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Interaction of a hydrogenlike ion with a planar topological insulator
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An electric charge near the surface of a topological insulator (TI) induces an image magnetic monopole. Here
we study the spectra of hydrogenlike ions near the surface of a planar TI, taking into account the modifications
which arise due to the presence of the image monopole magnetic fields. In fact, the atom-TI interaction provides
additional contributions to the Casimir-Polder potential while the ion-TI interaction modifies the energy shifts
in the spectrum, which now became distance dependent. We show that the hyperfine structure is sensitive to
the image magnetic monopole fields in states with nonzero angular momentum and that circular Rydberg ions
can enhance the maximal energy shifts. We discuss in detail the energy splitting of the nP1/2 and nP3/2 states
in hydrogen. We also analyze the Casimir-Polder potential and find that this magnetic interaction produces a
large-distance repulsive tail for some particular atomic states. A sizable value of the maximum of the potential
requires TIs with very low values of the permittivity together with high values of the topological magnetoelectric
polarization.
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I. INTRODUCTION

Most quantum states of matter are categorized by the sym-
metries they break, and they are described by effective Landau-
Ginzburg theories [1]. However, topological phases evade
traditional symmetry-breaking classification schemes. Instead,
in the low-energy limit, they are described by topological field
theories with quantized coefficients [2]. For instance, the quan-
tum Hall effect is described by the topological Chern-Simons
theory in (2+1) dimensions (D) [3], with coefficient corre-
sponding to the quantized Hall conductance. Recently, topo-
logical insulators (TIs) in (3+1)D have attracted great attention
in condensed matter physics. These materials display nontrivial
topological order and are characterized by a fully insulating
bulk together with gapless surface states, which are protected
by time-reversal (TR) symmetry [4,5]. This type of topological
behavior was first predicted in graphene [6]. It was subse-
quently predicted and then observed in alloys and stoichiomet-
ric crystals that display sufficiently strong spin-orbit coupling
to induce band inversion, such as Bi1−xSbx [7,8], Bi2Se3,
Bi2Te3, Sb2Te3 [9,10], and TlBiSe2 [11]. These discoveries
stimulate further exploration of the exotic properties of the TIs.

The peculiar properties of TIs stem from a nontrivial
topology of their band structure but also interesting prop-
erties at the macroscopic level emerge when they interact
with, for example, electromagnetic fields [2]. The full theory
accounting for the electromagnetic response of TIs is given
by the standard Maxwell Lagrangian plus the additional term
Lθ = (α/4π2)θE · B, where E and B are the electromagnetic
fields, α is the fine structure constant, and θ is an angular
variable known in particle physics as the axion angle [12]. In
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general, the axion angle θ is a dynamical field; however, as
far as the electromagnetic response of TIs is concerned, it is
quantized in odd integer values of π , i.e., θ = ±(2n + 1)π ,
where n ∈ Z+, and it can be viewed as a phenomenological
parameter in the sense of an effective Landau-Ginzburg theory.

One of the most striking features of this topological re-
sponse theory is the topological magnetoelectric effect (TME),
which consists of a mixing between the electric E and magnetic
induction B fields at the surface of the material. This is why,
in the condensed matter literature, the axion angle is termed
the topological magnetoelectric polarization (TMEP). Among
the remarkable consequences of the TME, with which we
are concerned here, is the appearance of image magnetic
monopoles when a pointlike electric charge is brought near
to the surface of a TI. This effect, known as the image
magnetic monopole effect, was first derived in Ref. [13] using
the usual method of images of electromagnetism; however,
it has also been obtained using different methods, e.g., by
the action of the SL(2,Z) duality group on TIs [14] and
by Green’s function techniques [15]. The existence of these
image magnetic monopoles is compatible with the Maxwell
equation ∇ · B = 0, since the resulting magnetic fields are in
fact induced by circulating vortex Hall currents on the surface
of the TI, which are sourced by the electric charge next to
the interface rather than by a real pointlike magnetic charge.
Other TMEs involving the appearance of image current and
charge densities of magnetic monopoles have been predicted
[15]. Additional effects due to the TME have been envisioned.
For example, when polarized light propagates through a TI
surface, of which the surface states has been gapped by TR
symmetry breaking, a topological Faraday rotation of 1–10
mrad appears, which falls in a small window but within the
current experimental reach [16–21]. On the other hand, the
effects of the topological nontriviality on the Casimir effect
has also been considered [22–24].
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The experimental determination of the TME arising from
TIs in (3+1)D has proved to be rather difficult. This is so
because there is an important difference between the θ term
for (3+1)D topological insulators and the (2+1)D Chern-
Simons term for quantum Hall systems [4]. In (2+1)D, a
simple dimensional analysis reveals that the topological Chern-
Simons term dominates over the nontopological Maxwell term
at low energies. However, in (3+1)D, both terms are equally
important at low energies since they have the same scaling
dimension. This implies that, for (3+1)D TIs, the topological
response always coexists with the ordinary electromagnetic
response, thus making the detection of the TME of TIs exper-
imentally challenging. Despite this limitation, it was recently
reported the measurement of a universal topological Faraday
rotation angle equal to the fine structure constant when linearly
polarized radiation passes through two surfaces of the TI
HgTe [25].

In order to motivate our approach to study the TME, let us
recall that the presence of an atom in front of a material body
will modify its quantum properties, such as the magnitude of
the energy levels and the decay rates of the excited states, which
now become functions of the distance between the atom and
the body. For a given quantum state, the energy of each atomic
level can be interpreted as the interaction energy of the system,
yielding the Casimir-Polder (CP) potential experienced by the
atom in this state. In this way, distance-dependent energy levels
of an atom can be analyzed from two alternative perspectives,
which have been very successful and well studied along the
years: (i) the investigation of dispersion forces [26,27] and
(ii) the consideration of atomic spectroscopy [28]. According
to Ref. [26], we will denote by CP interactions those between
an atom and a body. In a first approximation, the CP interaction
can be understood as arising from the dipole induced by the
polarization of the atom, which interacts with an image dipole
inside the material required to satisfy the boundary conditions
at the surface of the body. If the material body is, for example,
a topological insulator, additional interactions arise due to
the TME: The charges in the atom will also induce image
magnetic monopoles inside the TI, which will in turn interact
with the electron via the standard minimal coupling. Since the
calculation of the nonretarded force on a charge in front of
a metallic plate [29], followed by its generalization including
retardation [30], the CP interaction has been profusely studied
in diverse materials and geometries. Such extensive interest is
motivated by the relevance of CP forces in many branches of
science like field theory, cosmology, molecular physics, colloid
science, biology, astrophysics, and micro- and nanotechnology,
for example. The measurement of CP forces has also experi-
enced a high degree of sophistication ranging from experiments
based upon classical scattering [31,32], quantum scattering
[33,34], and spectroscopic measurements [32,35,36]. For a
detailed account of the theoretical and experimental work on
the CP interaction, including the appropriate references, see,
for example, Ref. [26].

Within the realm of atomic spectroscopy and because of the
well-developed theory together with a large tradition in high-
precision measurements, hydrogenlike ions could provide an
attractive test bed for studying the TME, since their hyperfine
structure turns out to be sensitive to the image monopole
magnetic fields. The case of circular Rydberg ions will be of

relevance because they provide an enhancement of the TME
contribution with respect to the optical one.

The specific problem we shall consider is that of an
hydrogenlike ion, including the case of a hydrogen atom, near
the surface of a TI. The TI is assumed to be covered with a
thin magnetic layer to gap the surface states. Because of the
TME, the atomic charges produce image magnetic monopoles
inside the TI, whose magnetic fields cause additional small
shifts in the energy levels of the ion. For a given state, the
corresponding energy provides the nonretarded CP potential
as well as the distance-dependent energy shifts. Also, we
discuss the spectra of the lines where the contributions from
the TME induced by the topological insulator arise. Since the
splitting of the energy levels depends mainly on the ion-surface
distance, we focus on the case where (i) there is a negligible
wave-function overlap between the electron and the surface
states, (ii) the ion-TI interaction is dominated by nonretarded
electromagnetic forces, and (iii) perturbation theory is valid.

The paper is organized as follows. In Sec. II, we review
the basics of the electromagnetic response of TR-invariant
topological insulators in (3+1)D. The Hamiltonian describing
the interaction of the ion with the TI is derived in Sec. III.
We analyze the order of magnitude of each contribution and
we retain the more important ones. The energy shifts of
circular Rydberg hydrogenlike ions are discussed in Sec. IV,
where we consider the separate cases where the ion and the
TI are embedded either in the same dielectric media or in
a different one. The former situation also contributes to the
amplification of the TME. Section V includes the calculation
of the energy level shifts of the hyperfine spectrum of the
hydrogen in the nP3/2 and nP1/2 states, which constitute the
basis for the analysis in the next section, Sec. VI, where we
discuss the resulting Casimir-Polder interaction in each of
the previously determined states. A concluding summary of
our results and a discussion on the limitations of our model
constitutes Sec. VII. Throughout the paper, Lorentz-Heaviside
units are assumed (h̄ = c = 1) and the metric signature will
be taken as (+, − , − ,−) and ε0123 = +1.

II. ELECTROMAGNETIC RESPONSE OF (3+1)D
TOPOLOGICAL INSULATORS

The low-energy effective field theory governing the elec-
tromagnetic response of (3+1)D topological insulators, inde-
pendently of the microscopic details, is defined by the action

S =
∫ [

1

8π

(
εE2 − 1

μ
B2

)
+ α

4π2
θE · B

]
d4x, (1)

where E and B are the electromagnetic fields, α � 1/137 is
the fine structure constant, ε and μ are the permittivity and
permeability, respectively, and θ is the TMEP (axion field).
When the theory is defined on a manifold without boundary,
TR symmetry indicates that there are only two nonequivalent
allowed values of θ , which are 0 and π modulo 2π . This leads
to the Z2 classification of three-dimensional TR-invariant TIs.
For a manifold with a boundary, TR symmetry is broken even
if θ = π (modulo 2π ) in the action (1), and nontrivial metallic
surface states appear. The theory is a fair description of the
whole system (bulk + boundary) only when a TR-breaking
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perturbation is induced on the surface to gap the surface states,
for instance, by means of a magnetic perturbation (applied
field and/or film coating) [4,5] or even by using commensurate
out- and in-plane antiferromagnetic or ferrimagnetic insulating
thin films [37]. These surface states have an anomaly which
cancels the TR-breaking term, thus restoring the TR symmetry
of the whole system. In this situation, θ is quantized in odd
integer values of π such that θ = ±(2n + 1)π , where 2n + 1
corresponds to the number of Dirac fermions on the surface. In
this work, we consider that the TR perturbation is a magnetic
coating of small thickness, such that the two signs correspond
to the two possible orientations of the magnetization in the
direction perpendicular to the surface. Physically, the axionic
term in Eq. (1) is generated by a quantized Hall effect on
the surface of the TI leading to a quantized magnetoelectric
response in units of the fine structure constant.

The electromagnetic response of TIs is still described by
the ordinary Maxwell equations

∇ · D =4πρ , ∇ × H = ∂D
∂t

+ 4πJ,

∇ · B =0 , ∇ × E = −∂B
∂t

, (2)

with the modified constitutive relations

D = εE + α

π
θB, H = 1

μ
B − α

π
θE. (3)

The first term in each constitutive relation is the usual electro-
magnetic term defined in terms of the permittivity and perme-
ability functions, giving rise to the ordinary electromagnetic
phenomena. Interestingly, the second term in each constitutive
relation, which arises from the axionic term in Eq. (1), leads to a
mixing between the electric E and magnetic induction B fields.
Importantly, the quantization of the TMEP depends only on the
TR symmetry and the bulk topology; it is therefore universal
and independent of any material details, thus guaranteeing the
robustness of the TME.

The general solution to the modified Maxwell equations (2)
in the presence of planar, spherical, and cylindrical TIs has been
recently elaborated by means of Green’s function techniques
[15,38,39]. Knowledge of the Green’s function allows one
to compute the electromagnetic potential Aμ = (φ,A) at any
point from an arbitrary distribution of sources Jμ = (ρ,J) via

Aμ(r) =
∫

Gμ
ν(r,r′)J ν(r′)d3r′, (4)

where the Green’s function Gμ
ν contains all the information

concerning the geometry and boundary conditions on the
surface of the TI. Because of the gauge invariance of the action
(1), the electrostatic and magnetostatic fields are defined in
terms of the potential Aμ according to E = −∇φ and B =
∇ × A, as usual. As can be seen from Eq. (4), the nondiagonal
components of the Green’s function are the responsibility of
the TME.

III. HYDROGENLIKE ION NEAR THE SURFACE OF A TI

Let us consider an hydrogenlike ion near a three-
dimensional TI half-space, as shown in Fig. 1, and let us restrict
ourselves to the nonretarded approximation. As is well known,

FIG. 1. An hydrogenlike ion at position r0 near a three-
dimensional TI. The TI is covered with a thin magnetic layer of
thickness w � |r0| (not to scale) which controls the sign of the
TMEP θ .

this regime is valid for distances b such that b � λC, where λC

can be estimated as the maximum wavelength characterizing
the transitions between the specific energy levels being probed
in the ion [26,40]. In what follows we will consider the
nucleus to be fixed at r0 = bêz, and we assume that the TI
is covered with a thin magnetic layer of thickness w � b

and magnetization M = M êz, such that there is a negligible
wave-function overlap between the atomic electron and the
surface states. Thus, we henceforth assume that w � b � λC.
We stress here that the only effect of the magnetic coating is
to gap the surface states. However, the ferromagnet makes a
magnetic field and the energy shifts of the atomic spectrum
are to be measured as a function of the magnetization M . The
effects we shall discuss in the following are defined as the linear
extrapolation of the energy shifts as M → 0+, in which limit
the nontopological contributions are removed. In Sec. VII, we
will discuss the effects of the magnetic coating on the energy
levels in more detail.

In the nonretarded regime, the CP interaction between two
atoms (two hydrogen atoms, for instance) is achieved by
computing the Coulomb interaction between all charges of
one atom and all charges of the other. Since in our model we
have to take into account many pairwise Coulomb interactions
(between the charges of the atom and their electric images), it is
convenient to introduce the Coulomb interaction Hamiltonian,

UCoul = 1

2

∫
ρ(r)G0

0(r,r′)ρ(r′)d3rd3r′, (5)

where ρ includes the two opposite charges of the ion.
Because of the TME, the atomic charges will also produce

image magnetic monopoles located inside the TI, whose
magnetic fields will in turn interact with the atomic electron.
This interaction results from the coupling of the magnetic
field produced by the image monopoles with the electron
spin and their orbital motion. Therefore, the Hamiltonian we
consider is

H = �2

2me

+ UCoul + e

me

S · B + Vfs + Vhfs, (6)

where me is the electron mass, e > 0 is the magnitude of the
electron charge, � = p + eA is the canonical momentum, and
B = ∇ × A is the magnetic field associated with the image
magnetic monopoles, one contribution arising from the nucleus
and the other from the electron. Besides, UCoul is the Coulomb

022502-3



A. MARTÍN-RUIZ AND L. F. URRUTIA PHYSICAL REVIEW A 97, 022502 (2018)

interaction energy (5), Vfs are the fine structure contributions
(relativistic energy correction, spin-orbit coupling, and Darwin
term), and Vhfs is the hyperfine interaction.

In our Hamiltonian, we have considered those terms which
give the most important contributions to the energy spectrum.
However, there are other smaller terms, such as the interaction
between the image monopole magnetic fields and the nuclear
spin, and also the interaction between the image electric dipole
produced by the atomic magnetic moment and the atomic
electric dipole. Next let us study each term separately.

Since the ion-surface distance, though small to make re-
tardation effects negligible, is much greater than the Bohr
radius a0, a Taylor expansion in the electromagnetic fields
can be performed [40–42]. Then, treating the ion as an
electric composite system, the effective charge density can be
written as

ρ(r′) = e[Zδ(r′ − r0) − δ(r′ − r0 − r)], (7)

where Z is the atomic number and r is the vector which
localizes the electron from the nucleus. It is convenient to split
the 00 component of the Green’s function as [15]

G0
0(r,r′) = G(r,r′) + GS(r,r′), (8)

where the first term

G(r,r′) = 1√
(x − x ′)2 + (y − y ′)2 + (z − z′)2

(9)

is the Green’s function in unbounded space. The second term

GS(r,r′) = κ√
(x − x ′)2 + (y − y ′)2 + (z + z′)2

, (10)

with

κ = 1

ε1

(ε1 − ε2)(1/μ1 + 1/μ2) − θ̃2

(ε1 + ε2)(1/μ1 + 1/μ2) + θ̃2
, θ̃ ≡ α

θ

π
, (11)

is a solution of the homogeneous Laplace equation, such that
G0

0(r,r′) satisfies the required boundary conditions at the
surface of the TI [22]. Let us emphasize that θ̃ in Eq. (11) is
of order α. Using the aforementioned charge distribution and
the Green’s functions, the Coulomb interaction (5) becomes

UCoul =e2

2
[Z2G(r0,r0) − 2ZG(r0 + r,r0)

+ G(r0 + r,r0 + r)]

+ e2

2
[Z2GS(r0,r0) + GS(r0 + r,r0 + r)

− ZGS(r0,r0 + r) − ZGS(r0 + r,r0)]. (12)

The terms Z2G(r0,r0) and G(r0 + r,r0 + r) in this expression
are the divergent self-energies of the nucleus and the electron,
respectively, which we discard. The term ZG(r0,r0 + r) cor-
responds to the nucleus-electron interaction. The contributions
due to the presence of the TI are given by the remaining four
terms and the Coulomb energy now takes the form

UCoul = − Ze2

ε1r
+ e2

2
[Z2GS(r0,r0) − ZGS(r0 + r,r0)

− ZGS(r0,r0 + r) + GS(r0 + r,r0 + r)]. (13)

In the limit |r| � |r0|, when the dimensions of the ion are
small compared with the nucleus-interface distance |r0|, the
additional terms can be written as derivatives of GS . Making a
Taylor expansion of GS(r0,r0 + r) in powers of r up to second
order produces

G
(2)
S (r0,r0 + r) �GS(r0,r0) + (

r · ∇′)GS(r0,r′)|r′=r0

+ 1

2
(r · ∇′)2GS(r0,r′)|r′=r0 . (14)

Analogously, a Taylor expansion for GS(r0 + r,r0) yields

G
(2)
S (r0 + r,r0) �GS(r0,r0) + (

r · ∇′)GS(r′,r0)|r′=r0

+ 1

2

(
r · ∇′)2

GS(r′,r0)|r′=r0 . (15)

Using the previous results, one can further establish

G
(2)
S (r0 + r,r0 + r) + GS(r0,r0)

� G
(2)
S (r0,r0 + r) + G

(2)
S (r0 + r,r0)

+ (r · ∇′)(r · ∇′′)GS(r′,r′′)|r′′=r′=r0 . (16)

Substituting the expressions (14), (15), and (16) in Eq. (13)
yields our final expression for the Coulomb energy

UCoul = − Ze2

ε1r
+ (Z − 1)2e2

2
GS(r0,r0)

+ (1 − Z)e2
[
(r · ∇′)GS(r0,r′)

∣∣∣
r′=r0

+ 1

2
(r · ∇′)2GS(r0,r′)

∣∣∣
r′=r0

]

+ e2

2
(r · ∇′)(r · ∇′′)GS(r′,r′′)

∣∣∣
r′′=r′=r0

. (17)

Using the Green’s function GS defined above, one obtains

GS(r0,r0) = κ

2b
, (r · ∇′′)GS(r0,r′′)|r′′=r0 = − κz

4b2
,

(r · ∇′)(r · ∇′)GS(r′,r0)|r′=r0 = κ
3z2 − r2

8b3
,

(r · ∇′)(r · ∇′′)GS(r′,r′′)|r′′=+r′=r0 = κ
r2 + z2

8b3
,

(18)

such that the Coulomb interaction simplifies to

UCoul = −Ze2

ε1r
+ δU0 + δU1 + δU2. (19)

The first term is the usual Coulomb interaction experienced
by the atomic electron due to the nucleus. The second term,
δU0 = κ(Z − 1)2(e2/4b), which corresponds to the interaction
between the effective atomic charge and its own image, does
not depend on the electron coordinates and thus it is not
considered for the purposes of this paper. The last terms,

δU1 = κ(Z − 1)e2

4b2
z, δU2 = κe2

16b3
[Zr2 − (3Z − 4)z2],

(20)

constitute the optical contribution to the attractive CP interac-
tion due to the presence of the TI.
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Now let us consider the terms which are the direct manifes-
tation of the image monopole magnetic fields, i.e., (e/me)A · p
and (e2/2me)A2. These terms will provide additional correc-
tions to the standard CP interaction arising from the presence
of the TI. In terms of the Green’s function Gi

0(x,x′) [15], the
vector potential is

Ai(x) =
∫

Gi
0(x,x′)ρ(x′)d3x′, (21)

where ρ is the previously defined charge density in Eq. (7).
This yields

Ai(x) = ZeGi
0(x,r0) − eGi

0(x,r0 + r). (22)

In the coordinate system attached to the nucleus, the vector
potential becomes

Ai(r) = ZeGi
0(r0 + r,r0) − eGi

0(r0 + r,r0 + r). (23)

The first term corresponds to the vector potential produced
by the image monopole of the nucleus on the electron, while
the second term is the vector potential of the image monopole
of the electron on the electron itself. The calculation of the
vector potential (23) starts from the components of the Green’s
function

eGi
0(x,x′) = gε0ji3Rj

R2

(
1 − z + z′√

R2 + (z + z′)2

)
, (24)

where Rj = (x − x ′)êx + (y − y ′)êy and

g = 2eθ̃

(ε1 + ε2)(1/μ1 + 1/μ2) + θ̃2
(25)

is the magnitude of the image magnetic monopole of an
electric charge e. From Eq. (24), we observe that the expression
Gi

0(x,x) is ill defined at a first glance. This calls for a careful
determination of the limit x → x′. A Taylor expansion of
the term in round brackets in the right-hand side of Eq. (24)
leads to

eGi
0(x,x′) � gε0ji3Rj

2

[
1

(z + z′)2
+ O

(
R2(n−1)

(z + z′)2n

)]
. (26)

Taking the limit x′ → x, we obtain that Rj → 0 and z + z′ =
2z, in such a way that Gi

0(x,x) = 0. Then, Eq. (23) reduces to

Ai(r) = ZeGi
0(r0 + r,r0). (27)

Since |r| � |r0|, we perform a Taylor expansion up to third
order in r to obtain

Ai(r) �Ze
[
Gi

0(r0,r0) + (r · ∇′)Gi
0(x′,r0)

+ 1

2!
(r · ∇′)2Gi

0(x′,r0)

+ 1

3!
(r · ∇′)3Gi

0(x′,r0)
]∣∣∣

x′=r0

. (28)

The first term in the right-hand side of the above equation is
zero and the subsequent contributions require also an accurate

calculation of the corresponding limit. Using the Green’s
function Gi

0 defined above, one obtains

(r · ∇′)Gi
0(x′,r0)|x′=r0 = − g

8b2
ε0ij3rj ,

(r · ∇′)2Gi
0(x′,r0)|x′=r0 = gz

4b3
ε0ij3rj ,

(r · ∇′)3Gi
0(x′,r0)|x′=r0 = 9g

64b4
(r2 − 5z2)ε0ij3rj . (29)

In this way, the final expression for the vector potential is

Ai(r) = −Zge

8b2

(
1 − z

b
− 3

16

r2 − 5z2

b2

)
ε0ij3rj . (30)

The final contribution of the term A · p to the Hamiltonian is

e

me

A · p = δVθ1 + δVθ2 + δVθ3, (31)

with

δVθ1 = − Zge

8meb2
Lz, δVθ2 = − z

b
δVθ1,

δVθ3 = − 3

16

r2 − 5z2

b2
δVθ1, (32)

where Lz = xpy − ypx is the z component of the angular
momentum operator.

Next we deal with the quadratic term in the vector potential
appearing in the Hamiltonian (6). As shown in the expression
(20) for the contribution δU , we are considering corrections
up the quadratic order in the electron coordinates. Using the
corresponding vector potential (30), we thus find

e2

2me

A2 = (Zge)2

128meb4
(r2 − z2). (33)

A similar analysis is next performed for the magnetic interac-
tion (e/me)S · B, where the magnetic field B is produced by the
image monopoles of the nucleus and the electron. The nucleus
is located at r0 = bêz and produces an image monopole of
magnitude Zg at −r0. In our coordinate system, the magnetic
field of such image monopole acting on the electron is

Bn = Zg
r + 2r0

|r + 2r0|3 = Zg
xêx + yêy + (z + 2b)êz

[R2 + (z + 2b)2]3/2
. (34)

The other contribution to the image monopole magnetic
field comes from the electron itself and it is located at
r′ = xêx + yêy − (z + b)êz with magnitude −g. It is given by

Be = −g
êz

4(z + b)2
. (35)

The total magnetic field that feels the electron is then

B = Zg
xêx + yêy + (z + 2b)êz[

R2 + (z + 2b)2
]3/2 − g

êz

4(z + b)2
. (36)

Performing a Taylor expansion up to quadratic order in r, the
magnetic interaction thus takes the final form

e

me

S · B = δWθ1 + δWθ2, (37)
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where

δWθ1 = ge

4meb2
(Z − 1)Sz,

δWθ2 = ge

4meb3

[
Z

2
(xSx + ySy) − (Z − 2)zSz

]
. (38)

Having taken into account each of the previous contributions
to their lowest order in xi/b

2, the Hamiltonian (6) reduces to

H =H0 + κ(Z − 1)e2

4b2
z + κe2

16b3
[Zr2 − (3Z − 4)z2]

− Zge

8meb2

(
1 − z

b
− 3

16

r2 − 5z2

b2

)
Lz

+ (Zge)2

128meb4
(r2 − z2) + Zge

8meb3
(xSx + ySy)

+ ge

4meb2

[
(Z − 1) − (Z − 2)

z

b

]
Sz, (39)

where

H0 = p2

2me

− Ze2

ε1r
+ Hfs + Hhfs (40)

is the Hamiltonian of the hydrogenlike ion including fine (Hfs)
and hyperfine (Hhfs) corrections.

Our next step is to have an estimation of the relative
weights of the different contributions to the mean value of
the Hamiltonian (39). The exact mean values for a given
specific atomic levels will be presented in the next sections.
The contributions to the CP potential of the optical terms in
the right-hand side (rhs) of Eq. (39) can be estimated as

〈δU1〉
Eg

= − κε1

2

Z − 1

Z
ξ 2〈cos ϑ〉, (41)

〈δU2〉
Eg

= − κ

8

(ε1

Z

)2
ξ 3[Z − (3Z − 4)〈cos2 ϑ〉], (42)

where ξ = a0/b � 1 and Eg = −meα
2/2 = −13.6eV is the

ground-state energy of the hydrogen atom. For b of the order of
μm, we find ξ ∼ α2 ≈ 10−5, and therefore we expect 〈δU1〉 ∼
2κε1 × 10−8 eV for Z = 1, and a null value for Z = 1. In a
similar fashion, we expect 〈δU2〉 ∼ 2κ(ε1/Z)2 × 10−12 eV. We
observe that although these contributions depend crucially on
the values of κ , ε1, and Z, they are smaller than the hyperfine
structure of the hydrogenlike ion Ehfs ∼ (Z/nε1)3 × 10−7 eV
and for this reason we take H0 in Eq. (40) as our unperturbed
system.

The next term in Eq. (39) arises from the interaction
(e/me)A · p. A direct estimation shows that only the first term
in the rhs of Eq. (31), which is of the order of

〈δVθ1〉
Eg

= Z

2
α2ξ 2 (θ/π )〈Lz〉

(ε1 + ε2)(1/μ1 + 1/μ2) + θ̃2
, (43)

can compete with the optical contributions δU1 and δU2.
For b ∼ μm, one finds 〈δVθ1〉 ∼ Z × 10−12 eV, while the
other terms are of the order of 〈δVθ2〉 ∼ 5ε1 × 10−17 eV and
〈δVθ3〉 ∼ (3ε2

1/Z) × 10−21 eV, which are strongly suppressed
with respect to 〈δVθ1〉. Therefore, in the subsequent analysis
we only consider the term δVθ1 while disregarding the others.
An interesting feature of this term is that the product θ〈Lz〉

can be positive or negative, depending on both the sign of the
magnetization on the surface of the TI and the projection of
the z component of the angular momentum. When negative,
this term provides a positive contribution for the Hamiltonian,
thus in principle competing with the attractive character of the
CP interaction optical contributions in the CP potential. We
make a detailed discussion of this possibility in Sec. VI. This
property is a direct consequence of the TME effect.

The next term to be considered is (e2/2me)A2, leading to
corrections of the order of

〈(e2/2me)A2〉
Eg

= −
[

α2ξ 2(θ/π )(ε1/4)

(ε1 + ε1)(1/μ1 + 1/μ2) + θ̃2

]2

. (44)

Since ξ ∼ α2 for b ∼ μm, this term is α6 ∼ 10−13 smaller than
the optical contributions and will not be taken into account.
Finally we are left with the spin-dependent interaction terms
in Eq. (39), arising from the interaction proportional to S · B.
The most important contribution is

〈δWθ1〉
Eg

= α2ξ 2 (1 − Z)(θ/π )〈Sz〉
(ε1 + ε2)(1/μ1 + 1/μ1) + θ̃2

, (45)

which is of the same order of magnitude than 〈δU2〉 and 〈δVθ1〉
for b ∼ μm and Z = 1, and vanishes for the hydrogen atom.
Therefore, we retain such term in our subsequent analysis. Note
that in an analogous fashion to that of the term δVθ1, the sign
of this term can be tuned by means of the product θ〈Sz〉, which
can be either positive or negative depending on both the sign of
the magnetization on the surface of the TI and z component of
the spin. One can further verify that the second term, 〈δWθ2〉,
is smaller than 〈δWθ1〉 by a factor of α2 ≈ 10−5, and thus it
can be discarded.

Finally, we make a rough estimation of the weights of the
terms not considered in our Hamiltonian (6). We first consider
the interaction between the image monopole magnetic fields
(36) and the nuclear magnetic moment μ = (ZegN/2mN )I,
where I is the nuclear spin, mN is its mass and gN is its
gyromagnetic ratio. This is given by δQ = −μ · B. Performing
a Taylor expansion of the magnetic field, we find similar
expressions to those of Eq. (38). Thus we find that the
ratio between the most important contributions, δQ1 = Z(1 −
Z)(eggN/8mNb2)Iz and δWθ1, become

〈δQ1〉
〈δWθ1〉 = ZgN

2

me

mN

. (46)

As discussed in the previous paragraphs, δWθ1 is of the order of
10−12 eV, and thus any smaller contribution can be disregarded
in our analysis. Indeed, one can directly verify that the ratio (46)
is very small (∼10−4) and this is why we have not considered
the δQ interaction in our initial Hamiltonian (6). On the other
hand, the magnetic moment of the nucleus μ will induce
an image electric dipole d due to the TME, whose electric
field E will in turn interact with the atomic dipole moment p
according to δP = −p · E. In this case, the full expression is
rather complicated but a rough estimation can be done. We
can naively think that the magnetic dipole moment is sourced
by an elementary electric current j whose magnitude must
be proportional to |μ|. This implies that the interaction δP

must be proportional to |μ| (from the source) and to g (from
the nondiagonal components of the Green’s function). These
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simple arguments imply that 〈δP 〉/〈δVθ1〉 ≈ (gN/2)(me/mN ),
which is small enough to be considered in our analyses.

The previous order of magnitude estimations leave us with

H = H0 + δU1 + δU2 + δVθ1 + δWθ1, (47)

as the final Hamiltonian describing the ion-TI interaction, to
be considered in the next sections. Here, each term is given by

δU1 = ε1

2

1 − Z

Z
κξ 2Egz̃, (48)

δU2 = − ε2
1

8Z2
κξ 3Eg[Zr̃2 − (3Z − 4)z̃2], (49)

δVθ1 = Z

4
geξ 2EgLz, (50)

δWθ1 = 1 − Z

2
geξ 2EgSz, (51)

where we have defined the rescaled coordinates x̃i ≡
(Z/ε1)(xi/a0).

According to the statement of the problem, we are consid-
ering a hydrogenlike ion embedded in a medium with optical
properties (ε1,μ1) at a distance b from a planar topological
insulator charaterized by its optical properties (ε2,μ2) and the
TMEP θ , as shown in Fig. 1. Without loss of generality, we can
restrict our analysis to the case μ1 = μ2 = 1, which is suitable
for both conventional and topological insulators. Furthermore,
we observe that the potentials δVθ1 and δWθ1 are exclusively
of topological origin in the sense that they vanish for θ = 0.
On the contrary, the optical and topological properties coexist
for the potentials δU1 and δU2 provided ε1 = ε2 since they
depend on κ , defined in Eq. (11). Therefore, one can consider
the following two interesting cases: (a) ε1 = ε2 and (b) ε1 = ε2.
In the former case, we consider the ion to be embedded in a
dielectric medium with the same optical properties that those
of the TI, such that the electrostatic effects are suppressed and
only the topological ones become important. The second case
is perhaps the most realistic situation from the experimental
point of view since spectroscopy experiments consider the
atoms in vacuum. On the other hand, from the potentials
(48)–(51) we can also distinguish two situations of interest,
i.e., (i) Z = 1 (hydrogenlike ions) and (ii) Z = 1 (hydrogen
atom). The fundamental difference arises from the fact that
potentials δU1 and δWθ1 vanish for the hydrogen atom case. In
the next sections, we discuss the lowest lying energy levels, in
each case, where the TME effects become manifest.

IV. ENERGY SHIFTS OF THE SPECTRUM OF
HYDROGENLIKE IONS

A. General considerations

In this section, we work out the energy shifts on the hyper-
fine structure states of hydrogenlike ions due to the Casimir-
Polder interaction δU1 + δU2 + δVθ1 + δWθ1. We study the
cases described in the end of the previous section but we left
the case of the hydrogen atom in vacuum for a detailed analysis
in the next section.

In our notation, the electron variables are labeled by the
quantum numbers n, �, s, j , and mj , where the total electron
angular momentum J = L + S is labeled by j = � ± s, with
� being the orbital angular momentum quantum number and

s = 1/2 its spin. Explicit forms for the fine structure states,
abbreviated as |j,mj 〉fs ≡ |n,�,s,j,mj 〉, are

|j,mj 〉fs =
+s∑

ms=−s

〈�,s,mj − ms,ms |j,mj 〉

× |n,�,mj − ms〉 ⊗ |s,ms〉e, (52)

where the |n,�,m〉 are the spinless Coulomb bound states with
〈r|n,�,m〉 = Rn�(r)Ym

� (ϑ,ϕ), and the |s,ms〉e are the electron
spin states. The required Clebsch-Gordan (CG) coefficients are
given by

〈�,s,mj ∓ s, ± s|j = � + s,mj 〉 =
√

1

2
± mj

2� + 1
,

〈�,s,mj ∓ s, ± s|j = � − s,mj 〉 = ∓
√

1

2
∓ mj

2� + 1
. (53)

The states |n,�,s,j,mj 〉 are, by construction, simultaneous
eigenfunctions of L2, S2, J2, and Jz.

At the hyperfine level, we must include the nuclear spin i.
The total atomic angular momentum F = J + I has quantum
number f satisfying |j − i| � f � |j + i|. It is conserved
due to rotational symmetry, so the states having different
eigenvalues mf of Fz would be degenerate in the absence of an
external magnetic field, but all other degeneracies are broken.
The hyperfine structure states, abbreviated as |j,f,mf 〉hfs ≡
|n,�,s,j,f,mf 〉, have the form

|j,f,mf 〉hfs =
+i∑

mi=−i

〈j,i,mf − mi,mi |f,mf 〉

× |j,mf − ms〉fs ⊗ |i,mi〉N, (54)

where |i,mi〉N are the nuclear spin states. The CG coefficients
in Eq. (54) depend on the value of the nuclear spin. For
hydrogenlike ions with i = 1/2 we have f = j ±′ i, and
the CG coefficients are given by (53) with the replacement
{s,j,l,mj } → {i,f,j,mf }. For spin i > 1/2 the expressions
for the CG coefficients are simple but more cumbersome than
those appearing in (53). The radial contribution of the hyperfine
states, which we take as the radial functionsRn� of the Coulomb
potential −Ze2/ε1r , are the zeroth-order approximation of
the full eigenfunctions in the Hamiltonian including the fine
and hyperfine structure contributions, with their first-order
correction being of the orderα2. Since all terms in the potentials
(48)–(51) are already of higher order, this approximation is
enough to compute the lowest order additional energy shifts.

We are start by perturbing the hyperfine atomic spectrum,
which is nondegenerate except for the quantum number mf ,
so that the potential δU1 does not contribute to the first-
order energy shifts since it is a first-rank spherical tensor.
Nevertheless, it contributes to second-order shifts, but its order
of magnitude will be suppressed by a factor of α2 ∼ 10−5 with
respect to the other potentials (49)–(51) for b ∼ μm. Thus,
in the following we do not consider such terms. In a similar
fashion, although the potential δU2 contributes both to first-
and second-order energy shifts, it is sufficient to consider only
the former contribution. The perturbation δU2 does not depend
on the nuclear spin and its expectation value can be directly
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computed in the hyperfine structure basis. The result is

〈δU2〉
Eg

= −κξ 3

8

(ε1

Z

)2
〈r̃2〉n��

ijf mf

Z , (55)

where

〈r̃2〉n� = 1

2
n2[5n2 − 3�(� + 1) + 1], (56)

�
ijf mf

Z = Z − (3Z − 4)〈cos2 ϑ〉ijf mf

hfs . (57)

The expectation value in the hyperfine structure basis can be
computed in terms of those in the fine structure basis as

〈cos2 ϑ〉ijf mf

hfs =
+i∑

mi=−i

〈
j,i,mf − mi,mi |f,mf

〉2
× 〈cos2 ϑ〉j,mf −mi

fs , (58)

where

〈cos2 ϑ〉j,mj

fs = j (j + 1) − m2
j

2j (j + 1)
. (59)

The final form of Eq. (58) strongly depends on the value of the
nuclear spin. For example, for i = 1/2 we have f = j ±′ i,
and a simple calculation yields

〈cos2 ϑ〉ijf mf

hfs = 1

2
− 1 + 4m2

f

8j (j + 1)
±′ m2

f

j (j + 1)(2j + 1)
. (60)

Analogous expressions for nuclear spin i > 1/2 can be ob-
tained in a similar manner.

The energy shifts arising from the Zeeman-like potentials
(50) and (51) can be computed in a simple fashion. We consider
the potential

δVθ ≡ δVθ1 + δWθ1 = Z

4
geξ 2EgVz, (61)

where we have defined the operator

V = L − 2
Z − 1

Z
S. (62)

We observe that the perturbation potential δVθ is of topological
origin, since it vanishes for θ = 0, and therefore it is a signature
of the topological nontriviality of the TIs and particularly of
the image magnetic monopole effect. We are in a subspace
of fixed n, �, j , and s, so we can use the Wigner-Eckart
theorem to make the replacement Vz = g

(Z)
fs Jz, provided we

never compute matrix elements between states with different
j . Here g

(Z)
fs = 〈J · V〉/j (j + 1) is a fine-structure type g

factor. Since we are also in a subspace with fixed f , we
can use Wigner-Eckart theorem again to take Jz = ghfsFz,
where ghfs = 〈J · F〉/f (f + 1) is the usual hyperfine-structure
g factor. Therefore, the perturbation δVθ lifts the degeneracy
between hyperfine levels with equal f and unequal mf in a
linear fashion, giving energy shifts

〈δVθ 〉 = Z

4
geξ 2Egg

(Z)
fs ghfsmf , (63)

where the g factors are given by

g
(Z)
fs = 1

2Z

[
(2 − Z) + (3Z − 2)

�(� + 1) − s(s + 1)

j (j + 1)

]
,

ghfs = 1

2

[
1 + j (j + 1) − i(i + 1)

f (f + 1)

]
. (64)

Now let us discuss the conditions under which the energy
shifts (63) induced by the TME are comparable with the
nonperturbed hyperfine spectrum for different cases. To this
end, we consider the expression for the hyperfine splitting of
a one-electron ion [43]

Ehfs = α(αZ)3

ε3n3
gμ

m2
e

mp

f (f + 1) − i(i + 1) − j (j + 1)

2j (j + 1)(2� + 1)
,

(65)

where mp is the proton mass, gμ = μ/(μNi), μ is the nuclear
magnetic moment, and μN is the nuclear magneton. In the
above, we have neglected the relativistic corrections together
with the nuclear charge distribution correction, the Bohr-
Weisskopf correction, and the radiative corrections. Also, we
have incorporated the effect of the dielectric medium with
permittivity ε.

From Eqs. (55) and (63), we find two different regimes
to be analyzed separately. On the one hand, we observe that
for nucleus-surface distances of the order of micrometers
(b ∼ μm), the topological contributions are suppressed with
respect to the standard electromagnetic ones (θ = 0) provided
ε1 = ε2. On the other hand, we can see that the case ε1 = ε2

enhance the topological contribution (63), and thus it deserves a
separate analysis. Next, we analyze the cases mentioned above.
Let us consider both (a) the lowest and (b) the highest lines
where the TME becomes manifest, that is, the ground state
1S1/2 and the circular Rydberg states, respectively. For defi-
niteness, in the sequel we restrict our analysis to the recently
discovered topological insulator TlBiSe2 for which ε2 = 4 and
μ2 = 1, and we left θ as a free parameter.

B. Case ε1 = ε2

When the hydrogenlike ion is embedded in a medium with
the same optical properties of the TI, i.e., ε1 = ε2 ≡ ε, the
energy shifts are given by Eqs. (55) and (63) together with

κ = − θ̃2

4ε2
, eg = αθ̃

2ε
, (66)

where we have considered that ε � α2.

1. The ground state 1S1/2

The hyperfine spectrum for the ground state 1S1/2 is

E
1S1/2

hfs = Z3

ε3
�gμ[f (f + 1) − i(i + 1) − 3/4], (67)

where � ≡ (4/3)|Eg|α2(me/mp) = 5.25 × 10−7 eV = 1.27
× 108 Hz. One can further check that Eq. (67) correctly yields
the 21-cm line arising from the transition between the states
with f = 1 and f = 0 in hydrogen, for which i = 1/2, gμ =
5.56, and Z = 1. On the other hand, from Eq. (63) together
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with Eq. (66) the topological contribution gives

〈δVθ 〉1S1/2 =�
Z − 1

ε
(θ/π )mf

[
f (f + 1) − i(i + 1) + 3/4

f (f + 1)

]
,

(68)

where � ≡ |Eg|α2ξ 2/8 = 2.57 × 10−13 eV = 62.2 Hz for
b ∼ μm. The ratio between the hypefine spectrum and the
topological contribution for an hydrogenlike ion for which
i = 1/2, f = 1, and mf = ±1 is

r
1S1/2

θ-hfs = |〈δVθ 〉1S1/2 |
|E1S1/2

hfs |
= |θ/π |

gμ

Z − 1

Z3
(1.5 × 10−5). (69)

One can further check that r
1S1/2

θ-hfs has a maximum at Z = 3/2
and decreases as increasing Z, thus impliying that hydrogen-
like ions with small values Z are the best probes to test the
TME in its ground state. Consider, for example, the 3He+ ion,
for which Z = 2, i = 1/2, and μ/μN = 1.15. In this case, the
ratio (69) becomes r

1S1/2

θ-hfs = |θ/π |(3.4 × 10−6), which is small
enough to be measured for appropriate values of the TMEP. For
heavy ions, such as 207Pb81+, for which Z = 82, i = 1/2, and
μ/μN = 0.587, we find r

1S1/2

θ-hfs = |θ/π |(7.5 × 10−9), which is
even smaller than those for the 3He+ ion.

2. Circular Rydberg states

Now let us consider the case of circular Rydberg hydrogen-
like ions, i.e., highly excited states with its quantum numbers
maximally projected. We define the circular states as |n〉circ =
|n,�max = n − 1,jmax = �max + 1/2,fmax = jmax + i,mf max

= fmax〉. Adapting the approach of Ref. [44] for Rydberg
hydrogen to our case, we obtain a retardation line given by

|δEr | = Z2

ε2n3
(6.58 × 1015 Hz) (70)

Lr = ε2n3

Z2
(4.56 × 10−2 μm). (71)

According to Eq. (65) the energy difference �Ecirc
hfs between

neighboring hyperfine circular Rydberg states |n〉circ and
|n − 1〉circ is

�Ecirc
hfs = 5igμ

n6

Z3

ε3
(4.76 × 108 Hz). (72)

Our main concern is with the energy shifts δU2 and δVθ given
by Eqs. (55) and (63), respectively. In our approximation,
which is that of circular Rydberg states embedded in a medium
with the same optical properties to that of the TI, we find that
ghfs = g

(Z)
fs = 1, from which we establish the following ratio:

rcirc
θ-hfs ≡ |〈δVθ 〉|

�Ecirc
hfs

= (θ/π )ε2ξ 2n7

40Z2igμ

mp

me

. (73)

In a similar fashion, we can also establish an expression for the
ratio between the maximum energy shift |〈δU2〉max|, which is
obtained from Eq. (55) together with 〈cos2 ϑ〉 = 1 and 〈r̃2〉 =
n4, and the hyperfine energy �Ecirc

hfs . We obtain

rcirc
U -hfs ≡ |〈δU2〉max|

�Ecirc
hfs

= (θ/π )2ε3ξ 3n10

80Z4igμ

mp

me

. (74)

FIG. 2. Parameter region n(Z), for b = Bmin, for detecting the
TME in circular Rydberg hydrogenlike ions for ε1 = ε2. The meaning
of each line is given in the text.

We observe that high values of the TMEP θ favor the ratios
(73) and (74); therefore we take θ = 11π hereafter. Using the
numerical values ε = 4 and mp/me = 1840, we find that the
ratios become

rcirc
θ-hfs = ξ 2n7

igμZ2
(8 × 103) , rcirc

U -hfs = ξ 3n10

igμZ4
(3.6 × 105).

(75)

We now come to the problem of choosing an adequate value
for b. The lowest value of b which will make the ratios (75) as
high as possible is limited by the thickness w ≈ 6 × 10−3 μm
(ξ ≈ 10−2) of the magnetic coating, but more importantly
by the experimental possibilities. Motivated by the works in
Refs. [32] we take b � μm and explore the range Bmin < b <

Bmax, where Bmin = 0.265 μm and Bmax = 1.1 μm. Notice
that for b = Bmin, we have b = 44.2 w, which is still larger
than the width of the magnetic coating. Now let us discuss the
allowed parameter region for b = Bmin.

By imposing the nonretarded constraint Bmax � Lr , we
obtain the condition n � 1.15 Z2/3, which corresponds to
the continuous black line in Fig. 2. Since the energy shifts
must be smaller than the unperturbed energy spectrum, we
must consider that rcirc

θ-hfs < 1, thus providing the condition

n � 3.97(igμZ2)1/7 for b = Bmin. In Fig. 2, we show the
latter condition for igμ = 5.53 (blue dashed line), igμ = 3.18
(red dotted line), and igμ = 1.62 (orange dot-dashed line),
which fall within the nonretarded region for Z � 49, 39, 30,
respectively. We have chosen the values for igμ from Ref. [43].
In Fig. 2, we also show the curves n(Z) corresponding to the
lower limits of the regions satisfying |〈δVθ 〉| > 106 Hz (black
large dashed line) and |〈δVθ 〉| > 105 Hz (continuous gray
line) for b = Bmin. One can further verify that the condition
|〈δVθ 〉| > 106 Hz for b = Bmax selects values of n larger than
100 for the whole interval 1 < Z < 100, and this is why we
have restricted ourselves to b = Bmin as a reasonable lower
limit for b. The region below the gray dashed line corresponds
to the condition rcirc

θ-hfs > 10 rcirc
U -hfs for b = Bmin, while the case

rcirc
θ-hfs > rcirc

U -hfs is not shown in the figure since it lies higher than
the gray dashed line. For the ions listed in Table 3 of Ref. [43],

022502-9



A. MARTÍN-RUIZ AND L. F. URRUTIA PHYSICAL REVIEW A 97, 022502 (2018)

TABLE I. The quantum number for different heavy hydrogenlike
ions satisfying rcirc

θ-hfs = 1.

Ion Z μ/μN i n

133Cs54+ 55 2.5825 7/2 20
159Tb64+ 65 2.014 3/2 20
207Pb81+ 82 0.587 1/2 18
235U91+ 92 0.39 7/2 18

we find that the maximum value for the TME correction is
|〈δVθ 〉| = 1.83 × 106 Hz for 113In48+.

To close this section, we remark that the topological
Zeeman-type energy shifts can be of the same order of mag-
nitude as that of the hyperfine energy levels of a hydrogenlike
atom embedded in a medium with the same dielectric constant
as that of the TI. From Eq. (73), we have

n = 5.59 × 7

√(
μ

μN

)
Z2 (76)

for rcirc
θ-hfs = 1. In Table I, we present the values of the principal

quantum number which solve Eq. (76) for different circular
states of hydrogenlike heavy ions.

C. Case ε1 �= ε2

Now let us consider the atom to be embedded in a medium
with different optical properties to that of the TI, i.e., ε1 = ε2.
For definiteness, here we consider the atom in a vacuum, such
that the basic parameters now become

κ = 1 − ε2

1 + ε2
, eg = α2(θ/π )

1 + ε2
, (77)

where we used that θ̃2 � 1. We observe that |eg/κ| ∼ 2 ×
10−4 for the TI TlBiSe2; therefore, contrary to the previous
situation in Sec. IV B, the topological correction 〈δVθ 〉 will be
much suppressed with respect to the optical correction 〈δU2〉.

1. The ground state 1S1/2

Using the hyperfine structure energy levels together with
the Zeeman-type energy shifts for the ground state 1S1/2, we
find the ratio

t
1S1/2

θ-hfs = |〈δVθ 〉1S1/2 |
|E1S1/2

hfs |
= |θ/π |

gμ

Z − 1

Z3
(8 × 10−8), (78)

which is three orders of magnitude smaller than those of
Eq. (69). Therefore, the ground state of a hydrogenlike ion
in the vacuum is not a good probe to test the TME.

2. Circular Rydberg states

The energy difference �Ecirc
hfs between neighboring hyper-

fine circular Rydberg states |n〉circ and |n − 1〉circ is given by
Eq. (72) with ε = 1. On the other hand, in the approximation
we are working with, together with the choice of the parameters
(77) of this case, we find the energy shifts 〈δU2〉 and 〈δVθ 〉
to be

|〈δU2〉| = 1974
n4

Z
Hz, |〈δVθ 〉| = 2408 nZ Hz, (79)

FIG. 3. Parameter region n(Z), for b = Bmin, for detecting the
TME in circular Rydberg hydrogenlike ions for ε1 = ε2. The meaning
of each line is given in the text.

where we have used that ghfs = g
(Z)
fs = 1, 〈r̃2〉 = n4, and

θ = 11π . The ratios between the energy shifts (79) and the
hyperfine energy difference �Ecirc

hfs read

tcirc
θ-hfs = n7

igμZ2
(1 × 10−6) , tcirc

U -hfs = n10

igμZ4
(8.3 × 10−7),

(80)

for b = Bmin = 0.265 μm. Now let us analyze the parameter
region n−Z. We first recall that the nonretarded constraint
Bmin < Lr provides the condition n > 1.15Z2/3, which corre-
sponds to the continuous black line in Fig. 3.

By imposing the energy shifts to be smaller than the unper-
turbed energy spectrum, i.e., tcirc

θ-hfs < 1, we find the condition

n � 2.67(igμZ4)1/10 for b = Bmin. Using Table 3 in Ref. [43]
for the properties of different hydrogenic ions, in Fig. 3 we
show the latter condition for the largest (blue dashed line) and
the lowest (red dotted line) values of igμ, respectively. On the
other hand, the condition tcirc

θ-hfs � tcirc
U -hfs produces the region

n � 1.07Z2/3, which corresponds to the orange dot-dashed
line in Fig. 3.

Figure 3 shows that the condition tcirc
θ-hfs = tcirc

U -hfs is below to
the retardation line (continuous black line), in such a way that
here we always have tcirc

θ-hfs < tcirc
U -hfs. The region between the

large black dashed and the continuous gray lines corresponds
to 106 Hz < |〈δVθ 〉| < 107 Hz. Therefore, we observe that the
condition ε1 = ε2 places a strong restriction upon the allowed
parameter region, when compared with the similar situation in
the case ε1 = ε2.

V. ENERGY SHIFTS IN THE HYDROGEN SPECTRUM

The optical and Zeeman-type energy shifts for hydrogen
can be directly obtained from Eqs. (55) and (63), respectively,
by taking i = s = 1/2 and Z = 1. We observe that the Zeeman
splitting Eθ vanishes for S states since g

(1)
fs = 0. Therefore, the

lowest lying lines for which the TME becomes manifest are
the P states. In the following, we discuss the spectroscopic
transitions for the nP3/2 and nP1/2 lines.
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FIG. 4. Splitting of the nP3/2 line.

A. Spectroscopy of the n P3/2 states

In this particular case, we take the set of quantum numbers
{s,�,j,i} = {1/2,1,3/2,1/2}, such that the atomic angular
momentum can take the values f = 3/2 ±′ 1/2. The optical
energy shifts then become

〈δU2〉nP3/2

±′ = κε2
1ξ

3

48
|Eg|n2(n2 − 1)

(
22 − 2m2

f ±′ m2
f

)
,

(81)

where the values of mf are restricted by −f � mf � f . The
Zeeman-like energy shifts take the form

〈δVθ 〉nP3/2

±′ = geξ 2

24
Eg(4 ∓′ 1)mf . (82)

Also, from Eq. (65) one can further obtain that the unperturbed
hyperfine energy levels are

E
nP3/2

hfs = �3/2

n3
[f (f + 1) − 9/2], (83)

where �3/2 = 1.95 × 10−7eV. In Fig. 4, we present the general
energy shifts of the nP3/2 line in two steps. We first observe that
the optical contribution (81) partially breaks the degeneracies
of the hyperfine levels, but the degeneracy of the levels with
mf = 0 is still present. Finally we add the contributions

from 〈δVθ 〉nP3/2

±′ arising from the TME and observe that this
effect completely breaks the degeneracy of the hyperfine
states |j,f,mf 〉hfs. The values of the parameters appearing in
Fig. 4 are

δ3/2 = 22(γ1/3) = 22γ2 = 11

24
ε2

1ξ
3|κEg|n2(n2 − 1),

ε = 5

24
|geEg|ξ 2, �

nP3/2

hfs = 4

n3
�3/2. (84)

In the following, we determine the parameter region where
our results are included. To the best of our knowledge, the
hyperfine splitting of the lines nP3/2 has not yet been measured
and the existing data correspond to theoretical calculations,
which produce the value �

nP3/2

hfs together with a theoretical

uncertainty �
nP3/2

tu [45,46]. In order for our results to be

accessible from a theoretical perspective, we have to identify
a range of distances for b satisfying the following conditions:
(i) On one hand, b should be such that the additional distance-
dependent energy shifts (81) and (82) are larger than the the-
oretical uncertainty �

nP3/2

tu , but smaller than the corresponding
hyperfine splitting �

nP3/2

hfs , and (ii) on the other hand, b should
be larger than the thickness of the magnetic coating covering
the TI surface (to ensure a negligible wave-function overlap)
and smaller than the wavelength λC of a typical hyperfine
transition (to ensure the validity of the nonretarded regime).
Typically λC ∼ m, while a ferromagnetic covering for the
TI (such has GdN) can be grown as a thin film of thickness
∼6 nm [23]. Thus, b ∼ μm satisfies the required conditions
in practical terms. This choice will restrict the possible values
for the remaining parameters in the energy shifts, namely the
principal quantum number n and the permittivities ε1 and ε2.
Our primary interest here is to accommodate the Zeeman-type
splitting 〈δVθ ±′〉nP3/2 , which does not depend on n but depends
inversely on the permittivities. Thus low values of ε1 and
ε2 favor this contribution. Taking into account the above
considerations, we find that the recently discovered topological
insulator TlBiSe2, for which θ = π , μ = 1, and ε ≈ 4 [47–49],
is a good candidate to illustrate our procedure. Assuming that
the dielectric medium has also a low permittivity, we find that
the Zeeman-type energy splitting 2ε is of the order of 10−12 eV,
while the maximum optical splitting γ1 + γ2 becomes of the
order of n2(n2 − 1) × 10−12 eV for ε1 = ε2 and n2(n2 − 1) ×
10−16 eV for ε1 = ε2. Now, since we have computed the energy
shifts from a perturbative perspective, we must guarantee
the validity of perturbation theory by imposing the energy
splitting 2ε and γ1 + γ2 to be at least three orders of magnitude
smaller than �

nP3/2

hfs , thus restricting the possible values for the
principal quantum number n. Therefore, from (84) we can
see that n = 2 is the best option for the ε1 = ε2 case, since
�

2P3/2

hfs = 9.75 × 10−8 eV and �
2P3/2

tu = 2.47 × 10−12 eV, thus
having a range of four orders of magnitude to accommodate
the energy shifts. For the case ε1 = ε2, one can choose n = 10
such that γ1 + γ2 ≈ �

10P3/2

hfs × 10−3; however, in this case the
energy shifts become smaller than the theoretical uncertainty.
Therefore, based on the previous analysis, for definiteness let
us consider the atom to be in vacuum in front of the TI TlBiSe2

and consider the energy shifts on the 2P3/2 line.
Using the previously chosen set of parameters, we estab-

lish the functions �U ≡ γ1 + γ2 = (3/5)|Eg|ξ 3 and �Vθ ≡
2ε = (1/12)|(θ/π )Eg|α2ξ 2 for the maximum optical and
Zeeman-type splitting, respectively. By imposing �U =
�

2P3/2

hfs × 10−3 we determine b ∼ 4337a0 = 0.23 μm, which
is a distance perfectly achievable with current experimental
techniques. In Fig. 5, we present a log-log plot of �U

(black line) and �Vθ , for two cases: θ = π (dashed red
line) and θ = 11π (dotted blue line). The green (upper) and
orange (lower) shaded regions are forbidden by the upper
bound �

2P3/2

hfs of the hyperfine structure and by the lower bound

arising from the theoretical uncertainty�
2P3/2

tu , respectively. We
observe that the Zeeman-type contributions, although smaller
than the optical one, are bigger than the theoretical uncertainty
associated with the determination of the hyperfine splitting of
the 2P3/2 state. For θ = π , we find �Vπ = 3.15 × 10−12 eV,
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FIG. 5. Region of accessibility for detecting the TME in hy-
drogen. The green (upper) and orange (lower) shaded regions are
forbidden by the hyperfine splitting and the theoretical uncertainty of
the 2P3/2 line, respectively. The selected value of b is 0.23 μm.

while for θ = 11π we have �V11π = 3.47 × 10−11 eV. The
resulting values of the parameters (84) are δ3/2 = 133 kHz,
γ1 = 18 kHz, γ2 = 3 kHz, and ε = 388 Hz for θ = π and
ε = 4.2 kHz for θ = 11π .

B. Spectroscopy of the n P1/2 states

Now we consider the set of quantum numbers {s,�,j,i} =
{1/2,1,1/2,1/2}, such that the atomic angular momentum can
take the values f = 1/2 ±′ 1/2. The energy shifts can be
obtained directly from Eqs. (55) and (63) in a simple fashion.
For the optical energy shifts, one finds

〈δU2〉nP1/2 = 5

12
κε2

1ξ
3|Eg|n2(n2 − 1), (85)

which is independent of f , while for the Zeeman-type contri-
bution one obtains

〈δVθ 〉nP1/2

±′ = 1

6
geξ 2Egmf , (86)

where the value of mf is restricted by −f � mf � f . Also,
one can further obtain that the unperturbed hyperfine energy
levels are

E
nP1/2

hfs = �1/2

n3
[f (f + 1) − 3/2], (87)

where �1/2 = 5�3/2 = 9.8 × 10−7 eV. In Fig. 6, we present
the energy shifts of the nP 1/2 line. We observe that the optical
energy shift does not break the degeneracy of the nP 1/2 line,
but the Zeeman-type shift does. The values of the parameters

FIG. 6. Splitting of the nP 1/2 line.

appearing in Fig. 6 are

δ1/2 = (10/11)δ3/2, �
nP1/2

hfs = (5/2)�
nP3/2

hfs , (88)

where the parameters in the rhs are the previously defined in
Eq. (84). Now we follow the same reasoning of the previous
section to analyze the parameter region where our results
are included. For distances of the order of μm, we also
conclude that low values of the permittivities and low values of
the quantum number n favor the Zeeman-type splitting. Thus
we consider the atom to be in vacuum in front of the TI TlBiSe2

and consider the energy shifts on the 2P 1/2 line. By imposing
the maximum optical energy shift δ1/2 to be three orders of

magnitude smaller than the hyperfine splitting �
2P1/2

hfs , we de-
termine b ∼ 5511a0 = 0.29 μm. The corresponding energies
splitting become δ1/2 = 2.43 × 10−10 eV and ε = 192 Hz.

VI. THE CASIMIR-POLDER INTERACTION
IN THE 2Pj LINE

In this section, we examine the corrections due to the TME
to the standard Casimir-Polder potential in order to determine
their possible impact upon some scattering experiments de-
signed to test the potential [33,34]. The general form of the CP
potential for a hydrogen atom as a function of y = ξ−1 is

VCP(y) = −|Eg|
[

P

y3
+ (θ/π )mf

Q

y2

]
, (89)

with

P = ε1

8

2(ε2 − ε1) + θ̃2

2(ε2 + ε1) + θ̃2
〈r̃2〉n��

ijf mf

Z=1 ,

Q = α2

2

g
(Z=1)
fs ghfs

2(ε2 + ε1) + θ̃2
, (90)

where we have taken μ1 = μ2 = 1. Note that the value of the
parameters (90) depend on the specific state under considera-
tion. Also, we observe that Q � 0, while P � 0 for ε2 � ε1

and P < 0 for ε2 < ε1. Here, we consider P � 0, which is the
physically interesting case.

The magnetoelectric effects arise predominantly from the
term proportional to θmf Q, though there are also corrections
in the coefficient P . For θ = 0, Eq. (89) correctly reduces to
the usual attractive CP potential between a hydrogen atom and
a dielectric half-space. However, when θ = 0 is considered,
two interesting cases appear: (i) θmf > 0 and (ii) θmf < 0.
In the first case, the full CP potential (89) retains its original
attractive form in the whole range 0 < b < ∞, showing only a
slight decrease with respect to the usual case. The second case
is in principle more interesting because now the second term
in Eq. (89) is negative; therefore, the potential goes to −∞
when b approaches zero, but tends to zero, from the positive
side, when b → ∞. In fact, one can further show that the CP
potential (89) has a zero at b0, with

y0 = b0

a0
= |(θ/π )mf |−1 P

Q
, (91)

and a positive maximum at ymax = bmax/a0 = 3y0/2, given by

V max
CP = |Eg| P

2y3
max

. (92)
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FIG. 7. Tunability between the attractive and repulsive character
of the Casimir-Polder potential VCP(y).

In other words, for θmf < 0 the CP potential is attractive in the
range 0 < b < bmax and repulsive when bmax < b. A generic
and very qualitative form of the CP potential (89) is shown in
Fig. 7. These types of potentials are known in the literature
as attractive potential tails and they lead to the phenomenon
known as quantum reflection, which has attracted great atten-
tion in recent years from both the theoretical and experimental
sides. In some applications, the repulsive contribution to the CP
potential is induced by evanescent light above a glass surface;
however, in our CP potential (89) the repulsive tail is generated
by the interaction between the image magnetic monopoles and
the atomic angular momentum. Actually, the attractive and
repulsive character of the CP potential (89) can be tuned by
means of the TMEP θ for a given value of mf , where the sign
of θ is determined by the direction of the magnetization of the
coating on the surface of the TI.

Now we are interested in making some estimations regard-
ing the position of the maximum bmax and the value of the CP
potential there V max

CP . Let us consider the nuclear charge Z, the
permittivities ε1 and ε2, and the TMEP θ as the independent
variables which we can control. Because we are working in
the nonretarded approximation, we have to make sure that
the range of applicability b of our estimations is such that
b < λC, where λC is a wavelength characteristic of the atomic
transitions to be probed and which depends crucially upon the
experimental setup. The values of λC range from ∼7.8 μm,
when dealing with transitions in the n = 1,2,3 sector, to values
of ∼7.9 × 107 μm for transitions within the n = 2 hyperfine
sector.

A simple analysis reveals that low principal quantum num-
bers together with high nuclear charges favor the maximum
of the CP potential. Thus, let us restrict the analysis to the
maximally projected 2P3/2 states considered in the previous
section, i.e., with f = 2 and mf = −2 provided θ > 0, or
alternatively, with mf = +2 and θ < 0. In this way, from
Eqs. (91) and (92) we obtain

ymax = 15ε1

α

2(ε2 − ε1) + θ̃2

θ̃
,

(93)

V max
CP = |Eg|

1332

α3

ε2
1

θ̃3

[2(ε2 + ε1) + θ̃2][2(ε2 − ε1) + θ̃2]2
.

FIG. 8. Values of bmax and V max
CP for the maximally projected

2P3/2 state as a function of θ for different values of ε2.

One can further see that both ymax and V max
CP

have critical points at θ̃ = √
2(ε2 − ε1) and θ̃ =√

−(2ε1/3) +
√

(2ε1/3)2+4(ε2
2−ε2

1), respectively. However,

none of them are physically accessible provided ε1 = ε2 since
they require very high values of the TEMP. In the following,
let us discuss the case of a hydrogen atom near the surface of
the TI TlBiSe2.

In Figs. 8(a) and 8(b), we present the bmax in units of μm and
the V max

CP in units of Hz, corresponding to the line 2P3/2 with
f = 2 and |mf | = 2. First, we consider the situation where
one is probing transitions from the n = 2 to the n = 1 level,
where we must satisfy bmax � 7.8 μm, which corresponds to
the horizontal dashed line in Fig. 8(a). From the figure, we
observe that this upper limit would require larger values of θ as
far as ε2 grows. As emphasized in Refs. [23] and [24], values of
θ � 15π induce more general magnetoelectric couplings not
included in the effective theory we are considering in Eq. (1).
Thus, we take θ = 15π as an upper value for this parameter.
Just requiring bmax to be 7.8 × 10−1 μm, for example, requires
ε2 = 1.43 for θ = 15π . Setting the stronger limit of 7.8 ×
10−2 μm yields ε2 = 1.038. The other limiting case is θ =
π , which leads to ε2 = 1.029 and ε2 = 1.0029 respectively.
Notice that even the stronger limit bmax = 7.8 × 10−2 μm =
78 nm is larger than the thickness w of the magnetic coating
covering the TI surface, which is of the order of 6 nm [23].
Nevertheless, it seems rather unlikely that TIs with such small
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values of ε2 are to be found. These estimations, together with
the energy shifts calculated in the previous sections, reinforce
the idea that one should probe beyond the hyperfine transitions.
In this way, the limiting condition for the validity of the
nonretarded approximation comfortably extends to b � λC ∼
m. Because we would like a large value for V max

CP , Fig. 8(b)
suggests the choice of small value for ε2 together with a high
value for θ . Taking ε2 = 4 and θ = 15π yields V max

CP ∼ 4.2 Hz.
Unfortunately, this value is about 2 × 10−4 times smaller than
the optical contribution to the splitting of the f = 2 level
in the 2P3/2 line which is about 21 kHz, as can be seen in
Fig. 4. The corresponding location of this maximum is Bmax =
5.4 μm. If we substantially increase V max

CP to 1 kHz, just to
barely include it in region of accessibility depicted in Fig. 5,
we require the lower value ε2 = 1.3 with θ = 15π . In this
case, Bmax = 0.8 μm.

VII. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented an alternative way to probe
the topological magnetoelectric effect (TME) based upon high-
precision spectroscopy of hydrogenlike ions, including the hy-
drogen atom, placed at a fixed distance from a planar topologi-
cal insulator (TI), of which the surface states have been gapped
by time-reversal symmetry breaking. We consider the atom
to be embedded in a trivial insulator with optical properties
(ε1,μ1) and that the TI is characterized by the set of parameters
(ε2,μ2,θ ). The coupling between the atomic electron and the
image magnetic monopoles produces additional contributions
to the Casimir-Polder potential while the ion-TI interaction
modifies the energy shifts in the spectrum, which now became
dependent on the ion-surface distance b. As expected, we
find that the topological contributions are screened by the
nontopological ones.

In order to suppress the trivial electrostatic effects, we
considered the case in which the optical properties of the
dielectric medium are comparable with that of the TI, i.e.,
ε1 = ε2 and μ1 = μ2 = 1. In this case, we find a Zeeman-type
splitting of the hypefine structure which arises directly from
the coupling between the image magnetic monopole fields
and the orbital and spin degrees of freedom of the atomic
electron. We discussed the lowest lying energy levels where
the TME effects become manifest. For hydrogenlike ions
(Z = 1), we find the ground state 1S1/2 to exhibit an energy
splitting |〈δVθ 〉| ∼ 10 Hz which is a factor 10−6 smaller than
the hyperfine energy level for the 3He+ ion in front of the
recently discovered topological insulator TlBiSe2. We also
find that circular Rydberg ions can enhance the maximal
energy shifts and we determine that the maximum value
for the TME correction is |〈δVθ 〉| = 1.83 × 106 Hz for the
113In48+ ion. For this improvement to be significant, one must
probe transitions such that �n � 1. We demonstrated that the
case ε1 = ε2 leads to a worse estimations for the maximum
energy shifts.

Our analysis of the impact of the TME in circular Rydberg
hydrogenlike ions has been mainly motivated by the recent pro-
posal at NIST of boosting an experimental program for testing
theory with one-electron ions in high angular momentum states

[50]. In fact, more stringent test of theory may be possible
if predictions can be compared with precision frequency
measurements in this regime [51,52]. As already mentioned, in
the case where ε1 = ε2, the optical contribution can be much
suppressed with respect to that of the TME, which in turn can
be of the order of the hyperfine structure energy shifts. Previous
measurement of the hyperfine splitting in the ground state
of hydrogenlike 209Bi82+ in the optical regime was reported
some time ago in Ref. [53]. Thus, having in mind the NIST
proposal, one might hope that new techniques in spectroscopy
might be able to incorporate higher angular momentum states
and also to integrate the optical, terahertz, and radio-frequency
domains [54].

Section V was devoted to the analysis of the interaction
between a hydrogen atom (Z = 1) in vacuum and the TI
TlBiSe2. In this case, we find that the Zeeman-type splitting is
present only in the lines with nonzero angular momentum (� =
0) and is favored by high values of the TMEP θ . We considered
such effects on the 2P3/2 and 2P1/2 lines of hydrogen, obtaining
the value b = 0.23 μm for the effect to be within the theoretical
uncertainties in the corresponding parameters of the line. The
parameter ε, which measures the Zeeman-type energy splitting
of the hyperfine structure, as shown in Figs. 4 and 6, is found to
be ε = 388 Hz for θ = π , but its value becomes ε = 4.2 kHz
for θ = 11π . We have also discovered an interesting character-
istic in the Casimir-Polder potential of the 2Pj lines, which is
the tunability between the attractive and repulsive character of
the CP interaction. We find that, for θmf > 0, the CP potential
retains its usual attractive form, while for θmf < 0 it acquires
a positive maximum VCPmax located at a distance Bmax, thus
implying the CP potential turns out to be repulsive for distances
b > bmax. This is consistent with previous calculations which
show that Casimir forces can be repulsive if they involve
magnetic moments couplings [55,56]. In a similar fashion,
it was recently shown that the dynamical properties of the
atomic electron can be tuned with the TMEP θ [57]. For the
TI TlBiSe2, we obtain VCPmax = 4.2 Hz, which is 10−2 smaller
than the theoretical uncertainty in the splitting of the 2P3/2 line.
This maximum is located at bmax = 5.4 μm. If we substantially
increase VCPmax to 1 kHz, just to barely include it in region of
accessibility depicted in Fig. 5, we require the rather low value
ε = 1.3 with θ = 15π . In this case, the maximum is located
at bmax = 0.8 μm. As shown in Fig. 8(b), higher values of
VCPmax can be obtained from low-ε TIs together with high
values of θ . Nevertheless, the latter condition demands the
inclusion of additional magnetoelectric effects not considered
in our model.

In our work, we have assumed that the magnetic coating has
no effect on the energy shifts. However, the ferromagnet makes
a magnetic field which in turn will induce a Zeeman splitting,
and thus it is necessary to distinguish between these two
contributions in order to measure the topological contribution
(63). In the present case, the magnetic field is sourced by the
magnetization M = M êz of the coating, along the symmetry
axis, and we can estimate it as that produced by a magnetic
dipole m = MV êz, where V is the volume of the coating. For a
fixed ion-surface distance, this yields to a total Zeeman energy
splitting of the form

ε(M) = aM + sgn(M) εtopo, (94)
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where a is a constant. The first term corresponds to the energy
shifts due to the magnetic coating, while the second term
corresponds to the topological contribution 〈δVθ 〉 given by
Eq. (63) together with the fact that the sign of θ is defined by the
direction of the magnetization. Consequently, the topological
contribution can be obtained by measuring ε(M) at different
magnetizations M and extracting the linear extrapolation of
ε(M) as M → 0+.
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