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Critical screening in the one- and two-electron Yukawa atoms
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The one- and two-electron Yukawa atoms, also referred to as the Debye-Hückel or screened Coulomb atoms,
have been topics of considerable interest both for intrinsic reasons and because of their relevance to terrestrial and
astrophysical plasmas. At sufficiently high screening the one-electron Yukawa atom ceases to be bound. Some
calculations appeared to suggest that as the screening increases in the ground state of the two-electron Yukawa
atom (in which both the one-particle attraction and the interparticle repulsion are screened) the two electrons are
detached simultaneously, at the same screening constant at which the one-electron atom becomes unbound. Our
results rule this scenario out, offering an alternative that is not less interesting. In particular, it is found that for
Z < 1 a mild amount of screening actually increases the binding energy of the second electron. At the nuclear
charge Zc ≈ 0.911028 . . ., at which the bare Coulomb two-electron atom becomes unbound, and even over a
range of lower nuclear charges, an appropriate amount of screening gives rise to a bound two-electron system.
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I. INTRODUCTION

In the present paper we consider the behaviors of the
nonrelativistic one- and two-electron Yukawa atoms, in which
both the one-particle attractive and the interparticle repulsive
Coulomb interactions are multiplied by exponentially decay-
ing screening factors. Such potentials are also referred to as the
Debye-Hückel [1] or screened Coulomb potentials. Thus, the
screened hydrogenlike atom is specified by the Hamiltonian

hYu = −1

2
∇2 − Z exp(−λr)

r
, (1)

and the screened heliumlike atom is specified by

HYu = −1

2

(∇2
1 + ∇2

2

) − Z

(
exp(−λr1)

r1
+ exp(−λr2)

r2

)

+ exp(−λr12)

r12
. (2)

The extensive work done on the one-electron case is reviewed
in Sec. II. In particular, the value of λ at which the ground
state ceases to be bound and its (trivial) Z dependence have
been determined (by several authors). There is little that we
can add on this matter. In the two-electron case we seek the
value of λ at which the binding energy of the second electron
vanishes. Although this issue was also studied by several
authors, whose work is reviewed in Sec. III, it turns out that
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some interesting features have not been properly dealt with.
The claim that motivated our curiosity is that in the ground state
of the two-electron Yukawa atom, upon raising the nonlinear
screening constant, the two electrons simultaneously cease
being bound, at the same critical screening constant at which
the one-electron Yukawa atom becomes unbound [2–5]. This
is sharply different from the He-isoelectronic sequence, where
the critical charge below which only one electron remains
bound is Zc ≈ 0.91102822407725573 [6], but this remaining
electron remains bound for all Z > 0. Hence, one would
wish to understand how the transition from the unscreened
to the screened behavior takes place. The two electrons
would trivially unbind simultaneously if no interelectronic
repulsion existed. They could unbind simultaneously if the
expectation value of the interelectronic repulsion vanished
more rapidly than the one-electron components of the energy,
upon approaching the critical charge. In any case, a more
careful examination of this issue appears worthwhile, and
the results reported below, that refute the claim cited above
and extrapolate in an interesting manner to the bare Coulomb
scenario, clearly justify this effort.

A rigorous study of the behavior of the spectra of short-
range one-particle systems bound by potentials that depend
linearly on the real parameter μ, i.e.,

h = − 1
2∇2 + μV,

was presented by Klaus and Simon [7]. Upon lowering the
parameter μ, a threshold, μ(c), is often observed at which an
eigenvalue vanishes. In three dimensions the approach to this
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threshold can take place in one of two ways:

Case A: E(μ) ≈ α(μ − μ(c))2,

or

Case B: E(μ) ≈ α(μ − μ(c)).

In case A the wave function becomes infinitely diffuse (“ex-
pands”) upon approaching μ(c). In case B limμ→μ(c) E(μ)
remains an eigenvalue, i.e., the corresponding wave function
remains bound (square integrable). Klaus and Simon further
show that if the potential V is spherically symmetric then the
s-type eigenfunctions correspond to case A, and the � � 1
eigenfunctions correspond to case B. The applicability of the
Klaus-Simon results to the one-electron Yukawa atom is not
obvious, since the dependence of the potential on the screening
parameter λ is nonlinear. However, it will be made more
plausible in Sec. II.

For two identical particles described by the Hamiltonian

H = − 1
2

(∇2
1 + ∇2

2

) − μ1[V (r1) + V (r2)] + μ2W (r12),

(3)

the existence of one- and two-particle bound states was investi-
gated by Pont and Serra [8] over the whole upper right param-
eter quadrant (μ1 > 0,μ2 � 0). The existence of ground-state
domains in which no particle, one particle, or two particles are
bound implies the existence of appropriate boundaries within
the (μ1,μ2) quadrant. However, the realization that a boundary
separating the zero- and two-particle domains (a “2-0 line”)
is feasible strikes us as counterintuitive, hence remarkable.
Crossing such a boundary in the appropriate direction, the
two-electron system loses both electrons simultaneously. In
addition to some “technical” demands concerning the poten-
tials V (ri), i = 1,2, and W (r12), it is required that both V (r)
and W (r) decay at infinity, W (r) be everywhere repulsive,
and −V (r) be attractive enough to give rise to a one-particle
bound state for all μ1 > μ

(c)
1 > 0. Three types of behavior

were identified for short-range one-particle potentials: case
1, no 2-0 line; case 2, finite 2-0 line; case 3, infinite 2-0
line. One- and two-particle critical exponents were defined,
specifying the dependence of the binding energy on μ(c) − μ

near the corresponding critical points. The values of these
critical exponents were shown to identify the different types
of behavior in a manner that resembles the Klaus-Simon [7]
results referred to above. Remarkably, for one-body attractive
Coulomb potentials all three types of behavior are feasible,
depending on the form of the two-particle repulsion. Some
further results established in [8], that are pertinent to the issue
we are concerned with, are the following.

(1) For all μ1 > μ
(c)
1 there is some μ∗

2 > 0 such that if 0 �
μ2 � μ∗

2 then the Hamiltonian, Eq. (3), supports at least one
bound state.

(2) Consider the case in which the one-particle wave
function spreads (becomes infinitely diffuse, case A) when
μ1 → μ

(c)
1 from above. Turning μ2 on while μ1 is just slightly

higher than μ
(c)
1 , if W (r12) is short range enough then the

particles are sufficiently far apart that they do not repel one
another appreciably, and a bound state can exist for some range
of μ2 > 0. This cannot happen when W (r12) is long range
enough to tear apart the system for all μ2 > 0, near μ1 ∼ μ

(c)
1 .

(3) Competition between a long-range attractive one-
particle potential and a short-range interparticle repulsion
can give rise to a rebinding phenomenon for some two-body
systems, when the attractive coupling is decreased. The authors
of [8] view this very remarkable observation as the main result
of their work.

Yet another recent contribution that provides worthwhile
insight, that is relevant to our present concern, deals with the
existence of Borromean binding in three-particle systems with
screened Coulomb interactions [9]. The existence of (rather
narrow) ranges of the screening parameter was established,
at which the three-particle system is bound whereas no two-
particle subsystem is.

II. THE ONE-ELECTRON YUKAWA ATOM

A. Review of earlier results

The potential in the one-electron Hamiltonian, Eq. (1),
appears to depend on the two parameters Z and λ, on the
first one linearly and on the second one nonlinearly. However,
scaling the coordinates via �̃r = Z�r we obtain

hYu = Z2

[
−1

2
∇̃2 − 1

r̃
exp

(
− λ

Z
r̃

)]
, (4)

i.e., the one-electron ground state satisfies [10–12]

E1(Z,λ) = Z2E1

(
1,

λ

Z

)
. (5)

It follows that the critical screening constant, at which the
ground-state energy vanishes, satisfies

λ(c)(Z)

Z
= λ(c)(1),

that we shall usually write as λ(c), or, later on, as λ
(c)
1 , to indicate

that it refers to the one-electron atom.
Several authors, using a variety of techniques, studied

the ground-state critical screening constant for the Yukawa
one-electron atom. Kesarwani and Varshni [13] recorded, in
1978, nine different calculations, only three of which pro-
vided five (or more) digit accuracy, i.e., λ(c) ≈ 1.1906. The
earliest such computation, cited in [13], is due to Hulthén and
Laurikainen [14]. The same value can be evaluated from the
energies presented by Vrscay [15]. Diaz et al. [16] claimed
16 digit accuracy but their value disagrees in the eighth
decimal place with the value proposed by Gomes et al.
[17], λ(c) ≈ 1.19061227 ± 0.00000004. Roy [18] obtained
λ(c) ≈ 1.190610.

The dependence of Vrscay’s energies [15] on (λ(c) − λ) near
the critical screening parameter, for the ground as well as for
the 2s state, is quadratic (case A), whereas for the 2p state it
is linear (case B). These asymptotic properties are consistent
with the Klaus-Simon theorem [7].

B. The one-electron computational procedure

One-electron ground-state energies and wave functions
were calculated using a high-precision MAPLE implementation
of Guimarães and Prudente’s polynomial finite element method
[19]. As a test of the accuracy of this computation, a variational
function consisting of a 25-term expansion in powers of r ,
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multiplied by a crudely optimized exponential, was used to
evaluate the ground-state energy at Z = 0.68, λ = 0.6643, a
point of some special significance to be discussed below. The
energy obtained using the Guimarães and Prudente procedure
is −0.0060009755. The alternative procedure yields the same
value, to all digits presented. The expectation value 〈exp(−λr)〉
is 0.123613702 versus 0.123613700, and the expectation value
〈 exp(−λr)

r
〉 is 0.099766511 versus 0.099766509, respectively.

C. The one-electron virial and Hellmann-Feynman theorems

Let �(r) be the normalized ground-state eigenfunction.
Define �̃(r) = η

3
2 �(ηr). Clearly, �̃(r) remains normalized.

The expectation value of the one-electron Hamiltonian, Eq. (1),
with respect to �̃(r) is

Ẽ1 = η2T1 − Z〈�̃(r)|exp(−λr)

r
|�̃(r)〉,

where T1 = 〈�(r)| − 1
2∇2|�(r)〉. Since Ẽ1 obtains its mini-

mum at η = 1 [where �̃(r) is the ground-state eigenfunction],
writing ∂Ẽ1

∂η
|
η=1

= 0 we obtain the virial theorem

2T1 + V1 = 2E1 − V1 = λZ〈exp(−λr)〉, (6)

where E1 = T1 + V1, and, using the notation 〈Ô〉 ≡ 〈�|Ô|�〉,
V1 = −Z〈 exp(−λr)

r
〉.

The Hellmann-Feynman theorem with respect to Z (which
we shall refer to as the Z-Hellmann-Feynman theorem) yields

Z
∂E1

∂Z
= −Z

〈
exp(−λr)

r

〉
= V1. (7)

The λ-Hellmann-Feynman theorem yields

∂E1

∂λ
= Z〈exp(−λr)〉. (8)

Using Eq. (6) we obtain

λ
∂E1

∂λ
= 2T1 + V1 = 2E1 − V1,

or

V1 = 2E1 − λ
∂E1

∂λ
(9)

and

T1 = −E1 + λ
∂E1

∂λ
. (10)

Substituting in Eq. (7) we finally obtain

Z
∂E1

∂Z
+ λ

∂E1

∂λ
= 2E1,

which is consistent with Eq. (5).
A numerical examination of the virial-Hellmann-Feynman

relations allows an assessment of the accuracy of
the computed results. Evaluating E1(Z,λ = 1) at
Z = 0.996,0.998, 1.000, 1.002,1.004 we obtain the five-point
estimate ∂E1

∂Z
|
Z=1,λ=1

= −0.13018680. In a similar way

we obtain ∂E1
∂λ

|
Z=1,λ=1

= 0.10961522. Hence, we obtain

Z ∂E1
∂Z

|
Z=1,λ=1

+ λ∂E1
∂λ

|
Z=1,λ=1

= −0.02057158, which agrees,

to all decimals presented, with 2E1.

Upon approaching the critical screening constant from
below, if E1 vanishes quadratically in (λ(c) − λ), then T1 and
V1 vanish as well, whereas they do not if E1 vanishes linearly.
However, in both cases

lim
λ→λ(c)

−V1

T1
= 1. (11)

Definition 1. We say that a wave function becomes infinitely
diffuse (“expands”) at λ(c), if, for all R > 0 and (arbitrarily
small) ε > 0, there is some δ > 0 such that for 0 < (λ(c) −
λ) < δ the inequality

∫ R

0 |�|24πr2dr < ε is satisfied.
Lemma 1. At the critical screening constant, at which E1(λ)

vanishes, the wave function becomes infinitely diffuse if and
only if limλ→λ(c)

∂E1
∂λ

= 0.
Proof. While 〈�|�〉 = 1 for all λ < λ(c), if the wave

function becomes infinitely diffuse at λ(c) then

lim
λ→λ(c)

〈�| exp(−λr)|�〉 = 0, (12)

yielding, by Eq. (6), limλ→λ(c) V1 = 0; hence, by Eq. (7),
limλ→λ(c)

∂E1
∂λ

= 0. On the other hand, if limλ→λ(c)
∂E1
∂λ

= 0,
then Eq. (7) yields limλ→λ(c) V1 = 0, and, with Eq. (6),
limλ→λ(c)〈exp(−λr)〉 = 0, which can only happen if �(�r)
becomes infinitely diffuse, since exp(−λr) is everywhere
positive. �

Remark 1. Case A states E1 ≈ α(λ(c) − λ)2, hence ∂E1
∂λ

|Zc
=

0. Since the latter is (by the Hellmann-Feynman theorem,
discussed above) the expectation value of an everywhere
negative operator, the wave function must become infinitely
diffuse at the critical charge, in agreement with the Klaus-
Simon theorem [7]. Case B states E1 ≈ α(λ(c) − λ), hence
∂E1
∂λ

|Zc
= α �= 0, implying that limλ→λ(c) V1 �= 0, which is only

possible if the wave function remains bound at λ(c). Hence,
Lemma 1 fully agrees with the Klaus-Simon theorem, although
the Hamiltonian is nonlinear in λ.

On the other hand, from the relations obtained above it
follows that

2T1 + V1 = 2E1 − V1 = −Z3 ∂

∂Z

(
E1

Z2

)
.

Using Eq. (6) it follows that

λZ〈 exp(−λr)〉 = −Z3 ∂

∂Z

(
E1

Z2

)
.

If the approach of the total energy to the critical charge (keeping
λ unchanged) is given by

E1 ≈ α(Z − Zc)2

(case A), then, for Z ≈ Zc,

λZ〈 exp(−λr)〉 ≈ −2αZc(Z − Zc),

which is consistent with Eq. (12).

III. THE TWO-ELECTRON YUKAWA ATOM

A. Review of earlier results

The two-electron Hamiltonian with Yukawa potential,
Eq. (2), yields

E2 = T2 + V2,
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where

T2 =
〈
−1

2

(∇2
1 + ∇2

2

)〉
,

V2 =
〈
−Z

(
exp(−λr1)

r1
+ exp(−λr2)

r2

)
+ exp(−λr12)

r12

〉
.

This system has been investigated rather extensively. The
observation that intrigued our curiosity is that the critical
screening parameter at which the first electron detaches in the
screened H− ion is very close to that at which the remain-
ing electron (i.e., in the screened hydrogen atom) becomes
unbound [2–5]. In fact, the authors quoted above suggested
that the two electrons may detach simultaneously. Fitting the
binding energies given in [2] for the screened H and H−
atoms for the four highest values of the screening constants to
cubic polynomials and extrapolating to vanishing binding en-
ergies we obtained the critical screening constants λ

(c)
1 ≈ 1.173

(which is a bit smaller than the best value quoted above, λ(c)
1 ≈

1.191) andλ
(c)
2 ≈ 1.150. While quite close to one another, these

values suggest that the two electrons detach consecutively, not
simultaneously, upon increasing the screening constant. The
ground state as well as several excited states of the screened He
atom were studied by Kar and Ho [20]. Extrapolating the He+

energies one obtains λ(c)(He+
)

2 ≈ 1.17. Similarly, λ(c)(He)
2 ≈

1.14. Winkler [2] points out that the binding energy decreases
rather slowly upon increase of the screening parameter for
both the one- and the two-electron systems, until the screening
length, D = 1

λ
, becomes comparable to the Bohr radius of

the 1s atom. Upon further increase of the screening constant
the binding energies decrease rather rapidly. This observation,
made also by Ugalde et al. [4], makes the proximity of the
critical screening constants for the one- and the two-electron
systems more plausible. Zhang and Winkler [3] claim that for
the screened He atom the two electrons detach simultaneously

at λ
(c)
1
2 = λ

(c)
2
2 ≈ 1.160. This value is definitely lower than the

best one-electron critical screening constant, quoted above.

B. The two-electron computational procedure

Two entirely independent computational procedures were
applied for the Yukawa two-electron problem. Within the
first procedure, that follows Hylleraas, the two-electron wave
functions are expansions of the form

ψ = exp(−αs)
∑

k

cks
�k tmkunk ,

where s, t , and u are the Hylleraas coordinates [21] defined
by s = r1 + r2, t = −r1 + r2, and u = r12. α and the cks are
variational parameters determined by minimizing the calcu-
lated energy. The cks were found by solving the secular
determinant and α was determined by hand optimization. The
wave functions included all terms with �k + mk + nk � 13
subject to the requirement that mk is even. The resulting wave
functions thus include 308 terms.

The second procedure employed, the Lagrange-mesh
method [22,23], is a numerical procedure for solving the
Schrödinger equation by placing it into a nonuniform inho-
mogeneous lattice defined by zeros of classical orthogonal
polynomials, using a basis of Laguerre functions and the

associated Gauss quadratures. The wave function is described
in terms of the perimetric coordinates [24,25]

x = −r1 + r2 + r12,

y = r1 − r2 + r12,

z = r1 + r2 − r12,

which are defined over [0,∞]. This computational procedure
is reviewed in [26]. The numerical calculations are carried
out using a straightforward modification of the PERILAG code
written by Baye [22,23,26], that employs the JADAMILU fast
diagonalization of large sparse matrices program [27]. For the
present calculations, we have employed the lattice parameters
[28] Nx = Ny = 50, Nz = 40 and the scaling parameters hx =
hy = 0.8, hz = 0.5.

The results are discussed in the following section.
Here we just point out that the two computational pro-
cedures yield identical energies, to six decimals. Thus,
for Z = 1, λ = 0.5 the Hylleraas-like wave function yields
E2 = −0.15782627 and the Lagrange-Laguerre–mesh method
yields E2 = −0.15782642.

C. Computational results

The binding energies of the second electron, i.e., the differ-
ence between the two-electron and the one-electron energies
for common Z and λ, are plotted in Fig. 1 for constant Z, as
functions of λ

Z
. Note the different vertical scales used in order

to fit all curves into a single figure.
In the following section we prove Lemma 2.
Lemma 2. The initial slope of (E1 − E2) versus λ

Z
, at

constant Z, is Z(1 − Z).
This lemma is consistent with the observation that for Z > 1

the dependence of the binding energy on the screening constant
is monotonically decreasing, but for Z < 1 one notices the
appearance of a maximum in the binding energy at some
finite λ. Numerical evaluation of the slopes at λ

Z
= 0 are in

agreement with the lemma to six decimals, providing another
confirmation of the accuracy of the computed energies. Hence,
for Z < 1 screening enhances the binding of the second
electron. This behavior suggests that for Z < 1 the reduction
in the interelectronic repulsion due to the screening is more
significant than the reduction in the nuclear attraction. This is
particularly interesting at Z < Zc ≈ 0.91102822407725573,
where the two-electron bare Coulomb atom ceases to be bound.
Below this critical charge the two-electron system remains
bound over a range of screening constants bounded by a lower
and an upper critical screening constant. This range decreases
upon further decrease of Z, eventually vanishing at some
critical charge, below which no choice of parameters allows
the two-electron system to be bound. We note that while the
upper critical screening constant decreases rather slowly with
decreasing Z, the lower critical screening constant increases
fairly rapidly. Extrapolating the binding ranges to zero suggests
that the lowest nuclear charge allowing binding, with appropri-
ate screening, is roughly Zm ≈ 0.676. The maximal binding
energies decrease rather rapidly upon lowering the nuclear
charge and suggest a higher value of Zm, perhaps as high as
0.688. The binding energies are possibly consistent with the
lower value of Zm estimated by extrapolation of the binding

022503-4



CRITICAL SCREENING IN THE ONE- AND TWO- … PHYSICAL REVIEW A 97, 022503 (2018)

0.00

0.01

0.02

0.03

0.04

0.00 0.20 0.40 0.60 0.80 1.00 1.20

E 1
e

-E
2e

(u
ni

ts
 o

f
E h

)

/Z (units of a0
-1)

Z=3 (f=1/75)

Z=2 (f=1/25)

Z=1

Z=0.9 (f=2)

Z=0.911 (f=3)

Z=0.88 (f=4)

Z=0.85 (f=5)

Z=0.82 (f=6)

FIG. 1. Binding energy of the second electron. Inset: Extrapolations towards the critical screening constants. Note that the binding energies
displayed in the main figure are multiplied by scaling factors (f ), needed to fit all the curves into a common frame.

ranges, if their approach to zero is very slow. However, actually
approaching this value would pose a significant computational
challenge. We suggest Zm ≈ 0.68 as our best estimate of the
lowest nuclear charge at which screening can yield a bound
ground state. The limiting value of the screening constant at
which binding is achieved at Zm is roughly λ

Zm
≈ 0.977.

The inset in Fig. 1 shows the extrapolations that yield
estimates of the critical screening constant, for the different
values of Z. The one-electron critical screening constant,
shown by the arrow towards the right end of the scale, is defi-
nitely higher than the two-electron critical screening constants,
that approach it as Z → ∞. At this limit the interelectronic
repulsion becomes relatively insignificant.

D. The two-electron virial and Hellmann-Feynman theorems

The virial theorem [4,5,29] is obtained in complete analogy
with the one-electron case, Eq. (6), yielding

2T2 + V2 = U,

where

U = λ〈Z( exp(−λr1) + exp(−λr2)) − exp(−λr12)〉.

The Z-Hellmann-Feynman theorem is

∂E2

∂Z
= −

〈
exp(−λr1)

r1
+ exp(−λr2)

r2

〉
,

and the λ-Hellmann-Feynman theorem is

∂E2

∂λ
= 〈Z( exp(−λr1) + exp(−λr2)) − exp(−λr12)〉 = U

λ
.

(13)

It follows that the two components of the potential energy
are given by

v12 =
〈

exp(−λr12)

r12

〉
= 2E2 − λ

∂E2

∂λ
− Z

∂E2

∂Z
,

v = −Z

〈
exp(−λr1)

r1
+ exp(−λr2)

r2

〉
= Z

∂E2

∂Z
.

Hence,

V2 = v + v12 = 2E2 − λ
∂E2

∂λ
= −λ3 ∂

∂λ

(
E2

λ2

)
, (14)

and

T2 = −E2 + λ
∂E2

∂λ
= λ2 ∂

∂λ

(
E2

λ

)
.

Just like the one-electron case discussed above, the virial ratio
−V2

T2
approaches unity upon approaching the critical screening

constant.
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Combining Eqs. (9) and (14) we obtain

V2 − V1 = 2(E2 − E1) − λ
∂(E2 − E1)

∂λ

= −λ3 ∂

∂λ

(
E2 − E1

λ

)
.

In the vicinity of the two-electron critical point the binding
energy of the second electron is asymptotically given by

E2 − E1 ≈ a
(
λ

(c)
2 − λ

)ζ
,

so that

V2 − V1 ≈ 2a
(
λ

(c)
2 − λ

)ζ − λζa
(
λ

(c)
2 − λ

)ζ−1
.

If ζ = 2 then V2 − V1 vanishes at λ = λ
(c)
2 , implying that one

of the electrons becomes infinitely diffuse. However, if ζ =
1 then V2 − V1 = −λ

(c)
2 a, which means that the two-electron

wave function is bound at the critical point.
We are now ready to prove Lemma 2.
Proof. Using Eqs. (8) and (13) we obtain

∂

∂λ
(E1 − E2) = Z(〈exp(−λr)〉1 − 〈exp(−λr1)

+ exp(−λr2)〉2) + 〈exp(−λr12)〉2,

where 〈ô〉1 stands for the expectation value of the operator
ô with respect to the one-electron wave function, and 〈Ô〉2

stands for the expectation value of Ô with respect to the two-
electron wave function. At λ = 0 this expression simplifies

into
∂

∂λ
(E1 − E2) = −Z + 1.

Hence, the slope of (E1 − E2) versus λ
Z

is Z(1 − Z). �
A numerical examination of the virial-Hellmann-Feynman

relations presented above allows a further assessment of the
accuracy of the computational results. Evaluating E2(Z,λ =
0.5) for Z = 0.996,0.998,1.000,1.002,1.004 and using a five-
point estimate of ∂E2

∂Z
we obtain ∂E2

∂Z
|
Z=1,λ=0.5

= −0.617702.

A similar procedure yields ∂E2
∂λ

|
Z=1,λ=0.5

= 0.493644. Using

these numerical estimates we obtain

v = Z
∂E2

∂Z
= −0.617702,

U = λ
∂E2

∂λ
= 0.246822,

V2 = 2E2 − λ
∂E2

∂λ
= −0.562475,

T2 = −E2 + λ
∂E2

∂λ
= 0.404648.

The expectation values evaluated with the 308-term Hylleraas-
type wave function agree with the values presented above to
all decimals presented.

It is of some interest to explore, more closely, the behavior
of the binding energy, E1 − E2, as a function of Z and λ,
in the vicinity of (Zm,λm), where Zm is the lowest nuclear
charge allowing a bound two-electron state, and λm is the value
of the screening parameter that gives rise to binding of the
two electrons at Zm. Using the one- and two-electron Z- and
λ-Hellmann-Feynman theorems we obtain

∂

∂λ
(E1 − E2)

∣∣∣∣
(Zm,λm)

= Z〈exp(−λr)〉1 − 〈Z(exp(−λr1) + exp(−λr2)) − exp(−λr12)〉2,

∂

∂Z
(E1 − E2)

∣∣∣∣
(Zm,λm)

= −
〈

exp(−λr)

r

〉
1

+
〈

exp(−λr1)

r1
+ exp(−λr2)

r2

〉
2

,

where 〈· · · 〉1 and 〈· · · 〉2 are expectation values with respect to the one-electron and the two-electron wave functions, respectively.
Our best approximation to (Zm,λm) is (0.68,0.6643). At this point we have

E1 = −0.0060010 E2 = −0.0060094,

Z〈exp(−λr)〉1 = 0.08406 〈Z( exp(−λr1) + exp(−λr2)) − exp(−λr12)〉2 = 0.08409,〈
exp(−λr)

r

〉
1

= 0.0998

〈
exp(−λr1)

r1
+ exp(−λr2)

r2

〉
2

= 0.1008.

The first pair, (E1,E2), indicates how close we are to a
vanishing binding energy. The second pair, ( ∂E1

∂λ
, ∂E2

∂λ
), indicates

how close we are to a minimum with respect to λ, and
the third pair, ( ∂E1

∂Z
, ∂E2

∂Z
), indicates that at (Zm,λm) the first

derivative of the binding energy with respect to Z vanishes.
This last fact implies that upon approaching Zm, the binding
energy depends quadratically on (Z − Zm), suggesting a two-
electron wave function that “expands” (becomes infinitely
diffuse).

IV. CONCLUDING REMARKS

The computations presented in the present paper were
verified, to high accuracy, by running independent numerical
procedures for both the one- and the two-electron systems.
Furthermore, identities obtained using the virial theorem and
two varieties of the Hellmann-Feynman theorem were verified
numerically, providing further assessment of the computa-
tional procedures.
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TABLE I. First and second critical screening constants for the
2p2 3P state.

Z λc(2p2 3P )/Z λc(2p)/Z

2 0.1771 0.213
3 0.1957 0.215
4 0.1996 0.214
5 0.2064 0.217
6 0.2023 0.212

In the two-electron systems two distinct critical screening
constants were evaluated, at the lower of which one of the
electrons and at the higher of which the remaining electron
is detached. For Z < 1 a moderate amount of screening was
demonstrated to increase the binding energy of the second
electron, further screening eventually lowering its binding en-
ergy, until it is detached at some critical value of the screening
parameter. While Z < 1 does not correspond to a physically
realizable system, the presently reported observation is of
interest in a mathematical physics sense, indicating a rather
counterintuitive feature of two-particle binding. Moreover, it
is conceivable that analogous effects could take place in heavier
atoms at realistic values of Z. Careful attention is required for
the evaluation of electron affinities of atoms in plasmas.

An interesting set of expectation values involving the
ground state of the screened He atom is presented by Jiao and
Ho [30]. The virial ratio −V2

T2
decreases from its unscreened

value, 2, all the way to 1 upon approaching the critical screen-
ing constant, as anticipated above. The expectation values 〈 1

r1
〉,

〈r1〉, and 〈r2
1 〉, as well as 〈 1

r12
〉, 〈r12〉, and 〈r2

12〉 are consistent
with an expanding wave function upon approaching the critical
screening constant. Even more revealing are the values of 〈r<〉
and 〈r>〉, the ratio 〈r>〉

〈r<〉 slowly growing from ∼2.086 for the
unscreened He ground state to ∼2.277 for λ = 1, thereafter
rising rapidly upon further increase of λ towards λ

(c)
2 .

Analyzing the data in [31,32] for the 2p2 3P state, for
Z = 2,3,4,5,6, we obtain the results presented in Table I.

We denote the screening constant that corresponds to the ion-
ization of the first electron by λ(c)(2p2 3P ), and the screening
constant that corresponds to the ionization of the remaining
electron by λ(c)(2p). We note that λ(c)(2p)

Z
, that should have been

constant, shows some scatter at the third digit, that indicates
the accuracy achieved in the evaluation of this constant. We
take the average, 0.214, as the “definitive” value. This critical
screening parameter is clearly larger than λ(c)(2p2 3P )

Z
, the latter

being (almost) monotonically increasing with increasing Z

(the Z = 6 value must be inaccurate). Hence, upon increasing
the screening constant the first 2p electron detaches before
the second one does. Graphical extrapolation of λ(c)(2p2 3P )

Z
to

1
Z

→ 0 yields

lim
1
Z

→0

λ(c)(2p2 3P )

Z
≈ 0.215,

which is reasonably close to the average value of λ(c)(2p)
Z

,
specified above. This just means that at large Z correlation
becomes insignificant and the two electrons are asymptotically
detached together.

The sequential, rather than simultaneous, detachment of the
electrons in the doubly excited state, 2p2 3P , of H− and in
the triply excited states 1s2s2p 4P and 2p3 4S of He− upon
increasing the screening parameter had already been reported
by Mercero et al. [5].

While the systems we investigate (Z ∼ 1) are too light to
exhibit significant relativistic effects, there may possibly be
subtle relativistic modifications of the behavior at the critical
points, that are beyond the scope of the present paper.
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