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Angular-momentum couplings in ultra-long-range giant dipole molecules
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In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant
dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works
on Rydberg molecules. In addition to s-wave scattering, the next higher order of p-wave scattering in the Fermi
pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels
of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman
interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are
calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states,
mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine
exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the
various potential energy surfaces.
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I. INTRODUCTION

Rydberg atoms are a topic of special interest not only in
atomic physics but also in quantum optics, where they serve as a
sensitive tool for electromagnetic detection down to the single-
photon level [1,2]. Rydberg states with orbit sizes of several
μm [3] are some of the largest quantum systems known in
the framework of ultracold atomic gases. The huge orbit sizes,
often larger than the free path length of the surrounding cloud
of atoms inside gas cells, open up possibilities for secondary
atoms to directly interact with the loosely bound Rydberg
electron. The effects of such interactions have been analyzed in
experiments back in 1933 independently by Amaldi and Segré
in Rome [4] and by the group of Füchtbauer in Rostock [5–7].
They observed line shifts towards the red and, surprisingly,
also towards the blue. This led to the development of the
modern quantum scattering theory by Fermi [8], who assumed
the electron as a quasifree particle with low momentum that
scatters on a secondary perturber atom.

More than half a century later, the question of whether the
scattering interaction may lead to a binding interaction was
addressed by Greene et al. [9]. Previously, it was shown that the
scattering interaction in partial-wave expansion can be mod-
eled by a delta-shaped contact potential [10]. By considering
only the leading order of s-wave scattering they predicted two
different types of bound molecular states between a rubidium
Rydberg and ground-state atom. The first species originating
from low angular-momentum states was found experimentally
in 2009 in rubiduim [11] and also in cesium [12]. The second
type are the so-called trilobite states, named after the shape
of their electronic probability density. This type of molecules
is formed from a degenerate manifold of high-l states which
concentrate the electron density around the ground-state atom,
resulting in a permanent electric dipole moment of the order
of a few kilodebye [9]. They were detected in 2015 in cesium
[13] and in 2017 in rubidium ultracold atomic gases [14]. In
rubidium, the next higher order in the partial-wave expansion of
the interaction potential, the p-wave scattering, shows a shape

resonance at a certain electron momentum [15]. Consequently,
it may dominate over the leading scattering order, resulting in
a new type of Rydberg molecules known as butterfly states
[16,17].

A further variable in the scattering interaction is the com-
bined spin of scattered electron and perturber shell. Earlier
works on Rydberg molecules only considered a triplet config-
uration which is easy to prepare in the laboratory, as the single
s-wave scattering is repulsive for low momenta. The fine struc-
ture interaction of alkali-metal atoms results in the formation
of mixed-spin character molecule states, which couple both
to triplet and singlet scattering channels, in addition to pure
triplet-bound molecules [18]. Such mixed-character states have
been detected in both rubidium [19] and cesium [20]. Further
works even included the dependence of relativistic effects
[21,22]. Aside from alkali-metal atoms, Rydberg molecules
have also been observed in divalent systems such as strontium
[23,24]. Trilobitelike structures have also been discussed in
atomic hydrogen gases [25], where a repulsive scattering
interaction for low momenta was observed [26,27]. In the
presence of external fields, Rydberg molecules can be tuned
in their orientation and alignment, as both theoretical and
experimental works have shown [28–30].

An exotic species of Rydberg atoms, that can exist only in
the presence of external crossed electric and magnetic fields,
are the so-called giant dipole (GD) atoms. First introduced
theoretically in the 1970s for hydrogenlike systems such as
excitons [31], major steps in their understanding were made
in the early 1990s [32–34]. A full theory was developed by
Dippel et al. [35], and experimental observations have been
claimed in the following years [36,37]. In contrast to usual
Rydberg states, the electronic probability density is strongly
decentered and directed, resulting in a huge permanent electric
dipole moment in the order of several hundred kilodebye and
thousand times larger than for trilobite molecules. In contrast
to the usual treatment of atoms in fields, they exist in a regime
where the atom-field coupling is in the same range as the
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intraatomic interaction. Dippel et al. found that the underlying
Hamiltonian may be transformed into a gauge-invariant one-
particle problem leading to an effective potential possessing an
outer well at distances of several hundred thousand Bohr radii
relative to the Coulomb center [35]. This outer well supports
loosely bound states in which the electron, similar to a usual
Rydberg state, possesses only low kinetic energy. In ultralarge
Rydberg atoms recent studies have shown a major impact of
perturber atoms inside the Rydberg orbit on the stability and
characteristics of the excited states [3]. Hence, for GDS the
perturber interaction and possible formation of molecules is
an important property when aiming for the observation of
ultra-long-range giant dipole molecules. The possibility of
molecules formed by GD states with a neutral ground-state
perturber via scattering interaction was studied by Kurz et al.
[38]. Similar to the first approach of Greene et al. to Rydberg
atoms [9], they only considered the triplet s-wave scattering.
By these means, molecular potential energy surfaces were
calculated, predicting the existence of ultra-long-range giant-
dipole molecules.

In this article, we extend the theory of ultra-long-range
giant-dipole molecules to include higher orders of the interac-
tion potential as well as different spin configurations. We start
in Sec. II with a molecular Hamiltonian that includes both s-
and p-wave interaction potentials in the triplet and singlet con-
figurations as well as all relevant spin and angular-momentum
couplings of the molecular system. In Sec. III, we analyze the
spin subspace of the molecular system in the regime of different
field strengths. We introduce a cylindrical approximation to the
GD system in Sec. IV and illustrate the calculation of molecular
states in Born-Oppenheimer approximation. Characteristic
potential energy surfaces are presented in Sec. V, and in Sec. VI
we calculate the corresponding vibrational states to obtain
molecular binding energies. A summary is given in Sec. VII.
Atomic units will be used throughout this paper if not stated
otherwise.

II. MOLECULAR HAMILTONIAN AND INTERACTIONS

We consider a highly excited hydrogen atom interacting
with a neutral ground-state perturber atom (in our case 87Rb)
in crossed static homogeneous electric and magnetic fields E
and B, respectively. The hydrogen atom is assumed to be in a
GD state. This specific combination of atoms was also chosen
in continuation of Ref. [38] due to the scaling of GD states with
the mass of the atomic nucleus. However, rubidium, alongside
other alkali-metal atoms, has been discussed as a buffer gas for
laser-cooling hydrogen into BEC conditions [39,40]. Hence, an
ultracold mixture of hydrogen and rubidium atoms may be a
system accessible in experiments. The full system is described
by the Hamiltonian,

H = p2
n

2mn
+ HGD + Hspin + VGD,n, (1)

where the first term is the kinetic energy of the neutral perturber
(subscript “n”), followed by the giant-dipole Hamiltonian of
the hydrogen atom interacting with the external fields. The
last two terms are interaction terms, where the first includes
the intrinsic spin and angular-momentum couplings inside the
constituents as well as to the external fields, and the last term

contains the interaction between the perturber and hydrogen
atoms.

The hydrogen atom in crossed external electric and mag-
netic fields has been discussed in detail in Ref. [35]. There,
it was shown that the giant-dipole Hamiltonian can be con-
verted into an effective single-particle problem via a unitary
transformation by introducing the pseudomomentum,

K̂′ = K̂ − MvD = P̂ − e

2
B × r − MvD, (2)

with drift velocity vD = E × B/B2, which solves the problem
of the nonseparability of the center-of-mass momentum P in
the presence of magnetic fields [41]. The particle in question
interacts with the magnetic field and a generalized potential
V that depends parametrically on the external fields and the
pseudomomentum K and contains both the motional and
external Stark terms,

HGD = 1

2μ

(
p − q

2
B × r

)2

+ V (r), (3)

with μ = memp/(me + mp) and q = (me − mp)/(me + mp).
Because it was shown in Ref. [35] that the single-particle trans-
formation of the Hamiltonian is gauge invariant, we will use the
symmetric gauge for simplicity. The quantities e,me,mp are the
electron charge and mass and the proton mass, respectively; r
and p represent the coordinate and canonical momentum of the
Rydberg electron. For sufficiently strong electric and magnetic
fields, the giant-dipole potential exhibits an outer well with
a local minimum at r0 = (x0,0,0) with x0 ≈ −K

B
+ MK

K3−2MB

[35], which is found to be an appropriate approximation
to the exact solution given in Ref. [42]. Throughout this
article, we will consider field strengths of B = 2.35 T and
E = 2.8 × 103V/m (in atomic units: B = 10−5, K = 1.0),
resulting in a separation of |x0| ≈ 105 a0. This separation gives
rise to a huge electric dipole moment of many tens of thousand
Debye.

In the vicinity of r0, the potential V (r) is nearly parabolic
and may be approximated in a power series up to the second
order. By centering the coordinate r → r − r0 and Taylor
approximating up to r2 we obtain the potential of a three-

FIG. 1. Scattering phases δ
(2S+1)
l of a quasifree electron on a

rubidium ground-state atom (a). The effective scattering length
− tan[δ(2S+1)

l ] (b) diverges at δ = π/2, resulting in a shape resonance
observed for δ(3)

p .
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TABLE I. The spin basis of the GD-perturber system in the notation of |mI2 |ms1ms2 〉 can be arranged according to the good quantum number
M = mI2 + ms1 + ms2 . The outermost states are pure triplet spin states.

M + 5
2 + 3

2 + 1
2 − 1

2 − 3
2 − 5

2

| + 3
2 | ↑↑〉 | + 1

2 | ↑↑〉 | − 1
2 | ↑↑〉 | − 3

2 | ↑↑〉
| + 3

2 | ↓↑〉 | + 1
2 | ↓↑〉 | − 1

2 | ↓↑〉 | − 3
2 | ↓↑〉

| + 3
2 | ↑↓〉 | + 1

2 | ↑↓〉 | − 1
2 | ↑↓〉 | − 3

2 | ↑↓〉
| + 3

2 | ↓↓〉 | + 1
2 | ↓↓〉 | − 1

2 | ↓↓〉 | − 5
2 | ↓↓〉

dimensional harmonic oscillator [34,35],

VGD(r) = μ

2
ω2

xx
2 + μ

2
ω2

yy
2 + μ

2
ω2

zz
2, (4)

with eigenfrequencies ω2
x = 2

μ
( B2

2M
+ 1

x3
0
), ω2

y = 2
μ

( B2

2M
− 1

2x3
0
),

and ω2
z = − 1

μx3
0
. The eigenfrequencies in the x,y direction

scale with the inverse total mass of the atom occupying the
GD state. Consequently, alkali-metal atoms such as rubidium
would exhibit energy spacings roughly one to two orders of
magnitude smaller than hydrogen.

In Ref. [38] it was shown that the interaction between
a GD atom and a neutral ground-state perturber atom may
be described by a contact potential in the form of an s-
wave pseudopotential [9,10]. It is notable that the unitary
transformation of the GD system into a single-particle problem
commutes with the interaction potential and does not affect the
underlying physics. Recent studies on Rydberg atoms utilizing
the same interaction potential have revealed shape resonances
in p-wave couplings [15–17] and dependencies on the spin
configuration of the electron and perturber [18,19,43]. The
corresponding interaction potential then reads [18]

VGD, n(r,R) =
∑

S=0,1

[
2πA(2S+1)

s δ(r − R)

+ 6πA(2S+1)
p ∇δ(r − R)∇]

P2S+1, (5)

where r is the electron and R the perturber position, re-
spectively. In this partial wave expansion, the interaction
amplitudes are expressed in terms of the scattering lengths
A

(2S+1)
l with l = S,P , which are related to the scattering phases

by A
(2S+1)
l = − tan[δ(2S+1)

l (k)]/k2l+1 [18]. For a rubidium
perturber, these scattering phases have been calculated in
Ref. [15] and are illustrated in Fig. 1.

In s-wave approximation, the triplet spin configuration
results in an attractive scattering interaction for low momenta
whereas the singlet interaction is repulsive [9]. The importance
of including the next higher order of scattering stems from the
fact that the p-wave scattering phase in the triplet configuration
crosses the value of π/2 at around k = 0.05 a.u., resulting
in a shape resonance [9] shown in Fig. 1(b). The projection
of the corresponding spin singlet (S = 0) and triplet (S = 1)
configurations of the electron spins s1, s2 of the GD atom and

the perturber atom, respectively, is performed by projection
operators P1,3 with P3 = ŝ1 · ŝ2 + 3/4 and P1 = I − PT [18].

The residual spin and angular-momentum couplings are
summarized in the spin Hamiltonian,

Hspin = A I2 · s2 + gs

2
B

(
ms1 + ms2

) + gI

2
BIz. (6)

Here, the first term is the hyperfine interaction of the ground-
state perturber atom with coupling constant A = 3.417 h GHz
for 87Rb [44]. We neglect the hyperfine coupling and spin-orbit
interaction of the GD atom due to the huge spatial electron-core
separation. The rubidium ground state has a vanishing angular
momentum and hence does not exhibit spin-orbit interactions.
The second term in Eq. (6) is the normal Zeeman interaction of
both the rubidium and hydrogen valence electrons with Landé
factor gs ≈ 2. The coupling between the angular momentum of
the hydrogen atom’s electron is already included in HGD while
the rubidium ground state 5 2S1/2 has zero angular momentum.
The last term is the Zeeman interaction of the nuclear spin of
the perturber in the external magnetic field.

III. SPIN SPACE ANALYSIS

In spin space, the GD-perturber system is composed of
the electronic spins of the GD and perturber atoms s1 and s2,
respectively, and the perturber nuclear spin I2 with I2 = 3/2.
While the spin Hamiltonian in Eq. (6) conserves F2 = I2 + s2

and s1, the interaction potential (5) conserves only the total
spin S = s1 + s2. Hence, the total Hamiltonian (1) does neither
conserve F2 nor S. Instead, only the sum of all magnetic
quantum numbers M = mI2 + ms1 + ms2 is a good quantum
number.

Table I lists all possible spin states according to the values
of M using the notation |mI2 |ms1ms2〉 with the symbol ↑
denoting mi = +1/2 and ↓ representing mi = −1/2. Spin
states with M = ±5/2 imply a pure triplet configuration of
the perturber and electron, which is equivalent to the condition
assumed in Ref. [38]. The cases withM = ±3/2 can be seen as
being already included in the configurations with M = ±1/2.
Hence, it is enough to consider only M = +1/2.

Expressed in a basis of spin states in the notation used in
Table I, the spin Hamiltonian (6) takes the form of a (2 × 2) ⊗
(2 × 2) block-diagonal matrix,

Hspin =

⎛
⎜⎜⎜⎜⎝

− 3
4A − g2

2 B + 3gI

4 B
√

3
2 A 0 0

√
3

2 A 1
4A + gI

4 B 0 0

0 0 − 1
4A + gI

4 B A

0 0 A −A
4 + g2

2 B − gI

4 B

⎞
⎟⎟⎟⎟⎠, (7)
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FIG. 2. The eigenstates of Hspin are superpositions of two basis
states |mI2 |ms1ms2 〉 with the same ms1 . We show the varying state
content as a function of the magnetic laboratory field strengths. In
weak magnetic fields, the hyperfine interaction in Eq. (6) dominates,
with the eigenstates corresponding to those of I2 · s2. In strong
magnetic fields, the electronic Zeeman term dominates, resulting in
eigenstates identified by the total spin magnetic quantum number
M = ms1 + ms2 .

which can be diagonalized analytically. The two blocks de-
scribe the spin flip of s2 caused by the hyperfine interaction
while the GD spin s1 is fixed. Consequently, each eigenstate of
Hspin may only be constructed from basis states |mI2 |ms1ms2〉
sharing the same GD spin s1.

In Fig. 2, the decomposition of one eigenstate each for both
orientations of s1 is shown over a range of relevant laboratory
field strengths. The two remaining eigenstates are formed by
the opposite assignment of the involved basis states. In the
regime of weak magnetic field �10 mT, Hspin is dominated
by the hyperfine interaction and the eigenstates couple to
hyperfine eigenstates with F = 3/2. In the presence of strong
magnetic field �1 T, as assumed for the existence of GD
states, the electronic Zeeman term of Eq. (6) dominates the
interaction, rendering the matrix in Eq. (7) into a near-diagonal
form with weak off-diagonal elements. Thus, the eigenstates
are close to the basis states |mI2 |ms1ms2〉. In this regime, the
eigenstates are energetically split, depending on the total spin
orientation M = ms1 + ms2 , by several 10 GHz, separating
states of parallel and antiparallel spins. The antiparallel states
are further split by the hyperfine interaction. The parallel
spin states can also be expressed as triplet states, while the
antiparallel spin states may be represented by a superposition
of singlet and triplet states [45], which results in a coupling of
these mixed-character spin states to both scattering channels
of the interaction potential VGD,n in Eq. (5).

IV. CYLINDRICAL GIANT DIPOLE STATES

In order to solve the eigenvalue problem associated with
the molecular Hamiltonian in Eq. (1), we make use of the

Born-Oppenheimer approximation. Separating the total wave
function �(r,R) = χ (R)ψ(r; R) yields

[HGD + Hspin + VGD, n(r; R)]ψi(r; R) = εi(R)ψi(r; R), (8)[
p2

n

2mn
+ εi(R)

]
χi

k(R) = Ei
kχ

i
k(R), (9)

where ψ(r; R) describes the electronic wave function that
depends parametrically on the nuclear separation R. The
corresponding eigenenergies serve as potential energy surfaces
(PES) in the equation of the vibrational wave functions χ (R).

To calculate the PES via exact diagonalization, we expand
ψi into an appropriate basis. In spin space, we choose the
eigenbasis of Hspin discussed in Sec. III, and in coordinate
space we choose the eigenbasis of HGD. For field strengths
resulting in K 
 10−3B, like the one chosen throughout
this article, the frequencies ωx and ωy of the GD potential,
Eq. (4), are nearly equal and justify a polar approximation
ωx � ωy = ωρ . Hence, the GD system can be described as a
charged isotropic two-dimensional harmonic oscillator in the
(x,y) plane in a homogeneous magnetic field along z, and a
one-dimensional harmonic oscillator in the z direction.

The wave function can thus be written as [35]

ψn,m,nz
(ρ,ϕ,z) = Rnm(ρ)

eimϕ

√
2π

φnz
(z). (10)

The first term is the radial wave function of the two-
dimensional isotropic harmonic oscillator,

Rnm(ξ ) =
√

2μ�ρ(n + |m|)!
n!(|m|!)2

×e− 1
2 ξ 2

(ξ )|m|
1F1(n; |m| + 1; ξ 2), (11)

with ξ = √
μ�ρρ and �2

ρ = ω2
ρ + ω2

c where the magnetic
field enters in the modified cyclotron frequency ωc = B(mp −
me)/mpme. The 1F1(a; b; z) are confluent hypergeometric
functions. The second factor in Eq. (10) are the eigenfunctions
of L̂z, and last term is the wave function of the one-dimensional
harmonic oscillator,

φnz
(z) =

(
μωz

π

)1/4 1√
2n n!

Hn(
√

μωzz)e− 1
2 μωzz

2
, (12)

with the Hermite polynomials Hn. The eigenenergies of HGD

are hence given by

En,m,nz
= �ρ(2n + |m| + 1) + ωc

2
m + ωz

(
nz + 1

2

)
. (13)

In principle, giant dipole states are not limited to hydrogen
atoms but may also be formed by any other type of element,
especially alkali-metal atoms. However, the dimensions of
GDSs scale with the total mass of the atom. In order for the
single-particle potential in Eq. (3) to possess a minimum, the
condition K3 > 27

4 BM has to be fulfilled [35]. This means
that for higher masses M , either K has to be increased or
B decreased. In result, the distance of the outer well to the
core |r0| ≈ K/B grows for heavier elements. Further, when
the GD well shifts outwards, the dissociation threshold in the
z direction shrinks. Beyond these scaling laws, no different
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behavior is expected when switching elements. Due to the
distinct spatial separation of the GD well the valence electron
does not interact with a possible inner shell structure. Also spin
and angular-momentum interactions are negligible due to the
enormous spatial distance.

Solving the GD system without approximations as in
Refs. [35,38] leads to a decomposition into two independent
harmonic oscillators with one large eigenfrequency ω+ =
4.13 × 1011 rad/s and one small eigenfrequency ω− = 2.23 ×
108 rad/s, while the z component has an intermediate spacing
of ωz = 1.35 × 109 rad/s. In contrast, the cylindrical approx-
imation results in three different eigenfrequencies for n and m

and depending on the sign of m, which we label ωn and ωm±.
The smallest of these frequencies is ωm− = 2.23 × 108 rad/s,
which can be identified with ω− of the exact solution. The
two other frequencies ωn = 4.13635 × 1011 rad/s and ωm+ =
4.13412 × 1011 rad/s are much larger and differ only by one
ωm−. Applied to a cylindrical system, the large eigenfrequency
ω+ of the exact solution is degenerate, resulting either from an
excitation with m > 0 or an excitation n combined with m < 0.
Due to the large eigenfrequencies, exceeding the dissociation
threshold of the exact GD potential and total excitation number
of interest, excitations of n or positive values of m have been
excluded from our exact diagonalization calculations.

By varying the maximum quantum numbers nz,max and
mmin < 0 we reached a relative accuracy of 10−4 by in-
cluding angular excitations m ∈ [0, − 60] and z excitations
nz ∈ [0,30], resulting in a total basis set of 1891 GD states.
Compared to a Green’s function method, which analytically
includes the full basis of nz, our method still implies a
numerical error of about 10%, as it was recently shown in
Ref. [46]. However, it predicts the correct shape and overall
landscape of the PESs within reasonable computation times.

In spin space, the diagonalization can also be simplified
due to the large Zeeman splitting in strong magnetic fields. In
the matrix representation introduced in Sec. III, the projection
operators of the scattering interaction, Eq. (5), read

P1 = 1√
2

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 1 0

0 −1 1 0

0 0 0 0

⎞
⎟⎟⎟⎠, and P3 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎠,

(14)

respectively. Therefore, a pure triplet eigenstate of Hspin does
not couple to any other spin state, and both triplet states can be
diagonalized independently, providing a route for direct com-
parison with Ref. [38]. In contrast, the two mixed-character
spin states |+1/2| ↑↓〉 and |+1/2| ↓↑〉 are strongly coupled
by P1 and have to be considered simultaneously, resulting in
2 × 1891 = 3782 basis states necessary for diagonalization.

V. POTENTIAL ENERGY SURFACES

A fast and direct approach to study the impact of different
interaction terms is to treat them in first-order perturbation
theory, where the s-wave interaction is proportional to the
probability density and the p-wave interaction to its derivative
of the considered state. Figure 3 shows the PESs of the m = −1
excited GD state in both triplet and mixed-character spin

FIG. 3. The PES of the triplet states [red (light gray)] is widely
dominated by s-wave scattering. The PES of the mixed-character
states [dark blue (gray)] reaches only about 40% of the triplet curve
due to the coupling to the repulsive singlet s-wave scattering channel.

configuration compared to a pure triplet s-wave approach as in
Ref. [38].

For better comparability, all PESs are plotted without the
constant offsets by εGD and εspin. Hence, only one triplet-
character and one mixed-character curve are displayed. Far
from the origin, the triplet-character curve (red) is dominated
by the singlet scattering channel and follows the pure triplet
s-wave model (dashed). Close to ρ = 0, p-wave contributions
become relevant which result in a finite energy plateau.

The mixed-character states (blue) couple to both the attrac-
tive triplet s-wave-scattering channel as well as to the repulsive
singlet s-wave scattering with equal strength, resulting in
a shallow PES with only about 40% depth. The p-wave
scattering is approximately equal for both spin states, hence
the mixed-character PES converges to nearly the same value as
the triplet PES for ρ → 0. Compared to Rydberg molecules,
the electron momentum is about one order of magnitude

FIG. 4. PESs obtained by exact diagonalization (solid curves)
are significantly deformed compared to perturbative results (dashed
curves) due to couplings to higher excited states. The GD ground-state
PES (lowest curve) is broadened to a parabolic shape. The first excited
states are dominated by the coupling to m = −1 (central curve) and
m = −2 (upper curve) GD states, respectively.
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FIG. 5. Avoided crossings of the mixed-spin |+1/2| ↑↓〉 GD
ground-state PES (outermost solid curves) with GD excited lower
spin states |+1/2| ↓↑〉 at ρ = 300 a0. The dashed curves indicate the
PES shapes in case of vanishing coupling, obtained by first-order
perturbation theory, of the ground state and {m = −2,nz = 9} state,
respectively.

smaller. Therefore, no shape resonances can be observed and
the impact of the p-wave scattering contributes only a minor
correction.

Similar to Ref. [38] we observe a notable change in the
shape of the PESs when numerically diagonalizing the system.
Figure 4 shows a comparison of the first three GD states in
triplet spin configuration (|↓↓〉).

The GD ground-state PES is deformed from a Gaussian
to a broader parabolic shape, which has also been reported in
Ref. [38]. Varying the included excited states reveals that these
shifts originate from a coupling to higher z-excited states with
the same parity. We further observe a large shift of the first
excited PESs away from the origin, originating from couplings
to m-excited GD states. The same effect is also observed for
higher m-excited states.

In addition to the avoided crossings of z-excited states
reported in Ref. [38] we also observe avoided crossings
between different spin states. The two mixed-character spin
states are separated energetically only by the hyperfine in-
teraction, which equals roughly nine GD z excitations or
60 m excitations. Hence, the GD ground-state PES of the
spin state |+1/2| ↑↓〉 couples to several excited GD states
of the |+1/2| ↓↑〉 state, with quantum numbers ranging from
{m = −56,nz = 0} to {m = −2,nz = 9}. Consequently, the
original ground-state PES is split into an upper and a lower
branch, separated by a manifold of shallow PESs, as shown
in Fig. 5. As the Born-Oppenheimer approximation breaks
down in the vicinity of avoided crossings, we do not expect any
of these sliced states to be strongly affected by nonadiabatic
transition dynamics.

VI. ROVIBRATIONAL STATES

Based on the Born-Oppenheimer PES described in the
previous section, it is possible to calculate the rotational and
vibrational spectrum of GD molecules through the Schrödinger

FIG. 6. Rovibrational ground state and first two excited states
supported by a triplet ground-state PES. The composite image shows
the PES (paraboloid) in the (R,Z) plane. On the vertical axis the
wave functions are scaled to arbitrary units with offsets equal to their
binding energy inside the PES.

equation, [
P2

n

2mn
+ εi(R)

]
χi

k(R) = Ei
k χi

k(R). (15)

The azimuthal symmetry of the PES carries over to the
rovibrational wave functions, allowing the ansatz,

χ (R,�,Z) = ei νφ�

√
2π

u(R,Z)√
R

, (16)

in cylindrical coordinates {R,�,Z} of the perturber atom.
We solve the corresponding residual Schrödinger equation
for u(R,Z) using a fourth-order finite-difference method.
The wave functions and binding energies of the rovibrational
ground state as well as the first two excited states supported
by the triplet GD ground-state PES are shown in Fig. 6.
The states are deeply bound inside the PES close to the
minimum. The ground state is located at a binding energy of
128.2 h MHz with a spacing of 0.5 h MHz to the first excited
state, meaning the PES may support several hundred excited
states. In Ref. [38] it was shown that in this regime the
potential is near harmonic, resulting, again, in a cylindrical
harmonic oscillator. Therefore, to all excited states one can
assign quantum numbers {νR,νφ,νZ}, which are the principal
quantum number, the angular quantum number, and the Z

quantum number, respectively. These quantum numbers can
best be identified by the structure of the electronic probability
density in the (R,Z) plane.

Probability densities of some characteristic states are dis-
played in Fig. 7. The νZ excitations can be identified by the
number of nodes in the Z direction. Due to the strong spatial
confinement of the GD states in radial direction compared
to the Z direction, the spacing in Z is almost one order of
magnitude smaller than the angular spacing. Consequently, the
first non-Z-excited state in energetic order is the eighth excited
state with νφ = 1. It can be identified by the characteristic shift
away from R = 0 and the absence of any nodes along Z.

The next higher angular-excited state is the 23rd state in
total, which is even stronger shifted outwards. In a purely
harmonic oscillator potential this state would be energetically
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FIG. 7. Probability densities of selected rovibrational states of the triplet GD ground state in the R-Z plane (R horizonzally, Z vertically,
each in units of 103 a0). The numbers in the top right corners indicate the total excitation number in energetic order, while the lower set labels
the corresponding harmonic excitation numbers of a three-dimensional cylindrical harmonic oscillator.

degenerate with the νR = 1 state. Our calculations show small
variations, indicating the deviations from a purely harmonic
model. The harmonic approximation holds for both triplet and
mixed GD ground states as well as for the single wells of simple
GD excited PESs. An exception is the previously mentioned
sliced ground state of the third spin state. The corresponding
PES is so strongly deformed and shallow, that its ground
state only has a binding energy of 15.9 h MHz with rapidly
decreasing spacings on the order of 1 h MHz. The excited states
are heavily influenced by the finite depth of the PES and, due
to the weak binding energies, may dissociate thermally.

VII. CONCLUSION

We have systematically explored the impact of fine struc-
ture and hyperfine couplings in ultra-long-range giant-dipole
molecules formed between a highly excited hydrogen atom

and a 5 2S1/2 ground-state rubidium atom. Similar to previ-
ous works, we have treated the electron-perturber interaction
within a Fermi pseudopotential approach that includes both the
s-wave and p-wave singlet and triplet scattering channels.

The couplings introduced by the considered spin interac-
tions strongly influence the PESs obtained within the Born-
Oppenheimer approximation. We have found a type of mixed-
spin molecules, which are bound by both the singlet and triplet
channel of the Fermi pseudopotential. Our calculations further
indicate interactions between the two possible mixed-spin
state configurations, induced by the perturber interaction. The
cross couplings result in avoided crossings, highly deforming
the overall PES landscape associated with this certain spin
state. In consequence, the molecular interaction may lead to a
dissociation of GD atoms prepared in this spin state.

Numerical solutions of the vibrational equations predict
deeply bound, stable molecular states supported by both triplet
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and mixed-spin character PES with binding energies up to a
hundred MHz. The resulting rovibrational level spacings are
in the order of 1–2 MHz. The vibrational spectrum is similar
to ordinary Rydberg molecules and may be observed in the
laboratory upon the successful preparation of GD states.
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