
predictions in these systems. Further development of theory
requires associated improvement in precision measurements
to serve as accurate experimental benchmarks. Such mea-
surements in alkali-metal and alkaline-earth atoms have been
indispensable for the development of current theoretical ap-
proaches and the understanding of their uncertainties. Precise
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measurements in more complicated atomic systems are far
scarcer, and urgently needed.

Trivalent atoms like indium and thallium have long been
considered promising experimental testbeds in the search for
discrete symmetry violations and other quantities of funda-
mental physical interest, such as permanent electric dipole mo-
ments (EDMs) [17–20]. In- and Tl-like ions are also excellent
candidates for the development of ultraprecision clocks and the
search for the variation of the fine-structure constant α. Despite
very high ionization energies, certain highly charged ions have
transitions that lie in the optical range and are very sensitive
to α variation [21]. In-like and Tl-like ions are particularly
well suited for the experimental search for such transitions
[16], with Tl-like Cf17+ appearing to be a particularly attractive
candidate [21]. While techniques for the ab initio atomic theory
work necessary to interpret such experiments are well devel-
oped for single-valence alkali systems, theoretical methods
for the treatment of trivalent systems have only more recently
demonstrated significant improvements in precision [8,22–25].
The theory used to interpret a 1995 measurement of parity
nonconservation (PNC) in thallium [17,26], for instance, lags
the experimental precision by a factor of 3; similar PNC work
in cesium does not suffer from similar theoretical limitations
[7,27]. While experimental data are not available for most
Tl-like and In-like ionic systems, we can gain insight to these
systems by carefully comparing theory and experiment in
neutral group-IIIA systems.

Many of the applications listed above require precise
knowledge of excited-state atomic properties for which very
few experimental benchmarks (beyond frequency interval
measurements) exist. The determination of transition matrix
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elements between excited states is a particularly difficult
challenge for both theory and experiment. Measurements
of dynamic polarizabilities to provide such benchmarks for
divalent systems have recently been proposed [28]. The present
paper supplies benchmarks for trivalent systems using indium
as a test case.

Recently, a 2013 measurement of the polarizability of the
6s1/2 state in indium [14] inspired a new series of calcula-
tions using two different high-precision approaches [22]. A
subsequent measurement of the 6p1/2 scalar polarizability
[29] in 2016 was sufficiently precise to not only provide a
test of theory but to distinguish between the two slightly
different theoretical predictions. In the current paper, we
present precision measurements of the indium 7p1/2 scalar and
7p3/2 scalar and tensor static polarizabilities alongside new ab
initio calculations of these quantities using two high-precision
relativistic methods. We then make a global comparison of the
accuracies of the two theoretical approaches using all available
experimental data. As will be discussed, the precision of
the experiments is sufficient to clearly differentiate between
the two theoretical methods. We note that, due to the presence
of very nearby 6d levels, the scalar polarizabilities of these 7p

states are 30 to 50 times larger than those previously measured
in our laboratory. As discussed below, these measurements
can serve as unambiguous determinations of the 6d-7p matrix
elements themselves.

II. ATOMIC STRUCTURE DETAILS

Indium has atomic number Z = 49 and a ground-state
electron configuration given by [Kr]4d105s25p. This state has
electronic angular momentum J = 1/2, and we notate it as the
5p1/2 state. In the present paper we consider three resonance
lines. One, at 410 nm, excites the 5p1/2-6s1/2 transition, and
the other two, at 690 and 685 nm, respectively, are resonant
with the excited 6s1/2-7p1/2,3/2 transitions. See Fig. 1 for the
relevant energy-level structure.

Throughout this paper, we focus on the 115In isotope
(96% abundant). Small peaks from 113In are either unresolved
or spectroscopically separated. These small features can be
explicitly accounted for, but their presence does not contribute
in any significant way to our experimental uncertainties. As
discussed in [14,29], 115In has nuclear spin I = 9/2, meaning
that all J = 1/2 states studied have hyperfine levels F = 4
and 5, while the 7p3/2 state has F = 3,4,5,6. In particular,
the 5p1/2 and 6s1/2 states considered below have hyperfine
splittings of 11.4 and 8.4 GHz, respectively, while the various
hyperfine splittings for the 7p states range from 100 to
500 MHz.

For the case of our 7p1/2 Stark shift measurement, since J =
1/2, there is only a common scalar Stark shift for all hyperfine
sublevels, leading to a scalar polarizability, α0, and no tensor
component. We expect to observe an energy shift for each
sublevel of�E = − 1

2α0E2, whereE is the magnitude of the ap-
plied electric field, taken to be along the z axis. As discussed in
[29], if we keep the first-step excitation laser tuned to the Stark-
shifted 5p1/2 → 6s1/2 resonance, the observed frequency
shift in the second-step (6s1/2 → 7p1/2) transition will be
exactly given by �ν =− 1

2h
[α0(7p1/2) − α0(6s1/2)]E2 ≡ k0E2,

where k0 is the scalar Stark shift constant. Using our

FIG. 1. Level structure of 115In states relevant to the present
measurements. Our two-step spectroscopic scheme requires that we
overlap 410- and 690-nm (685-nm) lasers through an atom source
to drive the “first-step” 5p1/2-6s1/2 transition and the “second-step”
6s1/2-7p1/2(3/2) transition.

previous measurement of the α0(6s1/2) − α0(5p1/2) polariz-
ability difference [14] in conjunction with theoretical predic-
tions for the very small α0(5p1/2) [22], we can determine a
precise value for the 7p1/2 scalar polarizability, with negligible
introduction of additional uncertainties.

In contrast to this, the 7p3/2 state admits a tensor polarizabil-
ity in addition to the scalar component discussed above. The
tensor component mixes F states; in this case, the Hamiltonian
in the presence of an electric field is

H = VS + Vhf (1)

where the hyperfine Hamiltonian, Vhf, can be found in, for
instance, [30]. The Stark Hamiltonian, VS , is given by

〈FmF |VS |F ′mF 〉 =− 1
2α0E2δFF ′ − 1

2α2E2〈FmF |Q|F ′mF 〉,
(2)

where the hyperfine-basis Stark mixing operator Q is derived in
[31]. The Hamiltonian is block diagonal in mF because we take
the electric field along the quantization axis. We also note that
this result is not perturbative, as the Stark shift is of the same
order as the hyperfine structure in this state. Figure 2 shows
the field-dependent results of a numerical diagonalization of
the full Hamiltonian for a range of electric fields attainable
in the laboratory. In this figure we have omitted the large,
common shift of all levels due to the scalar polarizability for
clarity.

In analogy to the Stark shift constant used in the extraction
of the 7p1/2 scalar polarizability above, we can introduce an
“effective” Stark shift constant for each particular sublevel of
the 7p3/2 state,

keff = k0 + c(F,mF )k2, (3)
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FIG. 2. Energy eigenvalue structure under applied electric field
for all hyperfine sublevels of the indium 7p3/2 state. The mF

designations of the sublevels are indicated at the far right of the figure.
Here, for clarity, we have subtracted out the large scalar shift, − 1

2 α0E2,
shared by all |F,mF 〉 levels.

that combines the effects of the tensor and scalar polariz-
abilities so that the observed shift of a level |FmF 〉 between
fields E1 and E2 is given by �ν = keff(E2

2 − E2
1 ). Here k0 =

− 1
2h

[α0(7p3/2) − α0(6s1/2)] as above, and k2 = − 1
2h

α2(7p3/2)
analogously. Given this parametrization, we note that both
keff and k0 have negative values, whereas k2 itself turns out
to be positive (though much smaller in magnitude). The
coefficients c(F,mF ) are level-dependent factors of order unity
that reflect the relative shift of distinct hyperfine states and can
be calculated numerically by diagonalizing the Hamiltonian
in Eq. (1). The sign of these coefficients is positive for the
group of upward-trending states in Fig. 2 and negative for the
lower-frequency downward-trending states.

Such a formulation is only approximate, as the shift effected
by the tensor polarizability is not purely quadratic in the electric
field. Equivalently, one can view the coefficient c(F,mF ) as
having a slight electric-field dependence. Nonetheless, for
the limited range of large electric fields used to extract the
tensor polarizability, the uncertainty in a measurement of α2

due to imprecision in this simple field-independent model
for c(F,mF ) is at the level of 0.5% or below, and can be
neglected when compared to other experimental errors, as
discussed below. The final fractional experimental uncertainty
in the tensor polarizability of the 7p3/2 state is quite large
in comparison to our scalar polarizability measurements, due
both to its size relative to the scalar component as well as to
the complications of composite spectral peaks associated with
multiple unresolved but nondegenerate magnetic sublevels.
We note that our final ∼12% experimental uncertainty in this
quantity is in agreement with, and of comparable precision to,
the theoretical prediction presented below.

III. EXPERIMENTAL DETAILS

A. Atom beam source and electric-field production

We perform polarizability measurements in a collimated
beam of indium atoms to which precisely calibrated dc electric
fields are applied in order to effect a static Stark shift. The
portion of the apparatus used for atom and electric-field
production is practically identical to that described in [14,29].
In brief, the atomic beam is contained in a home-built vacuum
chamber held at approximately 10−7 Torr through the use
of two diffusion pumps. A sample of indium metal is first
heated in a molybdenum crucible to roughly 1100 ◦C. Several
collimating stages are then applied along a ∼0.5-m beam path
between the source oven and the interaction region. Due to this
geometrical collimation, when we direct the 410-nm first-step
laser transversely to the atomic beam, we see a residual Doppler
width of roughly 100 MHz.

In the measurement region, the atomic beam passes between
two circular 10-cm-diameter stainless steel capacitor plates,
the separation of which was measured to be 1.0038(5) cm. We
apply voltages of up to 20 kV using a commercial high-voltage
supply [32] and measure them using a high-precision voltage
divider and a calibrated 6 1

2 digit voltmeter [33] in parallel
with the field plates. We direct the second-step red laser in
counterpropagating fashion to the blue beam and the lasers
interact with the indium atoms over a 2-cm-wide region in the
center of the field plates. Three orthogonal sets of magnetic-
field coils cancel the Earth’s field to roughly 1 μT in the
measurement region.

B. Optical setup

Our experiment makes use of a two-step laser spectroscopy
technique similar to that described in [29,34]. We use two
external cavity diode lasers (ECDLs) in the Littrow configura-
tion. The first ECDL (Toptica DL 100) is frequency modulated
using a 100-MHz electro-optic modulator (EOM), generating a
dispersively shaped resonance signal from one of the Doppler-
broadened 410-nm 5p1/2(F = 4,5) → 6s1/2(F ′ = 4,5) first-
step hyperfine transitions when passed through a supplemen-
tary, field-free, heated vapor cell. This beam is sent to a standard
PID servo circuit (not shown; see [29] for further details on
this procedure). This technique allows us to achieve frequency
stabilization of better than 1-MHz rms over time scales of
several hours. We note that the same heated vapor cell is used,
as described below, to drive two-step excitation by overlapping
the red laser beam with an additional blue beam component.
A setup consisting of two acousto-optic modulators (AOMs)
is used to shift the frequency of the 410-nm light directed
to the atomic beam to remain resonant with the Stark-shifted
first-step transition there. The precise frequency shift required
for a given electric field is well known from our previous
measurement [14].

A second, home-built ECDL is directed in a spatially
overlapping, counterpropagating geometry through the atomic
beam, and is scanned over the hyperfine levels of the relevant
690-nm (685-nm) 6s1/2 → 7p1/2(3/2) second-step transition.
To observe the very weak red laser absorption signal, we
modulate the 410-nm light directed through the atomic beam
with an optical chopping wheel at ∼1 kHz. We then detect
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FIG. 3. Simplified diagram of the full optical setup used in indium
polarizability measurements. Here PD refers to a photodetector, EOM
refers to an electro-optic modulator, and ECDL refers to an external
cavity diode laser. Two acousto-optic modulators (AOMs) are inserted
in the path of the blue laser beam component which is incident on the
atomic beam apparatus in order to maintain resonance for the first-step
transition as the electric field is changed in the interaction region (see
text). The blue laser is locked to the first-step transition using the same
indium vapor cell (beam and electronics not shown).

the red absorption with a 10-MHz-bandwidth photodiode and
demodulate at the first-step chopping frequency using a lock-in
amplifier. This serves to eliminate background and greatly
improve the signal-to-noise ratio for this second-step signal.
Because the locked 410-nm laser only interacts with a limited
range of atomic velocities, this technique produces a virtually
Doppler-free second-step spectrum. Despite low optical depths
in the atomic beam (∼10−3 for the 410-nm transition) and
relatively small line strengths associated with the indium 6s-7p

transitions (one to two orders of magnitude weaker than in
the case of our recent 6s-6p polarizability work), the lock-in
detection scheme is sufficiently sensitive to yield second-step
hyperfine spectra with peaks resolvable at the 1–2-MHz level
for a typical 10-s scan.

Using the same detection scheme as in the atom beam,
we separately monitor the second-step hyperfine spectra in
the same heated, field-free vapor cell used for locking the
first-step transition. The resulting high-resolution spectra (see,
for example, the lower plot in Figs. 4 and 5) serve as stable
frequency references from which to measure Stark shifts in the
atomic beam. Additionally, the red light directed to the cell is
modulated at ωm = 2π×1000 MHz using an EOM—by doing
so, we introduce first-order sidebands at ±ωm into the vapor
cell spectra, which are used to calibrate the frequency axes of
our scans. Finally, a small portion of red laser light is directed
into a Fabry-Pérot cavity (free spectral range ≈363 MHz) to
aid in frequency axis linearization during analysis. Figure 3
shows a simplified diagram of the complete optical setup.

C. Data acquisition procedure

We use a LabVIEW program to control and measure the
applied electric field in the atomic beam unit, apply the
proper AOM frequency to maintain 410-nm resonance with

the Stark-shifted transition, and collect Fabry-Pérot, vapor cell,
and atomic beam data for successive laser scans. These are
separated into upscans and downscans corresponding, respec-
tively, to increasing and decreasing laser frequency with time.

For 7p1/2 scalar polarizability measurements, we collect
data at electric fields between 1 and 6 kV/cm, alternating
between scans with the electric field on and the electric field off.
Given the large polarizability of this excited state, this produces
readily measurable Stark shifts of order several hundred MHz.
We follow a similar procedure for 7p3/2 scalar polarizability
measurements, though here we only collect data for fields up
to 3 kV/cm, since for larger fields the tensor component of the
polarizability begins to noticeably complicate the line shape as
can be seen in Fig. 2 (potential systematic errors introduced by
the tensor polarizability are discussed below). As a means of
testing for systematics related to long-term drifts in the electric
field, we successively alternate the order in which field-on and
field-off scans are collected. Pairs of scans taken in off → on
order are then compared with those taken in the on → off
sequence, as discussed in [29].

To measure the 7p3/2 tensor polarizability, we instead
collect data at higher fields near 15 kV/cm. This requires a
detuning of the 685-nm laser by roughly 8 GHz from the field-
free resonance, meaning that we cannot reference to a (field-
free) vapor cell signal. Rather than alternate with field-free
data in this configuration, we instead measure the relative Stark
shift between different high-field scans, so that the observed
frequency shift �ν between fields E1 and E2 is given by

FIG. 4. Atomic beam spectra for the case of the (F ′ = 4) →
(F ′′ = 4,5) transitions of the 690-nm 6s1/2-7p1/2 line. The field-off
spectrum (red dashed line) and the spectrum with a 3-kV/cm electric
field applied (blue solid line) are shown. Displayed below is the
corresponding (field-free) vapor cell spectrum, including 1000-MHz
FM sidebands, used for frequency referencing and calibration. The
small spectral features on the shoulders of the large vapor cell peaks
are due to the 113In isotope (4% abundance) which we account for
in our line-shape analysis. As noted in the text, the data shown here
represent the average of 30 consecutive field-off and field-on scan
pairs.
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FIG. 5. Atomic beam spectra for the case of the (F ′ = 4) →
(F ′′ = 3,4,5) transitions of the 685-nm 6s1/2-7p3/2 line. The field
off spectrum (red dashed line) as well as the spectrum with a 1.5-
kV/cm electric field applied (blue solid line) are shown. Displayed
below is the corresponding (field-free) vapor cell spectrum, including
1000 MHz FM sidebands, used for frequency referencing and cali-
bration. As in the previous figure, the data shown here represent the
average of thirty consecutive field-off and field-on scan pairs.

�ν = keff(E2
2 − E2

1 ) as described in Sec. II. A typical collection
run acquires scans in the following order: 14 → 15 → 16 →
16 → 15 → 14 kV/cm. This allows for the comparison of
consecutive scans with increasing versus decreasing electric
fields, a useful check on systematics relating to long-term drifts
in the apparatus.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

Thousands of individual pairs of field-off and field-on red
laser scans were collected across several months for each of
the 6s-7p transitions. Over the course of these measurements,
in addition to the electric-field value, we varied experimental
parameters such as the choice of intermediate (6s) state
hyperfine level, relative optical power and laser polarization,
atomic beam source temperature, as well as laser sweep speed
and frequency range. Figure 4 shows typical atomic beam
field-off and field-on red laser spectra for the 7p1/2 state (top),
with the accompanying vapor cell reference and calibration
scan below. Figure 5 shows a similar set of scans for one set of
three 7p3/2 hyperfine sublevels. In both cases, the frequency
axes have been linearized and calibrated as noted below and
as outlined in detail in [14,29]. We extract Stark shifts for
each pair of scans of consecutive field-on and field-off scans;
however, for display purposes, in the figures included here, we
have averaged the data from 30 consecutive scan pairs taken
under identical conditions over the course of roughly 20 min.

A. Data analysis procedure

We extract polarizabilities from collected data following a
procedure similar to that described in [29]. We first linearize

the frequency axes for every scan using the positions of the red
Fabry-Pérot transmission peaks. We then fit field-free vapor
cell data to sums of six (nine) Lorentzian peaks, correspond-
ing to two (three) hyperfine peaks and four (six) first-order
EOM sidebands at ±1000 MHz for the 7p1/2 (7p3/2) state.
The frequency axis is calibrated by extracting the observed
splittings between hyperfine peaks and their corresponding
first-order EOM sidebands—the axis is then scaled to bring
these splittings to their known value of 1000 MHz. We then
determine the change in the relative position of the atomic beam
spectrum and a reference peak from the calibrated vapor cell
spectrum upon application of the electric field to determine
the Stark shift. For 7p3/2 tensor polarizability scans, which
contain no vapor cell signal, we use the frequency calibration
from vapor cell data separately taken both immediately before
and after these runs.

For 7p1/2 and 7p3/2 scalar polarizability data, Stark shifts
are extracted from atomic beam spectra using two complemen-
tary methods. The first (the “Lorentzian method”) requires that
we fit atomic beam data to sums of two (three) Lorentzians, cor-
responding to the relevant hyperfine peaks. We then compare
resonance locations for field-on and field-off scans. The second
(the “overlap method”) assumes no functional form and instead
computes the sum of squared differences between field-on
and field-off scans for a variety of shifts (frequency-axis
translations) of the field-on scan. When this value is minimized,
the peaks are optimally “overlapped,” and the Stark shift can
be determined. The potential line-shape systematic errors to
which these two methods are susceptible are quite different,
so that agreement in the respective results (as we observe) is
a good indication of the absence of significant systematics of
this type.

For 7p3/2 tensor polarizability data, taken at higher fields
near 15 kV/cm, we observe a spectrum consisting of two well-
defined, though composite, peaks (each consisting of several
nondegenerate mF levels) and an unresolved “plateau”-like
feature at higher frequency (refer to the high-field region of
Fig. 2). By measuring the shift of the lower two peaks between
pairs of voltages near 15 kV/cm—using either the Lorentzian
or overlap method with a chosen Fabry-Pérot peak as a stable
frequency reference—we can extract a value for keff in Eq. (3)
above. When combined with the value of k0 derived from low-
field measurements, this yields a value for k2 and therefore α2.
Independently, we confirmed that the transmission peaks of
our passively stabilized Fabry-Pérot, with its low-expansion-
material construction, drift by no more than a few MHz over
time scales of 1 h. Given the Stark shift differences that we
measure at these fields (roughly 500 MHz), any drift-related
errors are negligible compared to our final tensor polarizability
experimental uncertainty.

B. Error analysis and final results

Our general approach to investigation of systematic errors,
which we follow in this paper, is thoroughly discussed in
[14,29]. Our results for the 115In 7p1/2 and 7p3/2 Stark
shift constants k0 and k2, along with relevant statistical and
systematic error budgets, are presented in Table I. We deter-
mine statistical uncertainties by both assembling histograms
of all data and also considering the weighted average of runs

022507-5



N. B. VILAS et al. PHYSICAL REVIEW A 97, 022507 (2018)

TABLE I. Final experimental results, with statistical and systematic error contributions, for the Stark shift constants k0 and k2 of the
6s1/2-7p1/2,3/2 transitions in 115In.

k0(7p1/2-6s1/2) k0(7p3/2-6s1/2) k2(7p3/2)

Result [MHz (kV/cm)−2] −22.402 −35.646 +1.78

Statistical error 0.021 0.036 0.09

Systematic error sources
Laser scan direction 0.011 0.010 0.05
Frequency calibration 0.004 0.005 0.04
Scan linearization 0.002 0.003 0.003
Electric-field calibration 0.022 0.036 0.08
Laser power and polarization 0.005 0.006 0.07
First-step hyperfine transition 0.033 – –
Fitting method 0.018 0.011 –
Hyperfine level dependence – 0.050 0.14
Unresolved sublevels, composite peaks – – 0.08

Combined error total 0.050 0.076 0.23

at a given high voltage value taken over a number of different
runs and days. Our final statistical error reflects this observed
scatter in these sets of data runs taken at all electric-field values.
We also create and analyze histograms of subsets of data, such
as shown in Fig. 6(a), for the the 6s-7p1/2 690-nm transition,
where the Stark shift constant for all∼400 field-off and field-on
scan pairs for E = 3 kV/cm is plotted. Our various statistical
approaches produce final average values for data subsets that
are in very good agreement.

1. Scalar polarizabilities

We first bisect the data in various ways based on laser
sweep direction, intermediate hyperfine level, order of field-off
and field-on sequencing, spectral peak analysis method, etc.,
and look for statistically significant differences. Occasionally,
among some data subsets, these comparisons yield small re-
solved differences, at the level of 1.5 to 2 (combined) standard
deviations, in which case we include associated contributions
to the total error budget in Table I.

We also consider potential systematic errors by searching
for correlations of measured polarizabilities with, for example,
electric-field value and laser power. An example of this is
shown in Fig. 6(b), where all of our 6s-7p1/2 Stark shift
constant results have been plotted versus electric field. While,
as expected, the precision of the polarizability determination is
much greater at larger field (where the much larger Stark shift
can be measured with much greater fractional accuracy), we
see no resolved trend in the central values as the field is varied.
Also considered are error contributions from imprecision in
the measurement and calibration of the applied electric field,
due to uncertainty in the field plate separation as well as the
applied voltage. Errors due to the calibration and linearization
of the frequency axis are also quantified by fitting Fabry-Pérot
and vapor cell spectra using a variety of different methods.

In the case of the 7p3/2 state, we can only access three of
the four hyperfine levels in a given two-step excitation path,
due to selection rules. We have collected data for both the
3-4-5 hyperfine spectra and the 4-5-6 spectra. It is particularly
important to study potential field-dependent systematics here,
since we know that the tensor component of the polarizability

will eventually cause broadening of hyperfine peaks and
differential Stark shift rates as the electric field increases and
tensor contributions to the polarizability become significant.
Figure 7(a) shows the polarizability determinations averaged
over hyperfine levels in all of our 4-5-6 spectra for fields
between 1 and 3 kV/cm, a range over which we expect the
tensor contributions to be negligible. Figure 7(b) shows the
3-kV/cm subset of the data for the 7p3/2 scalar polarizability
measurement, where we have plotted the Stark shift constant
for each hyperfine level individually, now including all four
of the hyperfine levels. At this largest field value, we would
expect any possible systematic error introduced by tensor
polarizability-induced hyperfine line broadening and potential
line-shape asymmetry to be most noticeable. Similar analyses
at all field values, while in some cases revealing variation
across hyperfine levels that is slightly in excess of the intrinsic
statistical uncertainties (for which we include an additional
“hyperfine level dependence” systematic error), show no evi-
dence of the type of tensor polarizability trends predicted for
higher fields in Fig. 2. Furthermore, as can be seen in that
figure, averaging all hyperfine Stark shifts at low fields should
make us even more immune to any residual tensor effects.

In all cases, contributions from systematic errors remain
below the 0.5% level. Varying laser polarizations will also
potentially affect spectra peak determination due to changing
rates of excitation for nondegenerate, unresolved mF levels
contained in each observed peak, and we have been careful to
explore a variety of polarizations for both lasers in our data
sets. In Table I we have included small contributions from this
and all other systematic errors that we have considered.

2. 7 p3/2 tensor polarizability

Having extracted a reliable value for the 7p3/2 scalar
polarizability from the low-field data, we are able to analyze
the high-field data to infer a value for the tensor component.
As laid out in Sec. II, we first extract keff from a pair of two
different high field scans, focusing in particular on the shift in
the two lower-frequency (composite) spectral peaks, such as
can be seen in Fig. 8. Numerical modeling allows us to estimate
a range of c(F,mF ) coefficient values for the set of magnetic
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FIG. 6. (a) For the 690-nm 6s-7p1/2 transition, we plot the Stark
shift constant derived from roughly 400 field-off and field-on scan
pairs taken with E = 3 kV/cm. A Gaussian curve is laid over the
data for display purposes. Central values and standard errors from
such analyses complement a weighted average analysis approach to
arrive at final statistical averages and uncertainties. (b) All 7p1/2 Stark
shift data, with Stark shift constant plotted vs electric field to explore
potential field-dependent systematic errors. An analysis of these data
shows the absence of a statistically resolved correlation.

sublevels contained within each composite peak. Since we
cannot predict the exact weightings of the components within
the composite peak, we assign a systematic composite line-
shape error as part of the analysis. By considering all pairs of
14-15-16-kV/cm data scans and subtracting the known scalar
Stark shift coefficient, we can obtain a final extracted value for
k2, and hence α2.

Varying relative laser polarization significantly affects these
high-field spectra, since the excitation probabilities among
the various 7p3/2(F,mF ) sublevels are highly sensitive to
the polarization selection rules. We have collected high-field
spectra for several choices of polarization. Within the final
experimental uncertainty which we quote, we see consistent

FIG. 7. (a) For the case of all data collected for the transition
path 6s1/2(F ′ = 5) to 7p3/2(F ′′ = 4,5,6), we average the results of
the Stark shift constant for each upper-level hyperfine state, and
the resulting average Stark shift constants at each electric-field
value are plotted. Given that the tensor polarizability is expected
to contribute at higher fields, it is notable that over the 1–3-kV/cm
range shown here we see no statistically significant variation in the
measured polarizability. (b) At the highest field used, where we
expect some hyperfine peak broadening and possible peak asymmetry,
we investigate the dependence of the measured Stark shift constant
on hyperfine level, now including data taken for each of the four
7p3/2-state sublevels.

results across various choices of polarization values. The tensor
component for the polarizability for this indium state has the
opposite sign from the scalar component, and is more than an
order of magnitude smaller. Because of both its relative size
and the line-shape complications alluded to here, our estimate
for α2 has a final fractional uncertainty of roughly 12%.
Though this precision is far poorer than all of our recent scalar
polarizability measurements, our experimental uncertainty is
comparable to the estimated theory uncertainty for the tensor
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FIG. 8. For the 685-nm 6s-7p3/2 transition, spectra are shown for
the case of E = 15 and 16 kV/cm, showing a roughly 1-GHz overall
Stark shift. For each electric-field value, we have averaged a series of
scans taken consecutively over a period of 10 min for display purposes.
Referring to Fig. 2, one can see experimental evidence supporting our
numerical model, where two relatively sharp experimental peaks are
accompanied by a broad composite feature at the higher frequency
end of both of the scans shown.

component and, given these respective uncertainties, is in good
agreement with that prediction (see Table IV).

V. THEORY

Indium can be treated as a system with one valence
electron and [1s22s22p63s23p63d104s24p64d105s2] core or
as a trivalent system with a 5s2 open shell. In the first case,
one can use the method developed to treat alkali-metal atoms
where single, double, and partial triple excitations (LCCSDpT)
of the Dirac-Fock wave function are included to all orders [35].
We refer to this method as CC for brevity in the text and tables
below. The advantage of this approach is a more complete
inclusion of the correction to the dipole operator, described,
for example, in a review [35]. The disadvantage is the inability
to explicitly treat three particle states, such as 5s5p2, which
appear very low in the In spectrum and lie near the 5s27s level.

To remedy this problem, we also use a hybrid approach
that combines configuration interaction (CI) and all-order lin-
earized coupled-cluster methods [8], and treat In as a trivalent
system. This method allows us to consider the 5s5p2 configura-
tion on the same footing with 5s2nl configurations and permits
mixing of such levels. The main challenge in the theoretical
treatment of systems with two or more valence electrons is the
accurate treatment of both core-valence correlations and strong
valence-valence correlations. In the CI+all-order method, the
core-valence (and core-core) correlations are treated by the
coupled-cluster all-order method, which is used to construct
the effective Hamiltonian. The effective Hamiltonian is subse-
quently used in the configuration-interaction part of the method
that treats the valence-valence correlations. The wave functions

and the low-lying energy levels are determined by solving
the multiparticle relativistic equation Heff|�〉 = E|�〉. As a
result, all of the correlation corrections to the wave functions
are treated at the all-order level. To improve the accuracy of the
basis set for the orbitals of interest, we use an exact solution
of the Dirac-Fock equations to obtain the 5p, 5d, 6s, 6p, 6d,
7s, 7p, and 4f valence orbitals. The remaining orbitals are
constructed using B splines, with subsequent diagonalization
of the combined basis.

The valence part of the polarizability is determined by
solving the inhomogeneous equation of perturbation theory
in the valence space, which is approximated as

(Ev − Heff)|�(v,M ′)〉 = Deff,q |�0(v,J,M)〉 (4)

for a state v with the total angular momentum J and pro-
jection M [36]. While Heff includes the all-order corrections
as described above, the effective dipole operator Deff only
includes random-phase-approximation (RPA) corrections at
the present time. The CI+all-order method is generally used
to extract properties of the low-lying states via Davidson’s
method which does not require full diagonalization of the
matrix to solve the Schrödinger equation. While this allows for
precise determination of the 7p energies, numerical issues arise
when calculating 7p polarizabilities. We find that the iterative
solutions of Eq. (4) do not converge in this case, requiring
full diagonalization of the matrix. Since it is exceptionally
time consuming to diagonalize very large matrices used in the
wave-function calculation, we use a full calculation to sort
the configurations in order of their importance. This allows
us to reduce the matrix size for the direct solution of Eq. (4).
We correct for small numerical inaccuracy associated with the
matrix truncation by recalculating dominant contributions to
the polarizabilities using the matrix elements obtained with
the full set of the configurations and experimental energies as
described below. We note that these problems do not arise in
the calculations of the low-lying state polarizabilities, such as
5p, 6s, and 6p.

In the CC method, the polarizabilities are calculated using
a sum-over-states approach. The valence contribution to scalar
α0 and tensor α2 polarizabilities is evaluated as the sum over
intermediate k states allowed by the electric dipole selection
rules [37]

αv
0 = 2

3(2jv + 1)

∑
k

〈k‖D‖v〉2

Ek − Ev

,

(5)

αv
2 (ω) = − 4C

∑
k

(−1)jv+jk+1

{
jv 1 jk

1 jv 2

} 〈k‖D‖v〉2

Ek − Ev

,

where C is given by

C =
(

5jv(2jv − 1)

6(jv + 1)(2jv + 1)(2jv + 3)

)1/2

.

The contributions to the 7p1/2 and 7p3/2 polarizabilities in
indium (in units of a3

0) are given in Tables II and III. The �E =
Ek − Ev energy difference calculated using the experimental
values [38] and the absolute values of the reduced matrix
elements obtained using both CC and CI+all-order methods
are also listed. The uncertainty of the CC matrix elements
is estimated using the method described in [22]. Briefly,
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TABLE II. Contributions to 7p1/2 scalar polarizabilities of indium in a3
0 calculated using the CC and CI+all-order approaches. Energy

differences (in cm−1) and absolute values of reduced matrix elements (in a.u.) are listed. Uncertainties are given in parentheses.

Matrix elements α0 α0

Contr. �Eexpt CC CI+all CC CI+all

6s −14488.5 0.683(63) 0.649(18) −2(0) −2(0)
7s −2559.6 12.215(57) 12.21(20) −4264(40) −4258(130)
8s 1775.6 12.301(51) 12.335(42) 6235(52) 6269(43)
9s 3857.6 2.252(22) 96(2)
5d3/2 −5969.2 2.179(30) 1.941(90) −58(1) −46(4)
6d3/2 187.1 21.50(27) 21.24(20) 180679(4500) 176471(3300)
7d3/2 2975.0 10.8(1.2) 2885(660)
8d3/2 4474.5 4.670(45) 356(68)
5s5p2 −5 −5
Other 309(62) 3821(80)
Core 30 3

Total 186259(4600) 182253(3300)

four different CC calculations are carried out, including two
ab initio calculations with and without the inclusion of partial
triple contributions and two corresponding calculations where
higher excitations are estimated using a scaling procedure. The
maximum differences of the final values and the other results
provide the uncertainty estimates. To estimate the uncertainty
in the CI+all-order matrix elements, we carry out a calcu-
lation that combines configuration interaction and second-
order many-body perturbation theory (CI+MBPT) [39]. In
this method, the effective Hamiltonian is constructed using
second-order MBPT rather than the all-order coupled-cluster
approach, omitting all higher-order core-valence and core-core
corrections. For the CI+all-order method, the dominant uncer-
tainty comes from omitted higher-order core-valence correla-

tions as the completeness of valence CI has been established.
The CI+MBPT method only includes second-order core-
valence correlation, while the CI+all-order method includes
dominant core-valence higher-order corrections. Therefore,
the differences of the CI+all-order and CI+MBPT results
provide a rough estimate of uncertainties as the omitted
higher-order corrections are smaller than the included ones. We
could not use this approach for the 7p3/2-6d5/2 matrix element
since the CI+MBPT method places the 5s5p2 configuration
very close to the 6d5/2 level, resulting in incorrect level
mixing; therefore we do not quote uncertainties for the 7p3/2

polarizability. We estimate the uncertainty of the CI+all-order
7p3/2 scalar polarizability value to be 2% based on the 7p1/2

uncertainty. Finally, we estimate the uncertainty of the 7p3/2

TABLE III. Contributions to 7p3/2 scalar and tensor polarizabilities of indium in a3
0 calculated using the CC and CI+all-order approaches.

Energy differences (in cm−1) and absolute values of reduced matrix elements (in a.u.) are listed. Uncertainties are given in parentheses.

Matrix elements α0 α0 α2 α2

Contr. �Eexpt CC CI+all CC CI+all CC CI+all

6s1/2 −14599.9 1.131(87) 1.086 −3(0) −3.0 3(0) 3.0
7s1/2 −2671.0 16.933(91) 16.922 −3927(42) −3921 3927(42) 3921
8s1/2 1664.1 18.280(87) 18.319 7345(71) 7377 −7345(71) −7377
9s1/2 3746.1 3.081(33) 93(2) −93(2)

5d3/2 −6080.7 0.769(47) 0.755 −4(0) −3.4 −3(0) −3
6d3/2 75.6 9.60(12) 9.473 44566(1100) 43403 35652(910) 34722
7d3/2 2863.5 5.27(57) 355(76) 284(61)
8d3/2 4363.0 2.20(21) 41(8) 33(6)

5d5/2 −6057.4 2.346(94) 2.308 −33(3) −32 7(1) 6
6d5/2 125.5 29.07(80) 28.46 246375(13600) 236142 −49275(2700) −47229
7d5/2 2889.1 15.4(2.5) 2986(970) −597(200)
8d5/2 4382.2 6.48(82) 350(88) −70(18)
5s5p2 −280 −280 56 56
Other 323(64) 4650 −66(13) −333
Core 29.6 3 0 0

Total 298215(13600) 287332 −17488(2870) −16233
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TABLE IV. Comparison of experimental and theoretical results for In polarizabilities. �α0 in the third column of results refers to the
6s-5p1/2 polarizability difference. CC 6s, 5p1/2, and 6p values are from [22].

Method α0(6s) α0(5p1/2) �α0 α0(6p1/2) α0(6p3/2) α2(6p3/2) α0(7p1/2) α0(7p3/2) α2(7p3/2)

CC 1056(27) 61.5(5.6) 995(28) 7817(155) 10506(180) −1432(42) 1.863(46)×105 2.98(14)×105 −1.75(29)×104

CI+all 1055(7) 62.5(2.0) 992(7) 7630(120) 10259(230) −1407(40) 1.823(33)×105 2.87(6)×105 −1.62(16)×104

Expt. 1050(6) 988.0(2.7)a 7590(37)b 1.811(04)×105 2.876(06)×105 −1.43(18)×104

aSee [14].
bSee [29].

tensor polarizability to be 10% by considering the uncertainties
in the analogous calculation for the 6p3/2 state, while also
recognizing that, for the 7p case, there is significantly more
severe cancellation of terms in the relevant sum. This paper
provides an excellent test of these methods to evaluate theoret-
ical uncertainties in CC and CI+all-order frameworks, which
is crucial for many other applications where experimental data
are not available but uncertainty estimates are required. The
relative uncertainty in the polarizability contribution is twice
the relative uncertainty of the matrix element. The remaining
valence contributions not explicitly listed in the tables are
grouped together in the rows labeled “Other.” The contribution
of the ionic core calculated in the RPA approximation as
described in [22] is listed in the row labeled “Core.” It is
negligible for the 7p states.

While the calculation of the CI+all-order polarizabilities
does not involve the sum-over-states expressions [Eq. (5)], it
is instructive to extract several low-lying contributions using
the above expression. As noted below, we replace these with the
more accurate experimental energies and CI+all-order matrix
elements obtained in the full-scale computation. The differ-
ences are well below the expected accuracy of the calculations
with the exception of the 7p-6d contribution, which has a
very small energy difference. While the CI+all-order method
reproduces the energy levels with about 0.5% precision, even a
50-cm−1 error in the 7p-6d theoretical energy difference very
strongly affects polarizabilities, and the experimental interval
must be used. As expected, the 7p-6d contribution is strongly
dominant, giving 97% for both 7p scalar polarizabilities. We
have also calculated the 6s, 5p, and 6p polarizabilities and
estimated their uncertainties using an improved basis set,
added the Breit interaction and improved constriction of the
configuration space in comparison with the 2013 work [22].

VI. DISCUSSION AND COMPARISON OF RESULTS

All theoretical results are summarized alongside corre-
sponding experimental values in Table IV. As noted earlier,
while measured Stark shift constants reflect the differential
shift between the 6s and 7p states, the 6s Stark shift is nearly
two orders of magnitude smaller, and has been measured with
high accuracy previously in our group [14]. Therefore, it is
straightforward, without loss of accuracy, to convert our results
to polarizabilities of the 7p states themselves. Table IV sum-
marizes these results, in atomic units, and also includes older
experimental measurements from 2013 and 2016. We note that
for the case of these older results a small error was discovered
in the numerical factor used to convert the measured Stark

shift constants to polarizability in atomic units. The corrected
polarizability numbers for the 6s and 6p1/2 states in atomic
units are included in Table IV along with our results in the final
row of the table. Revised CI+all-order values for the 6s and
6p polarizabilities are in better agreement with the CC values,
resolving a previous discrepancy. Considering all excited state
experimental and theory information now available, we find
that the central values obtained with the CI+all-order method
are in significantly better agreement with the experiment for
the 6p and 7p polarizabilities, which is likely due to direct
inclusion of the three-particle configurations beyond 5s2nl.
We find that such configurations contribute a few percent via
level mixing to 5s2nl wave functions. In every comparison,
the experimental values agree to within 0.5% with the quoted
CI+all-order theoretical predictions.

Because of the large matrix elements and very small
energy differences associated with the 7p-6d terms within the
infinite sums that make up the polarizabilities, we can make
a straightforward determination of these particular matrix
elements using our experimental values and the known energy
splittings. By subtracting from our experimental polarizability
value the residual terms of the theoretical sum (which in total
represent only a few percent of the net polarizability), we can
isolate the dominant term in the sum, and then compute a rec-
ommended value for the particular matrix element of interest.
This procedure does not lead to any additional uncertainties, as
the error in the residual terms of the infinite sum is very small
compared to the experimental uncertainty. A similar procedure
was undertaken for the case of the 6p-5d matrix element in
[29]. In the present paper, we infer the following values for
two indium reduced matrix elements (in atomic units):

〈6d3/2||D||7p1/2〉 = 21.17(04),

〈6d5/2||D||7p3/2〉 = 28.49(11).

When we compare these values to the relevant theoretical
entries in Tables II and III we see particularly good agreement
with the corresponding CI+all entries there.

VII. CONCLUSION

We have completed high-precision measurements of
polarizabilities in the highly excited 7p states of 115In, and in
parallel developed ab initio theoretical calculations of those
same quantities. This paper demonstrates the applicability
of the CI+all-order method, which was initially designed
to provide values for low-lying states, to the calculation of
polarizabilities of such high excited states. By combining
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the present polarizability measurements with recent ones in
lower-lying states of indium, we have directly demonstrated the
value of such experimental benchmarks in guiding theoretical
work forward via their ability to discern between competing
models. The experimental values for the 6p and 7p states are
clearly in better agreement with the CI+all-order calculations
that treat In as a three-electron system, demonstrating the
importance of configuration mixing. The comparison also
validates the procedures for the evaluation of theoretical
uncertainties in both approaches. This work is essential to
allow the continued development of theory necessary for robust
tests of fundamental physics in these trivalent systems. Future
experimental work will extend these two-step measurements

of excited-state polarizabilities to the heavier thallium system,
where a similarly detailed comparison of experiment and
theory should be possible.
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