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Low energy levels in neutral muonic helium within a nonrelativistic approach
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We consider a nonrelativistic approximation for the neutral muonic helium atom, a three-body system, which
consists of an electron, a muon, and a helium nucleus. We discuss the case with the muon in the ground state and
study the low energy levels and the transition frequencies of the electron (2s − 1s and 2p − 2s). We treat neutral
muonic helium both as a three-body system (with a numerical variational solution) and as a two-body system of
an electron bound by a two-body compound nucleus. We compare the results of two approaches and discuss the
validity and consistency of fits and of the nonrelativistic approximation.
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I. INTRODUCTION

A neutral muonic helium atom is a three-body system,
consisting of an electron, a muon, and a nucleus. It is
an exotic system, but within a reach. In particular, it has
been successfully formed [1] and its hyperfine interval was
studied [2].

With a muon at a low state, it allows the results in closed
analytic form, based on the idea of a subsequent consideration
of two two-body problems [3–6]. One is the problem of a
two-body system of a muon and a nucleus. In its turn that
system plays a role of a compound nucleus which makes
a hydrogenlike atom with an electron. We remind that the
compound nucleus (in the case of the muon at one of the lowest
states) has a size comparable with the Compton wavelength of
the electron λC , while the electron atomic cloud has a standard
size of the Bohr radius aB , which is two orders of magnitudes
(∼α−1) larger than the Compton wavelength.

The other group of the available theoretical results is from
a numerical treatment which starts from a variational solution
of a three-body nonrelativistic problem (see [7,8] for detail).

In this paper, we perform numerical nonrelativistic calcu-
lations for the system with the muon at the 1s state and the
electron in the 1s, 2s, and 2p states. The calculations are
performed for the infinite mass of the nucleus. To interpret
the results on the energy levels in the terms of an analytic
expansion, we perform several fits.

We qualitatively understand certain details of the functional
dependence of the energy (in atomic units) on the mass ratio
me/mμ, which is the only parameter for the nonrelativistic
energy levels in the case of infinitely heavy nucleus. Some
coefficients of the analytic expansion are known [9]. Different
fits use different portions of our understanding, which allows
us to verify various hypotheses.
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We discuss the numerical results, obtained on the coef-
ficients, and improve them (in comparison with the direct
numerical results) by using certain corrections due to the finite
value of the actual nuclear mass.

Once we put the nuclear mass to the infinity and consider
the muon in the ground state, the complete binding energy of
an electronic level nlj (expressed in atomic units) depends only
on two parameters: the value of the fine structure constant α

and the electron-to-muon mass ratio me/mμ:

Enlj (α,me/mμ) = E (0)
nlj

(me/mμ) + α E (1)
nlj

(me/mμ)

+α2E (2)
nlj

(me/mμ)

+α3E (3)
nlj

(me/mμ) + · · · . (1)

Rigorously speaking, that is not a Taylor expansion in α,
but rather an indication of the order of magnitude of the
contributions. The coefficients E (k)

nlj
, except of the first one, may

include a weak α dependence such as a logarithmic one. Some
relativistic and radiative corrections are discussed in [9,10]. In
particular, the contributions E (1)

nlj
and E (3)

nlj
appear through the

radiative corrections, while the E (2)
nlj

term is mostly due to the
relativistic effects.

The specificity of the electronic energy levels in a three-
body system with a hierarchy (me � mμ � M) is that ad-
ditionally to rather kinematic relativistic corrections for the
electron, there is another way to involve the relativistic effects
through the structure of the compound nucleus. The compound
nucleus is compact and because of its small size the effects
due to the penetration of the electron into the nucleus are of
the relativistic nature. That happens in all atomic systems,
including electronic and muonic two-body atoms with an
ordinary nucleus. In an ordinary situation, the ratio of the
nuclear radius to the characteristic electron’s or muon’s radius
explicitly contains α indicating the presence of the relativistic
effects.
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In the specific case of neutral muonic helium with the muon
in the ground state, the compound nucleus has a characteristic
size of h̄/(2αmμc). Due to that the ratio of the radius of
the compound nucleus to the electron’s Bohr radius does not
depend on α being of order of me/mμ. The effects due to
the penetration are relativistic ones, however, they are not
“marked” with α. Because of that, the relativistic effects do
contribute into E (0)

nlj
(me/mμ). Analyzing our numerical results

we also discuss to what extent the value of E (0)
nlj

(me/mμ) agrees
with the result of nonrelativistic calculations.

II. APPLICABILITY OF THE
NONRELATIVISTIC APPROXIMATION

The low energy levels of the neutral muonic helium could
be numerically obtained via minimization of the nonrelativistic
(NR) Hamiltonian. In the case of the infinite nuclear mass
(M = ∞), it takes the form

HNR = p2
e

2me

+ p2
μ

2mμ

+ e2

reμ

− 2e2

re

− 2e2

rμ

, (2)

where e is the elementary charge, while α = e2/h̄c is the fine
structure constant. Here, we explicitly take into account that
the nuclear charge is equal to 2.

There is a certain confusion with using words “relativistic
corrections.” In a narrow sense, this term is used for the
corrections due v/c expansion, Breit potential, etc. In other
words, they are relativistic corrections in the problem where
there is no special parameter related to velocity, except of the
speed of light. In more general sense, the relativistic effects
are any effects where the particle is fast. The short-distance
effects are the relativistic ones because they involve the high
momentum and the related corrections are of the relativistic
nature. The problem we consider here is the problem of
relativistic effects in general context.

The results, obtained with Hamiltonian (2), require a certain
interpretation. One has to check whether the calculation is
restricted to nonrelativistic momenta. To understand that one
may take advantage of an analytic evaluation, which has quite
a limited accuracy to the date. The latter can be performed
if we split Hamiltonian (2) into two parts and introduce an
“unperturbed” Hamiltonian

HNR:unp = p2
e

2me

+ p2
μ

2mμ

− e2

re

− 2e2

rμ

, (3)

which allows an exact analytic solution, and a perturbation

HNR:pert = e2

reμ

− e2

re

, (4)

which, depending on the value of me/mμ and on the choice
of the states of interest, may allow an efficient perturbation
expansion. If the expansion is possible we may interpret the
numerical solution with (2) as an effective summation of the
perturbation expansion for the analytic solution.

The analytic solution with Hamiltonian (3) allows to sep-
arate variables re and rμ and to find the wave function as a
product of that for the muon one bound by the nucleus with
infinite mass and charge 2 and the one for the electron bound
by the infinitely heavy nucleus with charge 1. The success of

the perturbative expansion obviously depends on whether

|reμ − re| � re. (5)

That is realized in general if the muon is located in the compact
area around the nucleus which is much smaller than the area
where the electron is located. The condition should be realized
for each correction which we calculate with the perturbation
series. [As we show below, the condition takes place for the
neutral muonic helium for characteristic values and therefore
for some leading term(s) of the perturbation series. However, it
fails for higher-order terms which require the integration over
singularities at low re.]

The neutral muonic helium atom is an example of an asym-
metric three-body system. It has a heavy nucleus, either the
helion h or the α particle, and two lighter orbiting particles, a
muon and an electron. Their masses are not comparable: M �
mμ � me. The asymmetric three-body system are sometimes
considered as a “modified” molecular system, such as molec-
ular ion HD+, or a “modified” atom, such as ordinary helium
atom. Based on the similarity, the nonrelativistic Hamiltonian
is considered and variational numerical methods are applied.

If the particle with an “intermediate mass” is at a high state
(see, e.g, the case of antiprotonic helium [11]), then it is slow
(i.e., essentially slower than the electron) and one can use a
kind of adiabatic approximation, similar to molecular physics.
The numerical approach based on the Hamiltonian (2) is fully
applicable.

In the meantime, the analytic approach should have prob-
lems because the characteristic radius of the electron (in the low
state) follows its Bohr radius aB = λC/α = h̄/αmec, while the
characteristic radius of the intermediate-mass particle (e.g.,
of an antiproton in antiprotonic helium [11]) does not follow
its Bohr radius aB:p = λC:p/α = h̄/αmpc. The latter is of
order n2aB:p, where n is the principal quantum number of that
particle and in the actual cases n2 (see, e.g, [11]) is comparable
with mp/me. The condition (5) (of the applicability of the
analytic approach) fails. That means that the perturbative
expansion consists of comparable terms. However, with a
“large” internal two-body system at high n the perturbative
terms do not contain singularities at low re. That is why the
nonrelativistic consideration based on the Hamiltonian (2) is
valid.

If the intermediate-mass particle is at a low state, then it
is as fast as the electron and the situation becomes tricky.
Indeed, the electron is mostly a slow particle and can be treated
nonrelativistically. The problem is, however, in the physical
meaning of a solution of a three-body system. The slowness
of the electron means that the most of the contribution to the
energy comes from characteristic distances such as the Bohr
radius. However, the details of the electron’s behavior at the
short distances affect the energy (which we are to minimize)
as well. With the muon at the low state, the condition (5)
is satisfied for the characteristic distances. We can expand
the perturbation (4) in rμ/re. As far as the integrations are
finite (after the expansion), the values of re and rμ take
their characteristic values which are aB [the (electron’s) Bohr
radius) and aB:μ (the Bohr radius for the muon), respectively.
At some moment, either because of the rμ/re expansion or
because of higher order in the perturbation (4), the integration
becomes singular at low re. Roughly speaking, that means that
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for singular terms re ∼ rμ ∼ aB:μ. That is not only the failure
of the condition (5) for the singular corrections, but, which is
more important, that is an indication that the short-distance tail
of the electron’s wave function is crucial for them, which is the
failure of the nonrelativistic approximation and a limitation on
the applicability of the nonrelativistic Hamiltonian (2).

A three-body system, such as the neutral muonic helium,
has a clearly distinguished internal area ∼aB:μ, where the muon
density is located, and a larger outer area ∼aB , where the
electron is located. The only real question for the solution of
the nonrelativistic three-body problem, does not matter how it
is solved, exactly with (2) by numerical means or analytically
within a perturbation expansion with (3) and (4), is to take
into account the overlap of the densities of the electron and
muon. It is easy to note that aB:μ � 2/3λC and therefore in the
overlapping area the electron is supposed to be a relativistic
one. In a sense the dynamic condition that (i) the momentum
transfer |q| is much smaller than mec (which means a low
velocity) while (ii) the energy transfer q0 is much smaller than
|q| (which means a neglection of the retardation) is broken.
At least we should expect high velocities and high momentum
transfer.

Returning to antiprotonic helium with “ultraslow” antipro-
ton, we note that since the antiproton is very slow, it is localized
at much larger distances from the central nucleus than aB:p.
With the principal quantum number n we can roughly estimate
it as n2aB:p, which makes it comparable with the Bohr radius
of the electron aB since in actual experiments n ∼ 30 [11].
Penetrating the antiprotonic cloud, the electron remains a
nonrelativistic one (in contrast to the case of the intermediate-
mass particle in the ground state, which we consider for the
muon in neutral muonic helium).

What is the leading correction to the Bohr energy levels,
which are the dominant contribution in the neutral muonic
helium? Normally, that may be the relativistic ones, however,
in the neutral muonic helium, considered as a hydrogenlike
atom with an electron and a compound nucleus, the somewhat
more important effects are due to the nuclear size and nuclear
structure. The largest of them is due to a single-photon
exchange. Such a correction is obtained within nonrelativistic
physics even in the hydrogen and muonic hydrogen (see,
e.g., [13]). (In the ordinary hydrogen, the penetration into
the nucleus sets the ultrarelativistic condition on the electron,
while in the muonic hydrogen the muon is a relativistic one, but
not ultrarelativistic.) That is because we need to use the value
of the wave function in vicinity of the (compound) nucleus,
but not its derivatives.

The dependence of the energy of a level on the value of
me/mμ is not analytic. The first few terms of the expansion
around me/mμ = 0 are of the form

ENR(nl) = α2mec
2

{
C1 + C2

(
me

mμ

)2

+ C3

(
me

mμ

)5/2

+
(

me

mμ

)3[
C41 ln

(
mμ

me

)
+ C40

]
+ · · ·

}
, (6)

where the first term is for the Bohr levels and the second one
is due to the finite size of the compound nucleus [9].

Note, the dependence on me/mμ is not analytic. We expect
the continuity for small positive values of me/mμ and rely only
on it, while small negative values are not allowed. That is rather
a standard assumption in atomic physics of simple atoms. Even
in a simpler case of a two-body atom, which has two small
parameters, the Coulomb strength Zα and orbiting-particle-to-
nucleus mass ratio m/M , we have no analyticity around their
zero values but only the continuity for small positive values
[12]. The analyticity at zero would mean that zero is a regular
point and a switch from small positive values, at which the
atom exists, to a small negative value of either parameter, at
which the atom does not exist, is smooth and continuous.

The negative value of me/mμ could be achieved by consid-
ering a negative value of mμ, at which the neutral muonic
helium as a system of bound states does not exist. The
analyticity at me/mμ = 0 is impossible. Since the behavior at
small positive values of me/mμ is nonanalytic, we expect that
the dependence is more complicated than just a Taylor series.
The most simple case is appearance of terms with semi-integer
exponentials and logarithms. Such terms do appear in theory
of the hyperfine structure of the neutral atomic helium. The
semi-integer exponentials appear in [5], while a logarithmic
term is found in [6]. The leading contributions to (6) have
been found previously. They relate to terms with C1 and C2 [9].
They do not contain any nonanalytic terms. Once we suggest
that such terms may appear as early as possible, we arrive at the
expansion suggested above. We cannot prove it mathematically
as a kind of theorem, but we have a naive estimation which
confirms a possibility of such contributions at so early stage.
Which is more important, a consistency and stability of the
fits performed below confirm that, as a base of the fit, this
expansion is reasonable.

The next-to-leading finite-nuclear-structure term is due to
the two-photon exchange, which involves the polarizability
of the compound nucleus and its higher-order finite-size
effects. The latter is presented by the so-called Friar term,
which is similar to the leading finite-size term to the hyperfine
splitting (the so-called Zemach term). The details on these two
terms can be found, e.g., in [13]. The Friar term is of the form

�EFriar(ns) = −2(Zα)5 m4
r

πn3

∫ ∞

0

dq

q4

×{[GE(q2)]2 − 1 − 2G′
E(0) q2}

= − (Zα)5 m4

3n3
〈r3〉(2), (7)

where Z is the nuclear charge, GE is the electric charge form
factor, q is the momentum transfer, and in the nonrecoil limit

〈rn〉(2) ≡
∫

d3r d3r ′ρE(r)ρE(r′)|r − r′|n (8)

is the nth Zemach momentum with ρE(r) being the density
of the electric charge density distribution. In this relativistic
formula, we use the relativistic units in which h̄ = c = 1.
The third Zemach momentum is also referred to as the Friar
momentum.

The specifics of this term is that once we consider the
nucleus as a nonrelativistic one RN � λC:N (which is the case
for ordinary hydrogen, muonic hydrogen, and neutral muonic
helium as a two-body atom with a compound nucleus), the
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retardation can be neglected and we arrive at (7), which is
related to the external-field approximation. The two-photon
contributions in (7) have a nonrelativistic shape of the in-
tegrand, while the area of integration is ultrarelativistic for
hydrogen and relativistic (but not ultrarelativistic) for muonic
hydrogen and neutral muonic helium. That happens because
of a “poor” γ -matrix structure. Already three-photon exchange
is described with more complicated expressions and involves
terms which do not have relativistic shape because of a
more rich γ -matrix structure. Such terms cannot be treated
perturbatively within a nonrelativistic approach because the
characteristic loop momenta are relativistic. A similar situation
is the nuclear polarizability correction, which in neutral muonic
helium is larger than the elastic two-photon contributions.

Some time ago the hyperfine interval in neutral muonic
helium was intensively discussed (see, e.g., [3–6]). The one of
the important corrections there is due to two-photon exchange.
Its elastic finite-size part has a form similar to that in (7) and
contains a certain Zemach momentum. Again, once we assume
that the nucleus is a nonrelativistic one, we arrive at an integral
with a nonrelativistic shape of the integrand, but with the area
of integration which is a relativistic one. That is the well-known
Zemach contribution (see, e.g., [13])

�EZemach(ns) = −8(Zα) m EF

πn3

∫ ∞

0

dq

q2

×
[

2GE(q2)GM (q2)

gN

− 1

]

= −2(Zα) m EF

n3
〈r〉(2:EM), (9)

where GM is the magnetic form factor of the compound
nucleus, and the involved Zemach momentum is found with
a convolution of the densities of the electric charge and
magnetic moment. The Fermi energy EF is the standard
leading nonrelativistic contribution to the hyperfine interval,
and gN is the nuclear g factor.

In the neutral muonic helium atom, ZαmRN ∼ me/mμ

and therefore the Friar term [which is a (part of the) spin-
independent two-photon correction] is of the same order in Zα

as the leading nonrelativistic (Bohr) term, but of a different
order in me/mμ. The Zemach term [which is a (part of the)
spin-dependent two-photon correction] is of the same order in
Zα as the Fermi energy EF , which is the leading nonrelativistic
spin-dependent term, but it is of a different order in me/mμ.

In the ordinary and muonic hydrogen atoms the situation is
very similar in the terms of the integrands and numerical values
of the parameters, however the two-photon-exchange contri-
butions (Friar’s and Zemach’s) are of order (Zα)5 (in contrast
to neutral muonic helium), while the leading nonrelativistic
contributions due to the finite size and hyperfine interaction are
both of order (Zα)4 (as well as in the case of neutral muonic
helium).

Therefore, those two-photon-exchange contributions have
the integrands of the nonrelativistic shape but with a fully
relativistic integration area. Nevertheless, in the muonic helium
they are of the same order in the terms Zα as the nonrelativistic
terms. The two-photon-exchange contributions are included
into a theory based on Hamiltonian (2), and does not matter
whether it is done exactly or perturbatively. Such a theory

cannot produce terms of higher order in Zα (without an
additional relativistic perturbation �Hrel), but can produce
contributions of different order in me/mμ. The results with
Hamiltonian (2) in atomic units are not even sensitive to the
value of Zα. (The relativistic corrections with �Hrel are.) A
confusion can come from the fact that in both ordinary and
muonic (two-body) atoms the parameter ZαmRN explicitly
involves Zα and therefore it is clearly recognized as a kind
of relativistic effect. On the contrary, in the neutral muonic
helium atom, interpreted as a two-body electronic atom with a
compound nucleus, the parameter does not involve Zα since
ZαmRN ∝ me/mμ, and it does not look like a relativistic
effect. (Technically, the difference is because in ordinary and
muonic atoms, the theory includes one more independent
parameter RN . Its value in atomic units is equal to the ratio
RN/aB and it is therefore α dependent.)

Since the integrands keep the nonrelativistic shape, the exact
(in the term of photon exchanges) solution of the numerical
variational nonrelativistic problem gives a correct result for
the two-photon-exchange contribution. The problem of the
applicability of the three-body numerical solutions appears
with three-photon exchanges. Below, we perform a numerical
evaluation with Hamiltonian (2) with the different values of
me/mμ and fit the results in order to recover the coefficients
of the expansion in me/mμ in (1). As far as we deal with
the one-photon and two-photon exchanges, we expect that the
solution of the nonrelativistic problem with (2) agrees withE (0),
the leading term of α expansion in (1). While for the three-
photon-exchange contributions we expect that the numerical
nonrelativistic solution delivers us only a part of result. We
identify the physical origin of the terms of the expansion (1)
and assign an additional uncertainty to the contributions which
are related to multiphoton exchanges.

Concluding this section, we note that there are two param-
eters in two-body atoms which describe relativistic effects.
One is Zα, while the other is mRN . The inverse value of the
second parameter (1/mRN ) shows what should be momentum-
to-mass ratio (which is the velocity in the nonrelativistic limit)
for the orbiting particle penetrating into the nucleus. This
parameter is essentially above unity for ordinary hydrogenic
atoms, and it is comparable with the unity in two-body muonic
atoms. In the neutral muonic helium (with the muon in its
ground state), understood as a two-body atom with a compound
nucleus, it is about unity as well. The parameter me/mμ

appears in a sense as a combination of two parameters for
relativistic expansion, Zα and Zαmμ/me. The higher-order
(in me/mμ) contributions to the energy are in part of the
relativistic origin. In contrast to ordinary atoms, where the
nuclear-finite-size effects are small and the relativistic effects
are well recognized in the final expressions as a result of
Zα expansion, in the neutral muonic helium the relativistic
corrections (for the electron) may be of the same order in Zα

as the leading term, as it is seen in the case of the Friar and
Zemach contributions.

Examining the expression of the energy in form (6), we note
that the contributions with coefficients C1 and C2 are purely
nonrelativistic. The contributions with C3 and C41 come in
part from the integration of the nonrelativistic expressions over
the relativistic momentum area, which in this particular case
is consistent with the numerical variational consideration, as
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explained above. In contrast to that, the C40 and C5 contribu-
tions also come in part from the relativistic area of the inte-
gration over nonrelativistic expressions, but those expressions
may be incomplete. Until this question is clarified, we should
consider those two terms of the expansion (6) as only partial
contributions to the complete expression for the energy E (0).

III. VARIATIONAL NUMERICAL CALCULATIONS

Our strategy is to perform numerical calculations with a
nonrelativistic Hamiltonian and to interpret the results, using
a low-me/mμ expansion. Since we intend to rely on the
expansion, we have chosen to set the nuclear mass M to
infinity in order to avoid an expansion in two small parameters.
For the numerical evaluation we apply the atomic units, and
Hamiltonian (2) takes the form

HNR = p2
1

2
+ p2

2

2

me

mμ

+ 1

r12
− 2

r1
− 2

r2
, (10)

where we use the following notation: r1 and p1 stand for the
radius vector and momentum of the electron, r2 and p2 are
for the muon, while r12 is the difference of the two mentioned
radius vectors. Afterwards, we are to partially restore the finite

nuclear mass by taking advantage of a perturbative approach
with considering the electron and compound nucleus as a two-
body system [9].

In our numerical calculations of ENR we use the variational
method based on exponential expansion with randomly gen-
erated parameters [14,15]. The wave function is taken in the
form

�L(l1,l2) =
N∑

k=1

{UkRe[e−αkr1−βkr2−γkr12 ]

+WkIm[e−αkr1−βkr2−γkr12 ]}Y l1,l2
LM (r1,r2), (11)

where Y l1,l2
LM (r1,r2) are the solid bipolar harmonics as defined

in Ref. [16]:

Y l1,l2
LM (r1,r2) = r

l1
1 r

l2
2

{
Yl1 ⊗ Yl2

}
LM

,

L is the total orbital angular momentum of a state and N is the
number of the basis-set functions. Complex parameters αk, βk ,
and γk are generated in a quasirandom manner:

αk = [⌊
1
2k(k + 1)

√
pα

⌋
(A2 − A1) + A1

]
+ i

[⌊
1
2k(k + 1)

√
qα

⌋
(A′

2 − A′
1) + A′

1

]
, (12)

TABLE I. The binding energy of the electron for the states 1s, 2s, and 2p in the neutral muonic helium atom with the muon in the ground
state as follows from Hamiltonian (10) as function of the muon mass. The numerical data are variational solutions of the stationary Schrödinger
problem calculated for variational basis of 2000 and 2500 functions, correspondingly. The results are presented in atomic units; for the muon
mass we apply a parameter x = me/mμ = 2n/206.768 2826.

n 1s (2000) 1s (2500)

−4 −0.500 000 047 199 227 225 321 −0.500 000 047 199 227 225 331
−3 −0.500 000 191 033 578 786 047 −0.500 000 191 033 578 786 062
−2 −0.500 000 775 880 845 228 706 −0.500 000 775 880 845 228 717
−1 −0.500 003 163 466 276 532 681 −0.500 003 163 466 276 532 687

0 −0.500 012 946 805 678 863 497 −0.500 012 946 805 678 863 510
1 −0.500 053 122 904 815 614 566 −0.500 053 122 904 815 615 242
2 −0.500 217 876 896 591 416 291 −0.500 217 876 896 591 465 248
3 −0.500 888 144 061 291 219 534 −0.500 888 144 061 293 438 269
4 −0.503 568 095 182 590 249 853 −0.503 568 095 182 675 564 693

n 2s (2000) 2s (2500)
−4 −0.125 000 005 899 652 947 057 −0.125 000 005 899 652 947 058
−3 −0.125 000 023 877 234 369 411 −0.125 000 023 877 234 369 413
−2 −0.125 000 096 969 819 874 234 −0.125 000 096 969 819 874 238
−1 −0.125 000 395 315 118 616 248 −0.125 000 395 315 118 616 271

0 −0.125 001 617 443 163 665 292 −0.125 001 617 443 163 665 573
1 −0.125 006 633 402 083 161 331 −0.125 006 633 402 083 165 702
2 −0.125 027 180 466 047 089 480 −0.125 027 180 466 047 181 806
3 −0.125 110 576 444 206 900 294 −0.125 110 576 444 210 373 858
4 −0.125 442 046 467 181 785 896 −0.125 442 046 467 367 399 492

n 2p (2000) 2p (2500)
−4 −0.125 000 000 000 157 601 972 240 −0.125 000 000 000 157 601 972 240
−3 −0.125 000 000 001 248 075 857 305 −0.125 000 000 001 248 075 857 310
−2 −0.125 000 000 009 848 331 444 529 −0.125 000 000 009 848 331 444 646
−1 −0.125 000 000 077 354 540 592 515 −0.125 000 000 077 354 540 593 944

0 −0.125 000 000 604 139 162 379 714 −0.125 000 000 604 139 162 448 957
1 −0.125 000 004 687 050 097 369 309 −0.125 000 004 687 050 099 840 290
2 −0.125 000 036 106 709 083 244 451 −0.125 000 036 106 709 376 329 842
3 −0.125 000 276 366 319 547 065 399 −0.125 000 276 366 335 073 308 025
4 −0.125 002 105 596 572 398 961 282 −0.125 002 105 596 723 266 258 334
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where �x� designates the fractional part of x, pα and qα are
some prime numbers, and [A1,A2] and [A′

1,A
′
2] are real vari-

ational intervals, which need to be optimized. Parameters βk

and γk are obtained in a similar way. For more details, see [17].
Hamiltonian (10) has only one parameter, namely, me/mμ.

We perform our numerical calculations for an equidistant (in
logarithmic scale) set of hypothetical values of x = me/mμ

with the actual value in the middle point of the set. To keep
the numerical stability of calculations at large value of N , an
octuple precision (64 decimal digits) has been used. Results of
these calculations versus size of the basis set for the states of
interest are presented in Table I. The results are given for three
lowest states: nl = 1s, 2s, and 2p.

Variational parameters were optimized manually for the
basis set with the actual value of me/mμ. For scaled values
of x, the variational parameter related to variable r2 was scaled
proportionally to keep the set of parameters close to optimal
values. Basis sets withN =2000 and 2500 functions were used.
As it is seen from Table I, the worst case of n = 4 provides 12
significant digits for the nonrelativistic energy. For the actual
value of x = me/mμ, a number of significant digits increases
to about 18 digits, which should be more than sufficient for
reliable analysis of the fits.

IV. FITTING THE VARIATIONAL RESULTS WITH
THEORETICALLY INSPIRED FITS

To interpret the numerical results for ENR in terms of
E (0)(me/mμ) properly, we have to split the total numerical
results in the terms of expansion at low me/mμ. Once we
present the energy in such a form, we could discuss whether the
individual (nonrelativistic) contributions are correctly found
within the nonrelativistic approximation, and corrections in
which orders in me/mμ may be required.

To find the coefficients, we consider five different fits of
a similar shape [cf. (6)]. Their difference is in a different
number of terms and in different suggestions we use for the fit
parameters.

A very important issue is the uncertainty of the data points.
The computational uncertainty, found from the difference
between the values obtained with the 2000 and 2500 functions,
is not appropriate for fitting. The fits (introduced with a realistic
shape and a reasonable number of terms) have huge values
of χ2 (of orders of magnitudes above the number of degrees
of freedom), while fitting the data with such uncertainty as
it is (i.e., with the computational uncertainty only). That is
because the data points are extremely accurate and a “true”
approximation with a comparable uncertainty should have a
very large number of terms. Indeed, we may set a large number
of parameters, and in such a case we can improve the value of
χ2, but that would be just a fit, i.e., a function which has no
physical sense, but well consistent with the data. If we intend
to find a function, for which parameters would have a physical
meaning, we need to use another strategy.

Prior to discussion of the details of the fit, we have
to mention that the fits are basically an expansion around
me/mμ = 0 [cf. (6)]. If we would know correct coefficients
of such an expansion, then the approximated function with
the true coefficients should deviate from the data within the
uncertainty of the approximation which is determined by the

first missing terms. In our fits, we “manually” introduce an
uncertainty which is proportional to the biggest missing term.
That makes the fits more stable once we add additional terms,
etc. That is not a rigorously correct procedure because that
uncertainty is proportional to the error, but not (approximately)
equal to it (since we have no accurate way to estimate the
coefficient for the biggest missing term). If it would be the only
problem of scaling the uncertainty, it should make a bad value
of χ2, but a good central value. However, in combination with
the numerical uncertainty, estimated as the difference between
the values obtained with the 2000 and 2500 functions, the
choice of the (unknown) proportionality coefficient affects the
central value as well. The other problem is that the shift related
to the first missing term is a systematic one. We recognize all
those difficulties and comment the values of χ2 of various fits
as well as evolution of the coefficients from fit to fit.

The fits are described below.
(i) Fit A is a fit

ENR(nl) = C1 + C2

(
me

mμ

)2

+ C3

(
me

mμ

)5/2

+
(

me

mμ

)3[
C41 ln

(
mμ

me

)
+ C40

]
. (13)

The additional uncertainty (to the computational one) is as-
signed for each data point as (me/mμ)7/2/n3 and treated as
a random one. The fit is a “free” fit and we do not set any
constraints on its parameters.

(ii) Fit B has the same shape as fit A, however, we take the
advantage of two known leading coefficients [9], namely,

C1(nl) = − 1

2n2
, C2(nl) = − δl0

2n3
. (14)

The uncertainty is treated the same way as for fit A.
(iii) Fit C is a somewhat more advanced fit than the previous

ones:

ENR(nl) = C1 + C2

(
me

mμ

)2

+ C3

(
me

mμ

)5/2

+
(

me

mμ

)3[
C41 ln

(
mμ

me

)
+ C40

]

+C5

(
me

mμ

)7/2

, (15)

with constraints (14). It has one more term comparing with
the previous fits and the additional random uncertainty to each
data point is now assigned as (me/mμ)4/n3.
The fits A–C are performed for each of three states, 1s, 2s, and
2p independently.

(iv) Fit D is based on fit B, however, we set a constraint

C3(nl) = C3(1s)
δl0

n3
, C41(nl) = C41(1s)

δl0

n3
, (16)

which means two additionally known coefficients for 2p and
relations between the values of two pairs of the coefficients for
the 1s and 2s states.
The fitting for 1s and 2s is not performed independently
anymore, but as a single procedure.
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TABLE II. The fit coefficients for the 1s state and the properties of the fits. Fits A–C are performed for the 1s state separately and their χ2

and χ 2/d.o.f. are found only for the 1s data and fits. In the case of fits D and E, the fits are performed on the set of the 1s and 2s data. The value
of χ 2 shows a deviation of the 1s data from the fits, while the value of χ2/d.o.f. is given for the combined 1s and 2s data since the number of
degrees of freedom are defined only for the combined data.

Fit C1 C2 C3 C41 C40 C5 χ 2 χ 2/d.o.f.

A − 0.500 000 000 00(1) − 0.4999(7) − 1.05(5) 0.5(2) 1.2(6) 6 × 10−3 2 × 10−3

B −1/2 −1/2 − 1.049(3) 0.53(5) 1.2(2) 1 × 10−2 3 × 10−3

C −1/2 −1/2 − 1.0494(4) 0.53(1) 1.19(8) 0.1(3) 0.7 0.17
D −1/2 −1/2 − 1.049(2) 0.53(3) 1.2(2) 2.4 · 10−2 3 × 10−3

E −1/2 −1/2 − 1.0495(3) 0.534(8) 1.17(6) 0.2(2) 0.9 0.14

(v) Fit E is a modification of fit C with an additional
constraint (16) (the same the constraint introduced for fit D).

In principle, all the fits should be consistent. The results of
the fits are summarized in Tables II, III, and IV. The fits for the
1s energy are also compared in Fig. 1.

V. ACCURACY AND CONSISTENCY OF THE FITS

Let us discuss the results of the fitting procedure and
compare the results of the different fits. The fits A, B, and D
deal with the same additional random error of the data points.
They have very low value of χ2. As we see from the fits C and
E, the coefficient C5 is either very small or equal to zero. In
the meantime, for the estimation of the uncertainty for A, B,
and D we should set C5 = ±1/n3 (since we have no a priori
reason to do otherwise). In other words (as we learned from
more advanced fits), the uncertainty of the fits A, B, and D is
an overestimation of the error.

Next, we see for the fits A, B, and D that the value of χ2

increases as well as the value of χ2/d.o.f. (while going from
A to D through B). That is because the fits have the same
number of parameters, but the fit A does not have constraints
on them. Next, we introduce constraints (14) on fit B, and
additional constraints (16) on fit C, reducing the number
of free parameters. Introducing the constraints we make the
fits less flexible and make them worse as fits. Nevertheless,
the constraints improve the fits as approximations, i.e., they
improve the determination of the coefficients.

The fits C and E have a different additional random uncer-
tainty comparing with A, B, and D. Since the total effective
uncertainty of the data points is different, a comparison
of the value of χ2 of, e.g., the fits A and C, does not make sense.
The values of χ2 for the fits C and E are more reasonable than
the very small values for the fits A, B, and D, which indicates
that the random uncertainty is more reasonably estimated.

From experimental perspectives, we are interested in the
2s − 1s and 2p − 2s intervals. A comparison of direct results
and the results obtained using the fit coefficients (but ignoring
their correlations) is presented in Tables V and VI.

We note that the direct calculations atme/mμ � 1/207 from
Table I are more accurate than the fits, but the results of the fits
are consistent with them. The accuracy of the fits is determined
not by the computational uncertainty, but by the errors of the
fit.

We have two comments on that. They both are related to
the fact that the fit is a truncated version of a certain true
function for the expansion around me/mμ = 0. For the sake
of simplicity, we refer to any expansion around zero as to an
extended Taylor expansion and to any fit which has the same
shape as a truncated extended Taylor expansion as to extended
polynomials.

The coefficients of an extended Taylor expansion are de-
fined as certain derivatives or limit values at zero. For example,

C3 =
[
E(x) − C1 − C2x

2

x5/2

]
x=0

,

C4 =
[
x

∂

∂x

E(x) − C1 − C2x
2 − C3x

5/2

x3

]
x=0

, (17)

which is a certain generalization of the presentation of the
standard Taylor series in the terms of the derivatives at zero.
Here, x = me/mμ and E(x) is the true function for the energy
we are to restore with the fits.

Therefore, the determination of the coefficients of an ex-
tended Taylor series requires extrapolations because x = 0
is slightly outside of the edge of the data interval. Such
extrapolated values are always more uncertain than the data
themselves.

The extended Taylor series has two important differences
from the extended polynomials.

TABLE III. The fit coefficients for the 2s state and the properties of the fits. Concerning values of χ2 and χ 2/d.o.f. (see the caption to
Table II).

Fit C1 C2 C3 C41 C40 C5 χ 2 χ 2/d.o.f.

A − 0.125 000 000 000(2) − 0.06250(8) − 0.131(7) 0.07(3) 0.15(7) 3 × 10−3 9 × 10−4

B −1/8 −1/16 − 0.1312(4) 0.066(6) 0.16(3) 5 × 10−3 1 × 10−3

C −1/8 −1/16 − 0.131 20(5) 0.067(1) 0.15(1) 0.02(4) 0.4 0.11
D −1/8 −1/16 − 0.1312(3) 0.066(4) 0.16(2) 1.6 · 10−2 3 × 10−3

E −1/8 −1/16 − 0.131 19(3) 0.067(1) 0.156(7) 0.00(3) 0.7 0.14
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TABLE IV. The fit coefficients for the 2p state and the properties of the fits.

Fit C1 C2 C3 C41 C40 C5 χ 2 χ 2/d.o.f.

A − 0.125 000 000 000(2) − 0.000 00(8) 0.000(7) 0.00(3) 0.00(7) 1 × 10−6 3 × 10−7

B −1/8 0 0.0000(4) 0.000(6) 0.00(3) 4 × 10−5 9 × 10−6

C −1/8 0 0.000 00(5) 0.000(1) 0.00(1) 0.00(4) 4 × 10−4 1 × 10−4

D −1/8 0 0 0 − 0.006(2) 8 × 10−3 1 × 10−3

E −1/8 0 0 0 − 0.006(1) 0.007(5) 3 × 10−2 4 × 10−3

(i) All the fits are optimized to the area where the data
are present. Therefore, in the case of our consideration the
result for the actual value of me/mμ from the fit function
should be in a very good agreement with the data and it is.
The actual deviation of the fit from the data for this actual
value is rather smaller than the uncertainty found with ignoring
the correlations between the coefficients. (The correlations are
often the negative ones since a change in one coefficient may
be compensated by a change in another.) The fit coefficients by
themselves are the most uncertain part of the fit because they
require an extrapolation and a differentiation. We partly over-
come the problem “punishing” the data points by introducing
the uncertainty increasing with me/mμ. Such an uncertainty
should optimize the fit for the low edge of the data, rather than
for the center of the data interval.

(ii) The residuals of the data in respect to a fit are randomly
distributed, while the true function should rather systematically
deviate from the data. The “model,” i.e., the way we treat the
“additional” uncertainty suggests a random distribution. To
probe the correlations, we used the different fits, introducing
the correlations between the results for different states, such
as 1s and 2s. To check the importance of the correlation of the
errors of the approximation between data for different me/mμ,
we introduced an additional term in fits C (comparing with B)
and E (comparing with D). Introducing an additional term into
the fit function and reducing the random uncertainty is a way to
model the correlation between the deviations of the data from
the approximation for different me/mμ.

FIG. 1. The differences � = f (x)−fE (x)
x4 , where x = me/mμ, and

f corresponds to fits A, B, C, and D and to the direct calculation
(black closed circles) for the 1s state; fE(x) stands for the results of
fit E. The value of x4 is the uncertainty introduced for fits C and E.
(The uncertainty for fits A, B, and D being x7/2 is somewhat larger.)
The vertical dashed line is for the actual value of me/mμ.

We have already considered in Sec. II the applicability of
nonrelativistic Hamiltonian (2) and the expansion (6) to find
E (0)

nlj
(me/mμ). The contributions with C1, C2, C3, and C41 have

a clear nonrelativistic origin being related to nonrelativistic
integrands of the perturbation approach. The area of the
integration does not affect the interpretation. The contributions
with C40 and C5 in (6) correspond to relativistic integrations
over integrands which are not reduced to those with a pure
nonrelativistic shape. That means that we have obtained
only partial results for the related terms of the expansion of
E (0)

nlj
(me/mμ) in me/mμ.

VI. RESTORING A FINITE VALUE OF THE
NUCLEAR MASS

Once we study the three-body neutral muonic helium atom
as a hierarchy system of an electron bound by a compound
two-body nucleus, it is clear that all the terms should contain
corrections in me/M and mμ/M , which cannot be covered
by the introducing the reduced mass. As for the first two
terms of the expansion in (6), the correction can be done by a
substitution [9]

C1 → C1

(
M + mμ

me + mμ + M

)

� C1

(
1 − me

M + mμ

+ 2m2
e

M2

)
, (18)

C2

(
me

mμ

)2

→ C2

(
me

mμ

)2

×
(

1 − 2m2
μ

M2

)(
M + mμ

me + mμ + M

)3

� C2

(
me

mμ

)2
(

1 − 2m2
μ

M2
− 3me

M + mμ

)
. (19)

TABLE V. The 2s − 1s interval in atomic units (with the infinite
nuclear mass and the actual value of me/mμ) from numerical calcu-
lations with Hamiltonian (10). The results are given in atomic units.

Method 2s − 1s interval

Direct 0.375 011 329 362 515 1979(3)
Fit A 0.375 011 3(2)
Fit B 0.375 011 33(4)
Fit C 0.375 011 33(1)
Fit D 0.375 011 33(3)
Fit E 0.375 011 329(8)
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TABLE VI. The 2p − 2s interval in atomic units (with the
infinite nuclear mass and the actual value of me/mμ) from numerical
calculations with Hamiltonian (10). The results are given in atomic
units.

Method 2p − 2s interval

Direct 0.000 001 616 839 024 5031(3)
Fit A 0.000 001 62(3)
Fit B 0.000 001 617(7)
Fit C 0.000 001 617(2)
Fit D 0.000 001 617(3)
Fit E 0.000 001 617(1)

(Note that the results are in atomic units, in which me = 1, but
the reduced mass of the electron

me(M + mμ)

me + mμ + M

is not equal to the unity.)
A comparison with available numerical results obtained for

neutral 3He and 4He [8] are presented in Tables VII and VIII.
We clearly see a difference between our results and those from
[8]. It should be attributed to incomplete restoration of mμ/M

and me/M corrections. We have restored the recoil corrections
in (18) and (19) to two leading terms. Accidentally, the linear
mμ/M correction to the C2 term vanishes and the first nonzero
correction is suppressed, being proportional to (mμ/M)2.

The C2 term might have an mμ/M correction, but it cancels
out. The C3 term may also have such a correction and there is
no reason to expect its cancellation. Until the issue is clarified
by direct perturbative calculation, we consider the value of

5

2
C3

(
me

mμ

)5/2
mμ

M

as an additional uncertainty to be included into the eventual
result. The factor of 5

2 appears naturally if we substitute mμ

for mr in (6). Such a substitution with the use of the reduced
mass of the muon has a correct sign and covers the most of the
correction.

The problem of higher order me/M and mμ/M terms could
be also resolved by fitting a set of data with different values of
mμ and M . Anyway, the uncertainty due to the applicability of
the nonrelativistic calculations (see below) is comparable with
the contribution above and we leave it as it is.

TABLE VII. The 2s − 1s interval for 3He (with the actual value
for nuclear mass). The results of the fits are given with the corrections
in Eqs. (18) and (19) introduced. The results are given in atomic units.

Ref. 2s − 1s interval in 3He

[8] (direct) 0.374 945 745 405 113 94
Fit A 0.374 945 5(2)
Fit B 0.374 945 55(4)
Fit C 0.374 945 55(1)
Fit D 0.374 945 55(3)
Fit E 0.374 945 548(8)

TABLE VIII. The 2s − 1s interval for 4He (with the actual value
for nuclear mass). The results of the fits are given with the corrections
in Eqs. (18) and (19) introduced. The results are given in atomic units.

Ref. 2s − 1s interval in 4He

[8] (direct) 0.374 961 469 887 0687
Fit A 0.374 961 3(2)
Fit B 0.374 961 32(4)
Fit C 0.374 961 32(1)
Fit D 0.374 961 32(3)
Fit E 0.374 961 323(8)

VII. CONCLUSIONS

Now, we can write the final results for the 2s − 1s and 2p −
2s energy intervals, based on the fit E, as

E (0)(3He,2s − 1s) = 0.374 9455(2) a.u.,

E (0)(4He,2s − 1s) = 0.374 9613(2) a.u.,

E (0)(3He,2p1/2 − 2s) = 1.62(3) × 10−6 a.u.,

E (0)(4He,2p1/2 − 2s) = 1.62(2) × 10−6 a.u. (20)

The individual contributions to the central values and their
uncertainties are summarized in Table IX for the muonic 3He
and in Table X for muonic 4He. The values correspond to the
physical masses of the electron, muon, and the nuclei. The
hyperfine effects are neglected and the results correspond to
the values averaged over the spin of the compound nucleus.

We remind that the eventual uncertainty consists of three
contributions already mentioned in the text.

(u1) The uncertainty of the fit E presents the uncertainty of
the fitting procedure. It contains the uncertainties due to those
of the coefficients (which are already included into individual

TABLE IX. The individual contributions to 2s − 1s and 2p1/2 −
2s intervals in the neutral muonic 3He (in a.u.). The terms #i are
for a contribution with the coefficient Ci according to fit E. The
contributions to the uncertainty (“u1,” etc.) and the higher-order
(in α) terms are explained in the text.

Term 2s − 1s 2p1/2 − 2s

#1 0.375 0
(18) −6.574 73 × 10−5 0
#2 1.023 32 × 10−5 1.461 88 × 10−6

(19) −3.433 52 × 10−8 −4.905 03 × 10−9

#3 1.4938(4) × 10−6 2.134 0(5) × 10−7

#41 −2.82(5) × 10−7 −4.02(6) × 10−8

#40 −1.14(6) × 10−7 −1.82(8) × 10−8

#5 −2(2) × 10−9 0(2) × 10−10

u1 ±8.3 × 10−9 ±1.0 × 10−9

u2 ±1.4 × 10−7 ±2.0 × 10−8

u3 ±1.1 × 10−7 ±1.8 × 10−8

Total E (0) 0.374 9455(2) 1.62(3) × 10−6

α E (1) −3.0 × 10−8 −4.3 × 10−9

α2E (2) 4.58 × 10−6 0
α3E (3) −1.08 × 10−6 −1.60 × 10−7

Total E 0.374 9490(2) 1.46(3) × 10−6
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TABLE X. The individual contributions to 2s − 1s and 2p1/2 −
2s intervals in the neutral muonic 4He (in a.u.). The notation used is
the same as in Table IX.

Term 2s − 1s 2p1/2 − 2s

#1 0.375 0
(18) −4.998 62 × 10−5 0
#2 1.023 32 × 10−5 1.461 88 × 10−6

(19) −2.053 03 × 10−8 −2.932 90 × 10−9

#3 1.4938(4) × 10−6 2.1340(5) × 10−7

#41 −2.82(5) × 10−7 −4.02(6) × 10−8

#40 −1.14(6) × 10−7 −1.82(8) × 10−8

#5 −2(2) × 10−9 0(2) × 10−10

u1 ±8.3 × 10−9 ±1.0 × 10−9

u2 ±1.1 × 10−7 ±1.5 × 10−8

u3 ±1.1 × 10−7 ±1.8 × 10−8

Total E (0) 0.374 9613(2) 1.62(2) × 10−6

α E (1) −3.0 × 10−8 −4.2 × 10−9

α2E (2) 4.58 × 10−6 0
α3E (3) −1.08 × 10−6 −1.60 × 10−7

Total E 0.374 9648(2) 1.46(2) × 10−6

contributions in Tables IX and X) and an additional systematic
uncertainty of the fit as the whole defined as (me/mμ)4/n3.
The latter is denoted as u1.

(u2) The uncertainty due to the recoil corrections (i.e.,
the corrections in me/M and mμ/M) are estimated with a
dominant missing correction as 2.5 C3 (me/mμ)5/2(mμ/M).

(u3) The uncertainty due to the applicability of the nonrel-
ativistic Hamiltonian (10) to calculation of E (0) is estimated as
C40(me/mμ)3.

It is important that the uncertainty items u2 and u3 are
essentially larger than the uncertainty due to the fitting pro-
cedure. The uncertainty of the fitting procedure (both item
u1 and the uncertainty due to those of coefficients Ci) is a
rough estimation because any extended Taylor series with true

coefficients should have a systematic deviation from the data.
We imitate the deviations with a statistical error. As long as
these types of errors do not dominate, such estimations are
acceptable.

Additionally, there are also higher-order corrections in α

[see (1)]. They are also summarized in Table IX for the neutral
muonic 3He atom and in Table X for the muonic 4He. Note
that the α term is a result of the Uehling correction to the
radius of the compound nucleus [10] and the leading term
scales as α × (me/mμ)2 which makes it small. The α2 term
is mostly due to the standard relativistic corrections and the α3

term is for the leading QED corrections to the Lamb shift in
standard hydrogenlike atoms (see [9] for detail). Taking all the
individual contributions into account, we arrive at the results

E(3He,2s − 1s) = 0.374 9490(2) a.u.,

E(4He,2s − 1s) = 0.374 9648(2) a.u.,

E(3He,2p1/2 − 2s) = 1.46(3) × 10−6 a.u.,

E(4He,2p1/2 − 2s) = 1.46(2) × 10−6 a.u. (21)

or

hν(3He,2s − 1s) = 2.467 046(1) × 109 MHz,
hν(4He,2s − 1s) = 2.467 150(1) × 109 MHz,

hν(3He,2p1/2 − 2s) = 9.6(2) × 102 MHz,

hν(4He,2p1/2 − 2s) = 9.6(2) × 102 MHz. (22)

That is the main theoretical prediction of the paper.
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