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We investigate an optimization problem of finding quantum sequential measurements, which forms a wide
class of state discrimination problems with the restriction that only local operations and one-way classical
communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered.
Using the fact that the optimization problem can be formulated as a problem with only Alice’s measurement
and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal
solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the
Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global
measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely
used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to
obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results
can be used to obtain an analytical expression for an optimal sequential measurement are provided.
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I. INTRODUCTION

The study of the power and limitations of local discrim-
ination of quantum states has attracted considerable interest
in quantum information theory in recent years. In particular,
quantum measurements realized by local operations and one-
way classical communication (one-way LOCC), also called
sequential measurements, have been widely investigated. Se-
quential measurements are relatively easy to implement with
current technology; for example, when two or more parties
receive quantum states at different times, measurements in
which individual measurements are performed sequentially
would be desirable in practical implementations of quantum
measurements. However, it is well known that orthogonal
quantum states shared by separated parties may not be per-
fectly distinguished when only sequential measurements are
allowed, while they can be perfectly distinguished by a global
measurement. This implies that sequential measurements are
less powerful than global measurements for quantum state
discrimination. An important question that arises in studies
of this kind is how well one can distinguish between given
quantum states by a sequential measurement.

Many studies have been developed to tackle the problem of
which sets of orthogonal states are distinguishable when only
sequential measurements are allowed (e.g., [1–7]). There have
also been several investigations of a sequential measurement
realizing a measurement that maximizes the average success
probability (called a minimum-error measurement) [8–11]. It
has also been reported that a measurement that maximizes the
average success probability with no error at the expense of
allowing for a certain fraction of inconclusive (failure) results
(called an optimal unambiguous measurement) can be realized
by a sequential measurement for binary pure states [12–14].
However, these results are only applicable to a special class of
quantum states. Investigations applicable to a broad class of
quantum states would be required.

In the scenario in which all quantum measurements are al-
lowed, optimal measurement strategies have been investigated
under various criteria, such as the Bayes criterion [15–17] and
the minimax criterion [18–20]. A measurement strategy that
allows for inconclusive results has also been well studied.
The most well-known example along this line is an optimal
unambiguous measurement [21–23]. Other examples are a
measurement that maximizes the average success probability
with a fixed average inconclusive probability, referred to as an
optimal inconclusive measurement [24–26], and a measure-
ment that maximizes the average success probability under the
condition that the average error probability should not exceed a
certain error, referred to an optimal error margin measurement
[27–29]. Recently, a generalized state discrimination problem,
which is applicable to the above-mentioned criteria, has also
been presented [30]. From these studies, some properties of
optimal measurements in the above criteria, such as necessary
and sufficient conditions for optimality, have been derived. By
contrast, in the case of a sequential measurement, very few
studies of an optimal sequential measurement for a strategy
other than the minimum-error strategy and the unambiguous
strategy have been reported (e.g., [31–35]).

More recently, Croke et al. derived a necessary and suf-
ficient condition for a sequential measurement to maximize
the average success probability (we call such a measurement a
minimum-error sequential measurement) and used it to prove
optimality of a candidate solution [36]. Also, the authors
have derived the dual problem of finding a minimum-error
sequential measurement and utilized it to compute numerical
solutions [37]. These results are applicable to arbitrary bipartite
quantum states; however, only a few properties of a minimum-
error sequential measurement have ever been reported. In
addition, these methods cannot directly be applied to other
criteria.

In this paper, we address a sequential-measurement version
of the generalized state discrimination problem described in
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Ref. [30]. Similar to that work, this problem includes problems
with various criteria. We consider sequential measurements
from Alice to Bob on a bipartite system. Since the problem
of finding an optimal sequential measurement is much more
complex than that of finding an optimal global measurement,
the results proposed in Ref. [30] cannot readily be applied
to this problem. However, we can see that the entire set of
sequential measurements is convex; thus, the generalized state
discrimination problem with sequential measurements can be
formulated as a convex programming problem. Useful results
available in convex programming help us to further understand
an optimal sequential measurement. We derive the original dual
problem and necessary and sufficient conditions for an optimal
solution. In the problem we address, sequential measurements
with a finite number of outcomes are considered, whereas the
output of Alice’s measurement can be infinite or continuous.
We show that there always exists an optimal sequential mea-
surement in which Alice’s measurement with a finite number of
outcomes as long as a solution exists. These properties would
be useful to obtain analytical and numerical expressions for an
optimal sequential measurement.

In Sec. II, we discuss the formulation of sequential mea-
surements and provide a sequential-measurement version of
the generalized state discrimination problem. In Sec. III, its
dual problem is derived. Then we show that the optimal values
of the primal and dual problems are the same. Necessary and
sufficient conditions for an optimal solution are also obtained.
In Sec. IV, we show that if a problem has a certain symmetry,
then there exists an optimal solution with the same type of sym-
metry. In Sec. V, we discuss a sequential-measurement version
of the generalized minimax problem described in Ref. [30]. We
also derive necessary and sufficient conditions for a minimax
solution. In Sec. VI, we show two examples in which analytical
expressions of optimal sequential measurements are derived.
These examples illustrate that our results are useful to obtain
analytical solutions to some problems.

II. GENERALIZED OPTIMAL SEQUENTIAL
MEASUREMENT

A. Sequential measurement

We consider a composite system H = HA ⊗ HB of two
subsystems, Alice and Bob. Let S and S+ be, respectively, the
entire sets of Hermitian operators and positive semidefinite
operators on H. Here Sk and S+

k (k ∈ {A,B}) are defined in
the same way with H replaced by Hk . Also, let R and R+ be,
respectively, the entire sets of real numbers and non-negative
real numbers and IN ≡ {0,1, . . . ,N − 1}. Let 1̂, 1̂A, and 1̂B

be, respectively, the identity operators on H, HA, and HB.
We denote {tbn} and {bn + b′

n}, with t ∈ R and b,b′ ∈ RN (or
b,b′ ∈ RN

+ ), by tb and b + b′, respectively. In addition, x̂ � ŷ,
with Hermitian operators x̂ and ŷ, means that x̂ − ŷ is positive
semidefinite.

Let us consider a sequential measurement on H. Alice first
performs a measurement, which is represented by a positive-
operator-valued measure (POVM) {Âj ∈ S+

A }j , the output
of which can be infinite (or continuous). The measurement
result j is sent to Bob. Then Bob chooses a measurement
{B̂(j )

m ∈ S+
B }M−1

m=0 depending on j and obtains the outcome

FIG. 1. Schematic diagram of a sequential measurement seen
from a different viewpoint. Each of Alice’s outcomes ω corresponds
one to one to Bob’s POVM {B̂ (ω)

m }m.

m ∈ IM , which represents the final measurement result. The
measurement on the joint system is given by the POVM
{�̂m =∑j Âj ⊗ B̂

(j )
m }M−1

m=0 .
We can consider this sequential measurement from a dif-

ferent viewpoint [37]. Let MB be the entire set of allowed
Bob’s measurements and � be an isomorphic set of MB.
Each element of MB is uniquely labeled by an index ω ∈ �;
we define Bob’s measurement corresponding to ω ∈ � as
B̂(ω) ≡ {B̂(ω)

m }M−1
m=0 . Alice first performs a measurement Â with

continuous outcomes in �. She sends the result ω ∈ � to
Bob. He performs the corresponding measurement B̂(ω). A
schematic diagram is depicted in Fig. 1. Alice’s POVM Â

uniquely determines this sequential measurement, which is
defined as �̂(Â) ≡ {�̂(Â)

m }M−1
m=0 with

�̂(Â)
m ≡

∫
�

Â(dω) ⊗ B̂(ω)
m . (1)

We can interpret that Alice’s POVM Â includes all the
information regarding the measurements Bob should perform.
Let MA be the entire set of Alice’s POVMs. Any sequential
measurement can be denoted by �̂(Â) with Â ∈ MA. In this
formulation, the problem of finding an optimal sequential
measurement can be formulated as an optimization problem
with only Â. It should be noted that MB is not necessarily
the entire set of POVMs on HB; for example, HB can be
a composite system of n subsystems and MB can be the
entire set of sequential measurements (or two-way LOCC
measurements) on HB.

B. State discrimination problem

Here we consider a sequential-measurement version of
the optimization problem described in Ref. [30], which is
expressed as

Problem P: maximize f (Â) ≡
M−1∑
m=0

Tr
[
ĉm�̂(Â)

m

]
subject to Â ∈ M◦

A, (2)

where

M◦
A ≡ {Â ∈ MA : ηj (Â) � 0 ∀j ∈ IJ },

ηj (Â) ≡
M−1∑
m=0

Tr
[
âj,m�̂(Â)

m

]− bj , (3)

ĉm ∈ S , âj,m ∈ S , and bj ∈ R. Here J is a non-negative integer
that represents the number of constraints.
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We can easily verify that M◦
A is convex and thus Problem

P is a convex programming problem. Let f � be the optimal
value of Problem P; f � is regarded as −∞ if the feasible
set M◦

A is empty. Note that an equality constraint ηj (Â) = 0
can be replaced by two inequality constraints ηj (Â) � 0 and
−ηj (Â) � 0.

Problem P can express a large class of problems; one can
find some examples in Sec. II B of Ref. [30]. We will also
provide two examples in the next section.

C. Examples

We give some examples of problems of finding optimal
sequential measurements that can be formulated as Problem P.
We consider discrimination between R quantum states {ρ̃r}R−1

r=0

with prior probabilities {ξr}R−1
r=0 . For each r ∈ IR , ρ̃r is a density

operator satisfying ρ̃r ∈ S+ and Trρ̃r = 1. We let ρ̂r ≡ ξr ρ̃r .

1. Optimal inconclusive measurement

Let us consider a sequential measurement with inconclusive
results �̂(Â) = {�̂(Â)

r }Rr=0 (Â ∈ MA and R � 2). The detection
operator �̂(Â)

r with r < R corresponds to identification of the

state ρ̃r , while �̂
(Â)
R corresponds to the inconclusive answer. An

optimal inconclusive sequential measurement is a sequential
measurement that maximizes the average success probability
under the constraint that the average inconclusive probability
equals a given value pI with 0 � pI � 1. The problem of
obtaining such a measurement can be formulated as follows:

maximize PS(Â) ≡
R−1∑
r=0

Tr
[
ρ̂r �̂

(Â)
r

]

subject to Â ∈ MA,

R−1∑
r=0

Tr
[
ρ̂r �̂

(Â)
R

] = pI. (4)

This problem is equivalent to Problem P with

M = R + 1, J = 1,

ĉm =
{
ρ̂m, m < R

0, m = R,

â0,m =

⎧⎪⎨
⎪⎩

0, m < R

−
R−1∑
r=0

ρ̂r , m = R,

b0 = −pI, (5)

where we use the fact that the problem remains unchanged
when the second constraint of Eq. (4) is replaced with∑R−1

r=0 Tr[ρ̂r �̂
(Â)
R ] � pI.

In particular, in the case of p = 0, an optimal inconclusive
sequential measurement is a minimum-error sequential mea-

surement. Since, in this case, we can assume �̂
(Â)
R = 0, this

problem is rewritten as

maximize PS(Â)

subject to Â ∈ MA, (6)

which is equivalent to Problem P with M = R, J = 0, and
ĉm = ρ̂m.

2. Optimal measurement in the Bayes criterion with a constraint

Another example is an extension of the problem of finding
an optimal sequential measurement in the Bayes criterion. Let
us consider the following problem:

minimize C0(Â)

subject to Â ∈ MA, C1(Â) � χ. (7)

For each k ∈ {0,1}, Ck(Â) is a cost function defined by

Ck(Â) ≡
R−1∑
m=0

R−1∑
r=0

w(k)
m,rTr

[
ρ̂r �̂

(Â)
m

]
, (8)

where w(k)
m,r ∈ R+ holds for any m,r ∈ IR . This problem can be

interpreted as that of finding a sequential measurement �̂(Â)

that minimizes the cost C0(Â) under the constraint that the
other cost C1(Â) should not be greater than a given value χ .
The problem of Eq. (7) is equivalent to Problem P with

M = R, J = 1,

ĉm =
R−1∑
r=0

w(0)
m,r ρ̂r , (9)

â0,m =
R−1∑
r=0

w(1)
m,r ρ̂r , b0 = χ.

For an example, in the case of χ = ∞, Eq. (7) represents the
sequential version of the problem of finding an optimal mea-
surement in the traditional Bayes criterion (with no constraint)
[15–17]. For another example, in the case of

R = 2,

w(0)
m,r = ξ−1

r δm,0δr,1, (10)

w(1)
m,r = ξ−1

r δm,1δr,0

(δj,j ′ is Kronecker delta), Eq. (7) represents the problem of

finding an optimal sequential measurement {�̂(Â)
0 ,�̂

(Â)
1 } that

minimizes C0(Â) = Tr[ρ̃1�̂
(Â)
0 ] under the constraint C1(Â) =

Tr[ρ̃0�̂
(Â)
1 ] � χ , which is known as the Neyman-Pearson

criterion.

III. OPTIMAL SOLUTION TO THE
GENERALIZED PROBLEM

A. Dual problem

We will derive the dual problem of Problem P. Let

σ̂ω(λ) ≡ TrB

M−1∑
m=0

ẑm(λ)B̂(ω)
m ,

ẑm(λ) ≡ ĉm −
J−1∑
j=0

λj âj,m, (11)

where TrB is the partial trace with respect to the system HB.
Here σ̂ω(λ) ∈ SA and ẑm(λ) ∈ S obviously hold. From Eqs. (1)
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and (11), we have that for any Â ∈ MA,

M−1∑
m=0

Tr
[
ẑm(λ)�̂(Â)

m

] = Tr
∫

�

σ̂ω(λ)Â(dω). (12)

Thus, from Eqs. (2) and (3), we have that for any Â ∈ M◦
A and

λ ∈ RJ
+,

f (Â) �
M−1∑
m=0

Tr
[
ĉm�̂(Â)

m

]−
J−1∑
j=0

λjηj (Â)

= Tr
[
ẑm(λ)�̂(Â)

m

]+
J−1∑
j=0

λjbj

= Tr
∫

�

σ̂ω(λ)Â(dω) +
J−1∑
j=0

λjbj . (13)

Here let X̂ be a Hermitian operator onHA satisfying X̂ � σ̂ω(λ)
for any ω ∈ �. From Eq. (13) we have

f (Â) � Tr
∫

�

X̂Â(dω) +
J−1∑
j=0

λjbj

= TrX̂ +
J−1∑
j=0

λjbj . (14)

This implies that we can obtain the following dual problem:

Problem DP: minimize s(X̂,λ) ≡ TrX̂ +
J−1∑
j=0

λjbj

subject to (X̂,λ) ∈ X ◦ (15)

with variables X̂ and λ, where

X ◦ ≡ {(X̂,λ) ∈ X : X̂ � σ̂ω(λ) ∀ω ∈ �},
X ≡ SA ⊗ RJ

+. (16)

Let s� be the optimal value of Problem DP. Problem DP can also
be derived using the Lagrangian method (see Appendix A).
We can easily verify that Problem DP is also a convex
programming problem.

From Eq. (14), s� � f � holds, i.e., the optimal value of
Problem DP is not less than that of Problem P. Moreover, as
stated in the following theorem, they are always the same (proof
in Appendix B).

Theorem 1. s� = f � always holds.

B. Conditions for an optimal solution

In generalized state discrimination problems with no re-
striction on measurements, necessary and sufficient conditions
for an optimal solution have been derived [30]. In a similar
manner, we can derive necessary and sufficient conditions for
an optimal solution to Problem P using its dual problem (proof
in Appendix C).

Theorem 2. Let Â be a POVM satisfying Â ∈ M◦
A. The

following statements are all equivalent.
(a) Â is an optimal solution to Problem P.

(b) There exists (X̂,λ) ∈ X ◦ such that

[X̂ − σ̂ω(λ)]Â(ω) = 0 ∀ω ∈ �, (17)

λjηj (Â) = 0 ∀j ∈ IJ . (18)

(c) There exists λ ∈ RJ
+ such that

∫
�

σ̂ω′(λ)Â(dω′) � σ̂ω(λ) ∀ω ∈ �, (19)

λjηj (Â) = 0 ∀j ∈ IJ . (20)

Moreover, if condition (b) holds, then (X̂,λ) is an optimal
solution to Problem DP.

From Eq. (17), for any ω ∈ �, the kernel of X̂ − σ̂ω(λ)
includes the support of Â(ω). If Â is discrete valued [i.e.,
Â(ω) 	= 0 holds for ω ∈ � only if ω is in at most countable
set {ωn}n], then Eq. (19) can be rewritten as∑

n

σ̂ωn
Â(ωn) � σ̂ω(λ) ∀ω ∈ �. (21)

Note that this equation in the case of the problem of obtaining
a minimum-error sequential measurement is given by Eq. (19)
of Ref. [36]. Although Â is continuous valued and optimal,
there always exists an optimal solution to Problem P with a
finite number of outcomes, as will be shown in Theorem 3.

We should mention that obtaining an optimal solution to
Problem P is much more difficult than obtaining an optimal
solution to the problem described in Ref. [30], i.e., the state
discrimination problem with no restriction on measurements.
The reason is that, in the former case, we have to optimize over
all of Alice’s measurements, which include all the information
regarding the measurements Bob should perform. Problem DP
is generally difficult to solve as well as Problem P. However,
we can obtain an analytical solution by solving Problem DP in
some cases (see Sec. VI B).

C. Number of outcomes of Alice’s POVM

So far in this paper, we have considered Alice’s POVM Â to
be continuous. We find that an optimal solution to Problem P
with finite outcomes always exists as long as a feasible
solution exists, as shown in the following theorem (proof in
Appendix D).

Theorem 3. Let dA = dim HA. If M◦
A is not empty, then

an optimal solution to Problem P with at most (J + 1)d2
A

outcomes exists.

D. Examples

As specific examples, in Sec. II C, we showed the problem
of finding an optimal inconclusive sequential measurement and
that of finding an optimal measurement in the Bayes criterion
with a constraint. We give their dual problems and necessary
and sufficient conditions for optimal solutions.

1. Optimal inconclusive measurement

Substituting Eq. (5) into Problem DP, we obtain the follow-
ing dual problem of finding an optimal inconclusive sequential
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TABLE I. Formulation of the generalized state discrimination problems. The date in column 1 are from [30].

Arbitrary measurements Sequential measurements

Primal problems

maximize
∑M−1

m=0 Tr(ĉm�̂m)

subject to �̂: POVM,∑M−1
m=0 Tr(âj,m�̂m) � bj (∀j ∈ IJ )

maximize
∑M−1

m=0 Tr[ĉm�̂(Â)
m ]

subject toÂ ∈ MA,∑M−1
m=0 Tr[âj,m�̂(Â)

m ] � bj (∀j ∈ IJ )
(2) and (3)

Dual problems

minimize TrX̂ +∑J−1
j=0 λjbj

subject to X̂ � ẑm(λ) (∀m ∈ IM ), λ ∈ RJ
+

where ẑm(λ) = ĉm −∑J−1
j=0 λj âj,m

minimize TrX̂ +∑J−1
j=0 λjbj

subject to X̂ � σ̂ω(λ) (∀ω ∈ �), λ ∈ RJ
+

where σ̂ω(λ) = TrB
∑M−1

m=0 ẑm(λ)B̂ (ω)
m ,

ẑm(λ) = ĉm −∑J−1
j=0 λj âj,m

(11), (15), and (16)
Necessary and sufficient conditions for optimality [condition (c)]

λ ∈ RJ
+ exists such that∑M−1

m=0 ẑm(λ)�̂m � ẑm(λ) ∀m ∈ IM,

λj [bj −∑M−1
m=0 Tr(âj,m�̂m)] = 0 ∀j ∈ IJ

λ ∈ RJ
+ exists such that∫

�
σ̂ω′ (λ)Â(dω′) � σ̂ω(λ) ∀ω ∈ �,

λj [bj −∑M−1
m=0 Tr[âj,m�̂(Â)

m ]] = 0 ∀j ∈ IJ

(19) and (20)

measurement:

minimize s(X̂,λ) = TrX̂ − λpI

subject to (X̂,λ) ∈ X ◦, (22)

where

X ◦ = {(X̂,λ) ∈ SA ⊗ R+ : X̂ � σ̂ω(λ),∀ω ∈ �},

σ̂ω(λ) = TrB

R−1∑
r=0

ρ̂r

[
B̂(ω)

r + λB̂
(ω)
R

]
. (23)

Let

M◦
A =

{
Â ∈ MA :

R−1∑
r=0

Tr
[
ρ̂r �̂

(Â)
R

] = pI

}
. (24)

From Theorem 2, �̂(Â) with Â ∈ M◦
A is an optimal inconclu-

sive sequential measurement if and only if Â satisfies

[X̂� − σ̂ω(λ�)]Â(ω) = 0 ∀ω ∈ �, (25)

where (X̂�,λ�) is an optimal solution to Eq. (22). Equation (25)
is a sequential-measurement version of an optimal inconclusive
global measurement given by Ref. [25].

2. Optimal measurement in the Bayes criterion with a constraint

From Eq. (9), we have the following dual problem:

minimize s(X̂,λ) = TrX̂ + λχ

subject to (X̂,λ) ∈ X ◦, (26)

where

X ◦ = {(X̂,λ) ∈ SA ⊗ R+ : X̂ � σ̂ω(λ) ∀ω ∈ �},

σ̂ω(λ) = TrB

R−1∑
m=0

R−1∑
r=0

[
w(0)

m,r − λw(1)
m,r

]
ρ̂r B̂

(ω)
m . (27)

In particular, in the case of Eq. (10), i.e., binary hypothesis
testing in the Neyman-Pearson criterion, we have

σ̂ω(λ) = TrB
[
ρ̃1B̂

(ω)
0 − λρ̃0B̂

(ω)
1

]
. (28)

From Theorem 2, Â ∈ MA with C1(Â) � χ is an optimal
solution to Eq. (7) if and only if the following equations hold:

[X̂� − σ̂ω(λ�)]Â(ω) = 0 ∀ω ∈ �,

λ�[C1(Â) − χ ] = 0, (29)

where (X̂�,λ�) is an optimal solution to Eq. (26).

E. Comparison with the problem with no restriction
on measurements

Table I summarizes the formulation of the state discrim-
ination problems when arbitrary measurements are allowed
and when only sequential measurements are allowed. The
dual problem in case (b) (i.e., Problem DP) has an infinite
(continuous) number of constraints, while that in case (a) has a
finite number M of constraints. This makes it difficult to obtain
an optimal sequential measurement.

Let (X̂G,λ) ∈ S ⊗ RJ
+ be a feasible solution to the

dual problem in case (a), which satisfies X̂G � ẑm(λ) for any
m ∈ IM .
Postmultiplying both sides of this inequality by B̂(ω)

m , summing
over m = 0, . . . ,M − 1, and taking a partial trace over HB,
we have

TrBX̂G � TrB

M−1∑
m=0

ẑm(λ)B̂(ω)
m . (30)

Thus, (TrBX̂G,λ) is a feasible solution to Problem DP. This
implies that TrX̂G is not less than the optimal value of Problem
DP, which is consistent with the fact that global measurements
can be better than sequential measurements.
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IV. PROBLEM WITH SYMMETRY

In this section, we discuss the case in which Problem P
has a certain symmetry. State discrimination problems with
symmetries have been well studied and it is known that, in some
cases, there exists an optimal solution with the same type of
symmetry [25,38–45]. The existence of a symmetric solution
helps us to obtain analytical or numerical optimal solutions
(e.g., [46–50]). We use basic terminology from group theory
that is the mathematical language of symmetry.

A. Group action

First, we briefly introduce a group action. Let G be a group
and e ∈ G be its identity element. Also, let g ∈ G be the inverse
element of g ∈ G. We assume that G has at least two elements.
Let |G| be the number of elements in G. A group action of G
on a set T is a set of mappings on T , {πg : T → T }g∈G , such
that

πgh(x) = πg[πh(x)] ∀g,h ∈ G, x ∈ T

πe(x) = x ∀x ∈ T . (31)

In what follows, we denote πg(x) by g ◦ x. Equation (31) can
be rewritten as

(gh) ◦ x = g ◦ (h ◦ x) ∀g,h ∈ G, x ∈ T

e ◦ x = x ∀x ∈ T . (32)

The action is called faithful if for any distinct g,h ∈ G there
exists x ∈ T such that g ◦ x 	= h ◦ x.

Let � be the entire set of groups G whose actions on IM ,
IJ , S , SA, SB, and � are defined and satisfy the following
statements.

(i) The actions of G on SA and SB are expressed by

g ◦ Q̂(A) ≡ V̂gQ̂
(A)V̂ †

g ∀g ∈ G, Q̂(A) ∈ SA

g ◦ Q̂(B) ≡ ŴgQ̂
(B)Ŵ †

g ∀g ∈ G, Q̂(B) ∈ SB, (33)

where V̂g and Ŵg are unitary or antiunitary operators on HA

andHB, respectively, and the dagger is the conjugate transpose
operator. These group actions are not necessarily faithful.
Moreover, {g ◦ B̂ (ω)

m }m ∈ MB holds for any g ∈ G and ω ∈ �.1

(ii) The action of G on S is faithful and is expressed by

g ◦ Q̂ ≡ ÛgQ̂Û †
g ∀g ∈ G, Q̂ ∈ S, (34)

where

Ûg = V̂g ⊗ Ŵg. (35)

(iii) The action of G on �, {g ◦ ω(ω ∈ �)}g∈G , is defined
such that for any g ∈ G and ω ∈ � Bob’s measurement
B̂(g◦ω) ≡ {B̂(g◦ω)

m }M−1
m=0 is given by

B̂(g◦ω)
m = g ◦ B̂

(ω)
g◦m ∀m ∈ IM. (36)

Note that B̂(g◦ω) ∈ MB holds from statement (i).

1This assumption always holds if MB is the entire set of POVMs
on HB; otherwise, it does not hold in general. For example, if HB is a
composite system andMB is the entire set of sequential measurements
onHB, then {g ◦ B̂ (ω)

m }m might not be inMB in spite of {B̂ (ω)
m }m ∈ MB.

In such cases, we need to appropriately set the action of G on SB.

We stress that actions ofG are different among different sets
[see, e.g., Eqs. (33) and (34)].

We can easily verify that V̂gh and Ŵgh, respectively, equal
V̂gV̂h and ŴgŴh up to global phases for any g,h ∈ G and that,
from Eq. (35), Ûgh also equals ÛgÛh up to a global phase for
any g,h ∈ G. We can assume, without loss of generality, that
V̂e = 1̂A and Ŵe = 1̂B hold, which gives Ûe = 1̂. Since the
action of G on S is faithful, Ûg and Ûh are not equivalent up
to a global phase for any distinct g,h ∈ G.

Here � includes various types of symmetry. As an example,
in the case in which only Bob’s system has a certain unitary
(or antiunitary) symmetry, we can consider a group G ∈ �

such that V̂g = 1̂A holds for any g ∈ G. As another example,
if Alice’s and Bob’s systems independently have different
unitary (or antiunitary) symmetries, represented by groups
GA and GB, respectively, then we can consider the direct
product of the groups G = GA × GB ∈ � such that there exist
two sets of unitary (or antiunitary) operators {V̂ ′

gA
: gA ∈ GA}

and {Ŵ ′
gB

: gB ∈ GB} satisfying V̂g = V̂ ′
gA

and Ŵg = Ŵ ′
gB

for
any g = (gA,gB) ∈ G. A more complex example is given in
Sec. IV C 3.

B. Symmetric properties of optimal solutions

We show that if Problem P has a certain symmetry, then
there exists an optimal solution with the same type of symmetry
(proof in Appendix E).

Theorem 4. Suppose that, in Problem P, there exist a group
G ∈ � such that

g ◦ âj,m = âg◦j,g◦m ∀g ∈ G, j ∈ IJ , m ∈ IM

bj = bg◦j ∀g ∈ G, j ∈ IJ (37)

g ◦ ĉm = ĉg◦m ∀g ∈ G, m ∈ IM.

Then, as long as M◦
A is not empty, for any �̂ ∈ M◦

A, there
exists Â ∈ M◦

A such that f (Â) = f (�̂) and

g ◦ Â(ω) = Â(g ◦ ω) ∀g ∈ G, ω ∈ �. (38)

Moreover, for any (Ŷ ,ν) ∈ X ◦, there exists (X̂,λ) ∈ X ◦ such
that s(X̂,λ) = s(Ŷ ,ν) and

g ◦ X̂ = X̂ ∀g ∈ G
λj = λg◦j ∀g ∈ G, j ∈ IJ . (39)

In particular, there exist an optimal solution Â to Problem P
satisfying Eq. (38) and an optimal solution (X̂,λ) to Problem
DP satisfying Eq. (39).

If Eq. (38) holds, then �̂(Â) has the following symmetry:

g ◦ �̂(Â)
m = �̂(Â)

g◦m. (40)

Indeed, from Eqs. (36), (E1), and (E2) we obtain

g ◦ �̂(Â)
m = g ◦

[∫
�

Â(dω) ⊗ B̂(ω)
m

]

=
∫

�

[g ◦ Â(dω)] ⊗ [g ◦ B̂(ω)
m

]
=
∫

�

Â[d(g ◦ ω)] ⊗ B̂g◦ω
g◦m = �̂(Â)

g◦m. (41)
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Let M◦
A;G be the entire set of Â ∈ M◦

A satisfying Eq. (38)
and X ◦

G be the entire set of (X̂,λ) ∈ X ◦ satisfying Eq. (39). We
can easily verify thatM◦

A;G andX ◦
G are convex. Thus, Problems

P and DP remain in convex programming even if we restrict
the feasible sets to M◦

A;G and X ◦
G , respectively.

C. Examples

1. Optimal inconclusive measurement

In the case of an inconclusive sequential measurement,
substituting Eq. (5) into Eq. (37) gives

g ◦ ρ̂r = ρ̂g◦r ∀g ∈ G, r ∈ IR, (42)

where the action of G on IM = IR+1 is set such that g ◦ R =
R holds. Quantum states {ρ̂r}R−1

r=0 are called group covariant
states with respect to G if Eq. (37) holds (e.g., [44]). From
Theorem 4, if given states are group covariant, then there exist
optimal solutions to Problems P and DP with the same type of
symmetry.

2. Optimal measurement in the Bayes criterion with a constraint

In the case of the Bayes criterion with a constraint, substi-
tuting Eq. (9) into Eq. (37) gives

R−1∑
r=0

w(k)
m,rg ◦ ρ̂r =

R−1∑
r=0

w(k)
g◦m,r ρ̂r

∀g ∈ G, m ∈ IR, k ∈ I2. (43)

In particular, if w(k)
g◦m,g◦r = w(k)

m,r holds, then the left-hand side
of Eq. (43) equals

R−1∑
r=0

w(k)
m,rg ◦ ρ̂r =

R−1∑
r=0

w(k)
g◦m,g◦rg ◦ ρ̂r

=
R−1∑
r ′=0

w
(k)
g◦m,r ′g ◦ ρ̂g◦r ′ , (44)

where r ′ ≡ g ◦ r . Thus, in this case, Eq. (42) is sufficient to
satisfy Eq. (43)

3. A more specific example

As a more specific example, let us consider the problem of
finding a minimum-error sequential measurement for ternary
quantum states {ρ̂r = 1

3 ρ̃(A)
r ⊗ ρ̃(B)

r }2
r=0, where {ρ̃(A)

r }2
r=0 and

{ρ̃(B)
r }2

r=0 are, respectively, ternary phase-shift-keyed (PSK)
and amplitude-shift-keyed (ASK) coherent states. These states
are given by

ρ̃(A)
r = |α exp(2π

√−1r/3)〉 ,

ρ̃
(B)
0 = |0〉 , ρ̃

(B)
1 = |β〉 , ρ̃

(B)
1 = |−β〉 , (45)

with α,β ∈ R. The phase-space representation of such states is
shown in Fig. 2. Since a minimum-error sequential measure-
ment is a special case of an optimal inconclusive one, Eq. (37)
reduces to Eq. (42). We consider a group G ∈ � and its actions
that satisfy Eq. (42).

Let GA ≡ {pk
A,pk

AqA}k∈I3 and GB ≡ {pk
B,pk

BqB}k∈I2 be di-
hedral groups with |GA| = 6 and |GB| = 4. The group Gk

(k ∈ {A,B}) is generated by a rotation pk and a reflection
qk , which have pkqkpk = qk . We have p3

A = q2
A = eA and

FIG. 2. Phase-space representation of (a) ternary PSK coherent
states {ρ̃(A)

r } and (b) ternary ASK coherent states {ρ̃(B)
r }.

p2
B = q2

B = eB, where eA and eB are, respectively, the identity
elements of GA and GB. We define actions of GA on SA and GB

on SB as

gA ◦ Q̂(A) ≡ V̂gAQ̂(A)V̂ †
gA

∀gA ∈ GA, Q̂(A) ∈ SA,

gB ◦ Q̂(B) ≡ ŴgBQ̂
(B)Ŵ †

gB
∀gB ∈ GB, Q̂(B) ∈ SB, (46)

where V̂gA and ŴgB are, respectively, unitary (or antiunitary)
operators on HA and HB, satisfying V̂ 3

pA
= V̂ 2

qA
= 1̂A and

Ŵ 2
pB

= Ŵ 2
qB

= 1̂B. Further, V̂pA and ŴpB , respectively, cor-
respond to the rotation of 2π/3 and π , around the origin in
the phase space; V̂qA and ŴqB , respectively, correspond to the
reflection about the xc axis. We can easily see that the following
equations hold:

pA ◦ ρ̃(A)
r = ρ̃

(A)
r⊕1, qA ◦ ρ̃(A)

r = ρ̃
(A)
κ(r),

pB ◦ ρ̃(B)
r = ρ̃

(B)
κ(r), qB ◦ ρ̃(B)

r = ρ̃(B)
r , (47)

where κ(0) = 0, κ(1) = 2, κ(2) = 1, and ⊕ denotes the addi-
tion modulo 3.

Let e ≡ (eA,eB), p ≡ (qA,pB), and q ≡ (eA,qB). Also, we
redefine V̂g ≡ V̂gA and Ŵg ≡ ŴgB for g = (gA,gB) ∈ GA ×
GB. Then G ≡ {e,p,q,pq} is a group such that

p ◦ ρ̂r = 1
3

[
qA ◦ ρ̃(A)

r

]⊗ [pB ◦ ρ̃(B)
r

]
= 1

3 ρ̃
(A)
κ(m) ⊗ ρ̃

(B)
κ(m) = ρ̂κ(m),

q ◦ ρ̂r = 1
3

[
eA ◦ ρ̃(A)

r

]⊗ [qB ◦ ρ̃(B)
r

]
= 1

3 ρ̃(A)
r ⊗ ρ̃(B)

r = ρ̂r . (48)

Note that the action of G on SA is not faithful; indeed, both V̂e

and V̂q are identical to V̂eA . Let us define an action of G on IM

such that p ◦ m = κ(m) and q ◦ m = m; then Eq. (42) holds.
From Theorem 4 there exists Â ∈ MA satisfying Eq. (38).

From Eq. (40), �̂(Â) = {�̂(Â)
m }2

m=0 with such Â has the follow-
ing symmetry:

Ûp�̂(Â)
m Û †

p = �̂
(Â)
κ(m),

Ûq�̂
(Â)
m Û †

q = �̂(Â)
m , (49)

where Ûp = V̂qA ⊗ ŴpB and Ûq = 1̂A ⊗ ŴqB from Eq. (35).
Moreover, from Eq. (39) there exists X̂ ∈ X ◦ commuting
with V̂qA .

022340-7



NAKAHIRA, KATO, AND USUDA PHYSICAL REVIEW A 97, 022340 (2018)

Note that, in this example, neither Â nor X̂ has the sym-
metry expressed by {pk

A}k∈I3 , while the states {ρ̃(A)
r } have this

symmetry. The reason is that the states {ρ̃(B)
r } do not have this

symmetry.

V. GENERALIZED MINIMAX SOLUTION

In the minimax strategy for a quantum state discrimination
problem, prior probabilities are unknown and the task is
to maximize the worst case of the objective function (such
as the average success probability) over all prior probabil-
ities. This strategy has been investigated in several studies
[18–20,45,51], whose generalized version appears in Ref. [30].
In this section, we consider a sequential-measurement version
of the generalized minimax problem. In a manner similar to the
method reported by Ref. [30], we can provide necessary and
sufficient conditions for a minimax solution to the sequential-
measurement version of the problem. In what follows, we
discuss properties that a minimax solution has.

A. Formulation

Let us consider K � 1 objective functions
f0(Â), . . . ,fK−1(Â) expressed as

fk(Â) ≡
M−1∑
m=0

Tr
[
ĉk,m�̂(Â)

m

]+ dk, (50)

where ĉk,m ∈ S and dk ∈ R. Also, let P be the entire set of
collections of K non-negative real numbers μ ≡ {μk}K−1

k=0 ∈
RK

+ , satisfying
∑K−1

k=0 μk = 1. Here μ ∈ P can be interpreted
as a probability distribution. Let F (μ,Â) be the objective
function defined by

F (μ,Â) ≡
K−1∑
k=0

μkfk(Â) (51)

and M◦
A be the set defined by Eq. (3). We investigate the

problem of finding a POVM Â ∈ M◦
A that maximizes the

worst-case value of F (μ,Â) over μ ∈ P . This problem can
be formulated as follows:

Problem Pm: maximize min
μ∈P

F (μ,Â)

subject to Â ∈ M◦
A. (52)

Let F� be the optimal value of Problem Pm. We call a pair
(μ�,Â�) with

μ� ∈ argmin
μ∈P

max
Â∈M◦

A

F (μ,Â),

Â� ∈ argmax
Â∈M◦

A

min
μ∈P

F (μ,Â)

a minimax solution to Problem Pm. Such Â�, which we will
call a minimax POVM, is obviously an optimal solution to
Problem Pm.

B. Example

The minimax strategy in the minimum-error criterion,
which has been investigated in Ref. [18], is a simple example.
In this strategy, μ ∈ P with K = R can be regarded as prior
probabilities of the states {ρ̃r : r ∈ IR}. The aim is to find
a sequential measurement �̂(Â) that maximizes the worst-
case average success probability PS(μ,Â) over μ ∈ P . Here

PS(μ,Â) is written by

PS(μ,Â) =
R−1∑
k=0

μkTr
[
ρ̃k�̂

(Â)
k

]
. (53)

This problem is equivalent to Problem Pm with
M = K = R, J = 0,

ĉk,m = ρ̃mδk,m, dk = 0. (54)

C. Properties of a minimax solution

We first show the following remark.
Remark 1 (minimax theorem). If M◦

A is not empty, then
there exists a minimax solution (μ�,Â�) to Problem Pm and it
satisfies

min
μ∈P

max
Â∈M◦

A

F (μ,Â) = F (μ�,Â�)

= max
Â∈M◦

A

min
μ∈P

F (μ,Â). (55)

Proof. M◦
A and P are closed convex sets. F (μ,Â) is a

continuous convex function of μ for fixed Â and a continuous
concave function of Â for fixed μ. Thus, the minimax theorem
holds (e.g., [52]); that is to say, there exists a minimax solution
(μ�,Â�) to Problem Pm, which satisfies Eq. (55). �

A minimax solution to Problem Pm can be characterized by
a saddle point; i.e., (μ�,Â�) is a minimax solution if and only
if, for any μ ∈ P and Â ∈ M◦

A, (μ�,Â�) satisfies [52]

F (μ�,Â) � F (μ�,Â�) � F (μ,Â�). (56)

Let

F�(μ) ≡ max
Â∈M◦

A

F (μ,Â). (57)

From Eq. (56), F�(μ�) = F (μ�,Â�) holds.
Let cm(μ) ≡∑K−1

k=0 μkĉk,m and d(μ) ≡∑K−1
k=0 μkdk; then

we find that the problem of finding F�(μ) for a fixed μ ∈ P is
reduced to Problem P, as shown in the following remark.

Remark 2. Let f �(μ) be the optimal value of Problem P
with ĉm = cm(μ); then F�(μ) = f �(μ) + d(μ) holds.

Proof.

F�(μ) = max
Â∈M◦

A

F (μ,Â)

= max
Â∈M◦

A

K−1∑
k=0

μk

[
M−1∑
m=0

Tr
[
ĉk,m�̂(Â)

m

]+ dk

]

= max
Â∈M◦

A

M−1∑
m=0

Tr
[
cm(μ)�̂(Â)

m

]+ d(μ)

= f �(μ) + d(μ). (58)
�

Theorem 5. Assume μ� ∈ P and Â� ∈ M◦
A. The following

statements are all equivalent.
(a) (μ�,Â�) is a minimax solution to Problem Pm.
(b) The following equation holds:

fk(Â�) � F�(μ�) ∀k ∈ IK. (59)

(c) The following equations hold:

F�(μ�) = F (μ�,Â�),

fk(Â�) � fk′(Â�) ∀k, k′ ∈ IK such that μ�
k′ > 0. (60)

The proof is the same as Theorem 3 of Ref. [30]. �
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Theorem 6. Let us consider the optimization problem

maximize fmin(Â) ≡ min
k∈IK

fk(Â)

subject to Â ∈ M◦
A (61)

with Â. An optimal solution to the problem given by Eq. (61)
is equivalent to a minimax POVM of Problem Pm.

The proof is the same as Theorem 4 of Ref. [30]. �

D. Minimax problem with symmetry

Similar to Theorem 4, if Problem Pm has a certain symmetry,
then there exists a minimax solution with the same type
of symmetry, as stated in the following theorem (proof in
Appendix F).

Theorem 7. Suppose that, in Problem Pm, there exist a group
G ∈ � and its action on IK such that

g ◦ âj,m = âg◦j,g◦m ∀g ∈ G, j ∈ IJ , m ∈ IM

bj = bg◦j ∀g ∈ G, j ∈ IJ

g ◦ ĉk,m = ĉg◦k,g◦m ∀g ∈ G, k ∈ IK, m ∈ IM

dk = dg◦k ∀g ∈ G, k ∈ IK. (62)

Then, as long as M◦
A is not empty, there exists a minimax

solution (μ�,Â�) such that

μ�
k = μ�

g◦k ∀g ∈ G, k ∈ IK

g ◦ Â�(ω) = Â�(g ◦ ω) ∀g ∈ G, ω ∈ �. (63)

An an example, in the case of the minimum-error criterion
described in Sec. V B, Eq. (62) is equivalent to

g ◦ ρ̃mδk,m = ρ̃g◦mδg◦k,g◦m ∀g ∈ G, k,m ∈ IM. (64)

VI. EXAMPLES

In this section, we provide two examples of deriving closed-
form analytical expressions for optimal solutions.

A. Optimal inconclusive sequential measurement
for double trine states

We derive an optimal solution to the problem of Eq. (4)
for double trine states with equal prior probabilities. Note
that, in the cases of pI = 0 (corresponding to a minimum-
error sequential measurement) and pI = 1/2 (corresponding
to an optimal unambiguous sequential measurement), optimal
solutions are given in Refs. [53,54], respectively. However,
an optimal solution in the case of 0 < pI < 1/2 has not been
obtained so far and would be difficult to obtain with the method
described in these references.

Double trine states with equal prior probabilities can be
expressed by {ρ̂m ≡ 1

3 |ψm〉〈ψm|}2
m=0 with

|ψm〉 ≡ |φm〉 ⊗ |φm〉 ,

|φm〉 ≡ cos
2πm

3
|0〉 + sin

2πm

3
|1〉 . (65)

Here {|φm〉} has the symmetry of |φm〉 = V̂ k
rot |φm�k〉, where

V̂rot ≡ −1

2
1̂ +

√
3

2
(|1〉〈0| − |0〉〈1|), (66)

which is a unitary operator corresponding to a rotation of 2π
3

and � denotes the subtraction modulo 3. Also, since 〈k|φm〉
(k ∈ {0,1}) is real, V̂conj |φm〉 = |φm〉 holds, where V̂conj is
the antiunitary operator of complex conjugation in the basis
{|0〉, |1〉}.2

First, we derive an optimal solution (X̂�,λ�) to the prob-
lem of Eq. (22). Assume, without loss of generality, that
X̂� commutes with V̂rot and V̂conj (see Theorem 4); then it
follows that such X̂� must be proportional to 1̂A. After some
computations, we obtain an optimal solution (X̂�,λ�) as follows
(see Appendix G):

X̂� =
(

1

2
+ 3 − 2pI

4
√

3 − 4pI

)
1̂A,

λ� = 1

2
+ 1

2
√

3 − 4pI
. (67)

Thus, the average success probability of an optimal inconclu-
sive sequential measurement P �

S , which is equivalent to the
optimal value s(X̂�,λ�), is given by

P �
S = s(X̂�,λ�) = TrX̂� − λ�pI

= 1
2 (1 − pI) + 1

4

√
3 − 4pI. (68)

When pI = 1/2, P �
S + pI = 1 holds; i.e., the average error

probability 1 − P �
S − pI is zero. This indicates that there exists

an unambiguous sequential measurement with the average
inconclusive probability of 1/2. Since the case of pI > 1/2 is
trivial, assume 0 � pI � 1/2 (in this case, 1

2 + 1
2
√

3
� λ� � 1

holds).
Next we derive an optimal sequential measurement. Let

|φ⊥
m〉 be the vector expressed by

|φ⊥
m〉 ≡ − sin

2πm

3
|0〉 + cos

2πm

3
|1〉 , (69)

which satisfies 〈φ⊥
m |φm〉 = 0 and |φ⊥

m〉 = V̂ k
rot |φ⊥

m�k〉. From the
discussion in Appendix G and the symmetry of {|φm〉}, X̂� −
σ̂ω(λ�) is rank one [i.e., the largest eigenvalue of σ̂ω(λ�) is
υ(λ�), which is defined in Appendix G] if and only if {B̂(ω)

m }3
m=0

is expressed as

B̂(ω)
m = B̂(ωk)

m ≡
{

V̂ k
rotB̂

•
m�kV̂

−k
rot , m < 3

4
3pI |φ⊥

k 〉〈φ⊥
k | , m = 3,

(70)

where {B̂•
m} is given by Eq. (G12) with α = 4pI/3 and ωk ∈

� (k ∈ I3) is an index corresponding to the POVM B̂(ωk) ≡
{B̂(ωk)

m } defined by Eq. (70). In Eq. (70), we use

V̂ k
rotB̂

•
3 V̂ −k

rot = αV̂ k
rot |φ⊥

0 〉〈φ⊥
0 | V̂ −k

rot = 4
3pI |φ⊥

k 〉〈φ⊥
k | . (71)

2Our discussion in Sec. IV can be used when considering a dihedral
group with order 6, G = {pk,pkq}k∈I3 , which is generated by a
rotation p and a reflection q with pqp = q. To be concrete, let
V̂pkql = V̂ k

rotV̂
l

conj for any k ∈ I3 and l ∈ I2 and let Ûg = V̂g ⊗ V̂g;
then we can consider group actions of G. Note that double trine states
also have the symmetry of (|0〉〈0| − |1〉〈1|) |φm〉 = |φκ(m)〉 [κ(0) = 0,
κ(1) = 2, and κ(2) = 1]; however, we do not need this symmetry to
obtain their optimal sequential measurement.
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FIG. 3. Average success probabilities of optimal sequential and
global measurements for double trine states with equal prior
probabilities.

Using the fact that, from Eq. (25), the support of Â(ω) is
included in the kernel of X̂� − σ̂ω(λ�), Â can be obtained in the
following way. When ω = ωk , since Eq. (G4) with θ = 2πk

3

holds, V̂ k
rot |1〉 = |φ⊥

k 〉 is in the kernel of X̂� − σ̂ω(λ�). Then
Â(ωk) must be proportional to |φ⊥

m〉〈φ⊥
m |. When ω 	= ωk , the

kernel of X̂� − σ̂ω(λ�) is {0}, which implies that Â(ω) = 0.
Thus, an optimal inconclusive sequential measurement �̂� is
expressed by �̂� = �̂(Â), where

Â(ω) =
{

2
3 |φ⊥

k 〉〈φ⊥
k | for ω = ωk(k ∈ I3),

0 otherwise
(72)

holds for any ω ∈ �. It follows that Â is a POVM with
three outcomes {ωk}2

k=0. From Eqs. (70) and (72), �̂� can be
rewritten as

�̂�
m =

{
2
3

∑2
k=0
k 	=m

|φ⊥
k 〉〈φ⊥

k | ⊗ V̂ k
rotB̂

•
m�kV̂

−k
rot , m < 3

8
9pI
∑2

k=0 |φ⊥
k 〉〈φ⊥

k | ⊗ |φ⊥
k 〉〈φ⊥

k | , m = 3.
(73)

Figure 3 shows the average success probabilities of op-
timal measurements with and without the restriction that
only sequential measurements are allowed. Note that the
average success probability of an optimal inconclusive global
measurement can be computed by the method described in
Ref. [55]. The average error probability is zero when pI � 1/2
and pI � 1/4 in the cases of optimal inconclusive sequential
and global measurements, respectively.

B. Minimax solution for symmetric states

Let us consider the following N2 states {ρ̃m,n}N−1
m,n=0:

ρ̃m,n ≡ |ψm,n〉〈ψm,n| ,
|ψm,n〉 ≡ ∣∣a(m)

n

〉⊗ |m〉 , (74)

where N is prime. Here {|m〉}N−1
m=0 is an orthonormal ba-

sis (ONB) in HB with dim HB = N . For each m ∈ IN ,
{|a(m)

n 〉}N−1
n=0 is also an ONB in HA with dim HA = N . A set

of ONBs {|a(m)
n 〉}N−1

m,n=0 constitutes so-called mutually unbi-

ased bases [56], which satisfy |〈a(m)
n |a(m′)

n′ 〉| = 1/
√

N (∀n,n′ ∈

IN ) for any distinct m,m′ ∈ IN . More concretely, the ONB
{|a(m)

n 〉}n is the eigenbasis of the operator SXSm
Z for each

m ∈ IN , where SX and SZ are generalized Pauli operators
expressed by

SX ≡
N−1∑
l=0

|l ⊕ 1〉〈l| , SZ ≡
N−1∑
l=0

τn |l〉〈l| , (75)

with τ ≡ exp(2π
√−1/N ) and an ONB {|l〉}N−1

l=0 in HA. Here
⊕ denotes the addition modulo N . Note that, in the case of N =
2, an analytical expression for a minimum-error sequential
measurement has been derived in Ref. [2]. Here we will provide
an analytical minimax solution in the minimum-error criterion
[i.e., an optimal solution to Problem Pm with Eq. (54)] for
the states {ρ̃m,n}m,n with N � 3. We can assume without loss
of generality that |a(m)

n 〉 is the eigenbasis of SXSm
Z with the

eigenvalue τn, which can be expressed as (e.g., [57])

∣∣a(m)
n

〉 = 1√
N

N−1∑
l=0

τ−nl+ml(l−1)/2 |l〉 . (76)

Let us consider the symmetry of the states. Let G ∈ � be
the group generated by three elements gX, gZ, and gM whose
action on S is written by Eq. (34) with

ÛgX ≡ SX ⊗ 1̂B, ÛgZ ≡ SZ ⊗ 1̂B,

ÛgM ≡
(

N−1∑
l=0

τ l(l−1)/2 |l〉 〈l|
)

⊗
(

N−1∑
m=0

|m ⊕ 1〉 〈m|
)

. (77)

From Eqs. (74), (76), and (77) we can easily verify

gX ◦ ρ̃m,n = ρ̃m,n⊕m,

gZ ◦ ρ̃m,n = ρ̃m,n�1, (78)

gM ◦ ρ̃m,n = ρ̃m⊕1,n,

where � denotes the subtraction modulo N . Thus, if we define
the action of G on IN2 such that gX ◦ (m,n) = (m,n ⊕ m),
gZ ◦ (m,n) = (m,n � 1), and gM ◦ (m,n) = (m ⊕ 1,n), then
Eq. (64) holds. Therefore, from Theorem 7 there exists an
optimal solution (μ�,Â�) to Problem Pm such that μ�

m,n =
1

N2 holds for any m,n ∈ IN . Here �̂(Â�) is a minimum-error
sequential measurement for {ρ̃m,n}m,n with equal prior proba-
bilities, which can be obtained from Eq. (6) with r = (m,n),
R = N2, and ρ̂m,n = 1

N2 ρ̃m,n. In what follows, we try to obtain

the minimum-error measurement �̂(Â�).
First, we obtain an optimal solution X̂� to the dual problem

given by Eq. (22) with pI = 0. From Theorem 4 we can
assume SXX̂�S†

X = X̂� = SZX̂�S†
Z, i.e., X̂� commutes with

SX and SZ. On the other hand, since SX and SZ do not share
any eigenvector, any operator commuting with SX and SZ is
proportional to 1̂A. Thus, we have X̂� = c�1̂A with a constant
c� ∈ R. Substituting this into Eq. (22), we obtain the problem

minimize c

subject to c1̂A � σ̂ω ∀ω ∈ � (79)

with variable c ∈ R, whose optimal value is c�. Thus, it
follows that c� equals the maximum of the largest eigenvalues
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of σ̂ω, i.e.,

c� = max{〈φ|σ̂ω|φ〉 : |φ〉 ∈ HA, 〈φ|φ〉 = 1,ω ∈ �}. (80)

The constant c� can be derived from this equation as follows.
Substituting Eq. (74) into Eq. (23), we have

σ̂ω = 1

N2

N−1∑
m=0

N−1∑
n=0

p(ω)
m,n

∣∣a(m)
n

〉〈
a(m)

n

∣∣ , (81)

where

p(ω)
m,n ≡ 〈m|B̂(ω)

m,n|m〉 (82)

and {B̂(ω)
m,n}N−1

m,n=0 is the POVM on HB corresponding to ω ∈ �.
From Eq. (81), we have that for any normal vector |φ〉 ∈ HA,

〈φ|σ̂ω|φ〉 = 1

N2

N−1∑
m=0

N−1∑
n=0

p(ω)
m,n

∣∣〈φ∣∣a(m)
k

〉∣∣2

� 1

N2

N−1∑
m=0

N−1∑
n=0

p(ω)
m,n

∣
∣〈φ∣∣a(m)

κ(m)

〉∣∣2

� 1

N2

N−1∑
m=0

∣∣〈φ∣∣a(m)
κ(m)

〉∣∣2

= 1

N2
〈φ|�̂|φ〉 , (83)

where κ(m) is a function of m such that

κ(m) ∈ arg max
n∈IN

∣
∣〈φ∣∣a(m)

n

〉∣∣ ∀m ∈ IN (84)

and

�̂ ≡
N−1∑
m=0

∣∣a(m)
κ(m)

〉〈
a

(m)
κ(m)

∣∣ . (85)

The third line of Eq. (83) follows from
∑N−1

n=0 p(ω)
m,n �

〈m|1̂B|m〉 = 1, which is given by
∑N−1

n=0 B̂(ω)
m,n � 1̂B.

Due to the symmetry of the states, we can here assume
κ(m) = 0 for each m ∈ IN without loss of generality. Substi-
tuting Eq. (76) into Eq. (85), and with some algebra, we can
obtain

�̂ =
∣∣∣∣N + 1

2

〉〈
N + 1

2

∣∣∣∣+ 2
(N−1)/2−1∑

m=0

|νm〉 〈νm| , (86)

where |νm〉 is the normal vector defined by

|νm〉 ≡
{

(|0〉 + |1〉)/√2, m = 0
(|m + 1〉 + |N − m〉)/√2, m > 0.

(87)

Equation (86) indicates that the largest eigenvalue of �̂ is 2
and thus, from Eq. (83), the maximum value of 〈φ|σ̂ω|φ〉 is 2

N2 ,
which gives c� = 2

N2 (i.e., X̂� = 2
N2 1̂A). Therefore, we obtain

PS(Â�) = TrX̂� = 2
N

.3

3If N = 2, then Eq. (76) does not hold. However, we can ap-
ply the same technique to this case and obtain X̂� = ( 1

4 + 1
4
√

2
)1̂A

[i.e., PS(Â�) = TrX̂� = 1
2 + 1

2
√

2
], which is consistent with the result

in Ref. [2].

Next we obtain a minimum-error sequential measurement.
From Eq. (25), if Â(ω) 	= 0, then at least one of the eigenvalues
of X̂� − σ̂ω � 0 is zero; i.e., σ̂ω has the eigenvalue 2

N2 . This
implies that the equality in Eq. (83) holds when |φ〉 = |u〉,
where |u〉 is a normalized eigenvector corresponding to the
largest eigenvalue of σ̂ω. We consider the case p(ω)

m,n = δn,κ(m),
whereκ(m) satisfies Eq. (84) with |φ〉 = |u〉, which is sufficient
for the equality in Eq. (83) with |φ〉 = |u〉. In this case, B̂(ω)

m,n

can be expressed as

B̂(ω)
m,n = δn,κ(m) |m〉〈m| . (88)

We can easily verify that Â(ω) written by

Â(ω) = γ |u〉〈u| , (89)

with γ > 0, satisfies Eq. (25). These conditions help us to find
a minimum-error sequential measurement.

Let κ(m) = t ⊕ ms (s,t ∈ IN ) and ωs,t ∈ � be the corre-
sponding index; then Eq. (88) gives

B̂(ωs,t )
m,n = δn,t⊕ms |m〉〈m| . (90)

From Eq. (81) we have

σ̂ωs,t
= 1

N2

N−1∑
m=0

∣∣a(m)
t⊕ms

〉〈
a

(m)
t⊕ms

∣∣ . (91)

The following is a normalized eigenvector corresponding to
the largest eigenvalue 2

N2 of σ̂ωs,t
:

|us,t 〉 ≡ 1√
2N

N−1∑
j=0

τ js(s+1)/2
∣∣a(j )

t⊕js

〉
. (92)

In this case, we can see that Eq. (84) holds with |φ〉 = |u〉. We
choose Â� such that

Â�(ωs,t ) ≡ 1

N
|us,t 〉〈us,t | (93)

and Â�(ω) ≡ 0 when ω ∈ � is not in {ωs,t }N−1
s,t=0. We can easily

verify
∑

s,t Â�(ωs,t ) = 1̂A and thus Â� is a POVM on HA with
N2 outcomes {ωs,t }s,t . Since Eq. (25) with Â = Â� holds, from
Theorem III B, Â� is an optimal solution to Eq. (6). Substituting
Eqs. (90) and (93) into Eq. (1), the corresponding minimum-
error sequential measurement �̂(Â�) can be expressed by

�̂(Â�)
m,n =

N−1∑
s=0

N−1∑
t=0

(
1

N
|us,t 〉〈us,t |

)
⊗ (δn,t⊕ms |m〉〈m|)

= 1

N

N−1∑
s=0

|us,n�ms〉〈us,n�ms | ⊗ |m〉〈m| . (94)

VII. CONCLUSION

We have studied a sequential-measurement version of
the generalized state discrimination problem discussed in
Ref. [30]. Since the entire set of sequential measurements is
convex, Problem P is convex programming. The corresponding
dual problem and necessary and sufficient conditions for
an optimal sequential measurement were derived. We also
showed that for an optimization problem having a certain
group symmetry, there exists an optimal solution with the
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same type of symmetry. Moreover, the minimax version of this
problem was studied and necessary and sufficient conditions
for a minimax solution were provided. We expect that our
results will be useful for the investigation of a broad class of
state discrimination problems with sequential measurements.
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APPENDIX A: ANOTHER METHOD OF DERIVATION
OF PROBLEM DP

Let σ (�) be the sigma algebra of all measurable subsets
of �. Alice’s POVM Â ∈ MA is a mapping of σ (�) into S+

A ,
which satisfies (i) positivity, Â(E) � 0 ∀E ∈ σ (�); (ii) count-
able additivity, Â(∪kEk) =∑k Â(Ek) with mutually disjoint
{Ek} ⊂ σ (�); and (iii) normalization, Â(�) = 1̂A. Let MA

be the entire set of (not necessarily normalized) mappings
Â : σ (�) → S+

A satisfying conditions (i) and (ii). Obviously,
MA ⊃ MA holds.

We define the Lagrangian for Problem P as

L(Â,X̂,λ) ≡ f (Â) + Tr{X̂[1̂A − Â(�)]}

−
J−1∑
j=0

λjηj (Â), (A1)

where L(Â,X̂,λ) is a function of Â ∈ MA and (X̂,λ) ∈ X .
If Â(�) 	= 1̂A holds, then there exists a vector |x〉 satisfying
|x〉 	∈ Ker[1̂A − Â(�)]; taking the limit t → ∞ or t → −∞
yields L(Â,t |x〉〈x| ,λ) → −∞. Similarly, if there exists j ∈
IJ such that ηj (Â) > 0, then L(Â,X̂,λ) → −∞ when λj →
∞. Thus, if Â 	∈ M◦

A holds, then there exists (X̂,λ) ∈ X such
that L(Â,X̂,λ) → −∞. On the other hand, if Â ∈ M◦

A holds,
then L(Â,X̂,λ) � f (Â) holds and the equality holds when λ =
0. Therefore, we obtain

max
Â∈MA

min
(X̂,λ)∈X

L(Â,X̂,λ) = max
Â∈M◦

A

min
(X̂,λ)∈X

L(Â,X̂,λ)

= max
Â∈M◦

A

f (Â) = f �. (A2)

Let

s̃(X̂,λ) ≡ max
Â∈MA

L(Â,X̂,λ). (A3)

Substituting F = f , x = Â, and y = (X̂,λ) into the formula

min
y

max
x

F (x,y) � max
x

min
y

F (x,y) (A4)

and using Eqs. (A2) and (A3) yields

min
(X̂,λ)∈X

s̃(X̂,λ) � f �. (A5)

Let us consider the problem of finding (X̂,λ) ∈ X that min-
imizes s̃(X̂,λ), which can be regarded as a dual problem of
Problem P. From Eqs. (15)–(A1), L(Â,X̂,λ) is rewritten as

L(Â,X̂,λ) = s(X̂,λ) +
∫

�

Tr[σ̂ω(λ) − X̂]Â(dω). (A6)

If (X̂,λ) 	∈ X ◦ holds [i.e., there exists ω such that X̂ 	�
σ̂ω(λ)], then there exists a vector |x〉 ∈ HA such that
〈x|[X̂ − σ̂ω(λ)]|x〉 < 0; substituting Â(ω) = t |x〉〈x| into
Eq. (A6) and taking the limit t → ∞ gives L(Â,X̂,λ) = ∞.
Thus, from Eq. (A3), s̃(X̂,λ) = ∞ holds. On the other hand,
if (X̂,λ) ∈ X ◦ holds, then L(Â,X̂,λ) reaches its maximum
value of s(X̂,λ) when Â(E) = 0 for any E ⊆ � and thus
s̃(X̂,λ) = s(X̂,λ) holds. Therefore, we obtain

min
(X̂,λ)∈X

s̃(X̂,λ) = min
(X̂,λ)∈X ◦

s(X̂,λ), (A7)

which indicates that the dual problem can be rewritten as
Problem DP.

APPENDIX B: PROOF OF THEOREM 1

We will prove the cases of f � > −∞ and f � = −∞
separately.

1. Case of f � > −∞
From s� � f �, it is sufficient to show that there exists Â ∈

M◦
A satisfying f (Â) � s�. Indeed, in this case, s� = f � holds

from s� � f (Â) � f �.
Let us consider the set

Z ≡ {({σ̂ω(λ) + x̂ω − X̂}ω∈�,s(X̂,λ) − u):

(X̂,λ,u,{x̂ω}ω∈�) ∈ T }, (B1)

where

T ≡ {(X̂,λ,u,{x̂ω}): (X̂,λ) ∈ X ,s� > u ∈ R,x̂ω ∈ S+
A }.

(B2)

Since x̂ω is in S+
A , σ̂ω(λ) + x̂ω − X̂ = 0 holds only if X̂ �

σ̂ω(λ) holds, which implies that {σ̂ω(λ) + x̂ω − X̂}ω = {0}
holds only if (X̂,λ) ∈ X ◦ holds. Since s(X̂,λ) � s� > u holds
when (X̂,λ) ∈ X ◦, we have ({0},0) 	∈ Z . Also, we can easily
see that Z is a convex set having a nonempty interior. Thus,
from the geometric Hahn-Banach theorem (e.g., [58]), for any
(X̂,λ,u,{x̂ω}) ∈ T , there exists ({Ãω}ω∈�,α) 	= ({0},0) with
Ãω ∈ SA and α ∈ R satisfying

Tr
∫

�

Ãω[σ̂ω(λ) + x̂ω − X̂]μ(dω) + α[s(X̂,λ) − u] � 0,

(B3)

where μ is a strictly positive measure on a sigma algebra
σ (�) satisfying μ(�) = 1. Let δω(E) (E ⊆ �) be the Dirac
measure, which is defined by δω(E) = 1 if ω ∈ E holds and
δω(E) = 0 otherwise. By substituting x̂ω = t x̂δω′(ω) (x̂ � 0
and ω′ ∈ �) into Eq. (B3) and taking the limit t → ∞, we
obtain Tr(Ãω′ x̂) � 0. Since this inequality holds for any x̂ � 0
and ω′ ∈ �, Ãω � 0 holds for any ω ∈ �. Also, taking the limit
u → −∞ in Eq. (B3) gives α � 0.

To show α > 0, assume by contradiction that α = 0. Substi-
tuting X̂ = t x̂ (x̂ � 0) and x̂ω = t[1 − δω′(ω)]x̂ into Eq. (B3)
and taking the limit t → ∞ gives

Tr
∫

�

Ãωδω′(ω)x̂μ(dω) = Tr(Ãω′ x̂) � 0, (B4)
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which implies Ãω � 0 for anyω ∈ �. Thus, Ãω = 0 must hold,
which contradicts ({Ãω},α) 	= ({0},0). Therefore, α > 0 holds.

Here let Â ∈ MA be a measure satisfying Â(ω) =
Ãωμ(ω)/α for any ω ∈ �. To complete the proof, we will show
Â ∈ M◦

A and f (Â) � s�. Dividing both sides of Eq. (B3) by
α yields

Tr
∫

�

[σ̂ω(λ) + x̂ω − X̂]Â(dω) + s(X̂,λ) − u � 0. (B5)

Substituting X̂ = t x̂ (x̂ ∈ SA) into Eq. (B5) and taking the limit
t → ∞ gives

Trx̂ � Tr

[
x̂

∫
�

Â(dω)

]
= Tr[x̂Â(�)]. (B6)

Since this inequality holds for any x̂ ∈ SA, Â(�) = 1̂A holds.
Substituting λj = tδj,j ′ into Eq. (B5) and taking the limit
t → ∞ gives ηj ′(Â) � 0 and thus Â ∈ M◦

A holds. Also,
substituting x̂ω = X̂ = 0 and λ = 0 into Eq. (B5) and taking
the limit u → s� gives f (Â) � s�. Therefore, s� = f � holds.

2. Case of f � = −∞
Let us consider the following set:

W = {{ηj (Â)}J−1
j=0 ∈ RJ : Â ∈ MA

}
. (B7)

Since f � = −∞ implies that M◦
A is empty, for any Â ∈ MA,

there exists j ∈ IJ such that ηj (Â) > 0. Therefore, the set
W ′ ≡ {{βj � 0}J−1

j=0 ∈ RJ } has no intersection with W . We
can easily verify that W is compact and W ′ is closed; thus,
by a separating hyperplane theorem (e.g., [59]), there exist
q ≡ {qj }J−1

j=0 ∈ RJ
+ and 0 < ε ∈ R+ such that

J−1∑
j=0

qjηj (Â) > ε ∀Â ∈ MA. (B8)

Now assume that
∑J−1

j=0 qj = 1, with no loss of generality.
Equations (3) and (B8) give

J−1∑
j=0

qj Tr
M−1∑
m=0

âj,m�̂(Â) �
J−1∑
j=0

qjbj + ε. (B9)

Substituting Eq. (1) into this equation and doing some algebra
gives

Tr
∫

�

�(ω)Â(dω) � 0, (B10)

where

�(ω) ≡ TrB

J−1∑
j=0

qj

M−1∑
m=0

âj,mB̂(ω)
m

−
⎛
⎝J−1∑

j=0

qjbj + ε

⎞
⎠ 1̂A

dA
(B11)

and dA = dim HA. Since Eq. (B10) holds for any Â ∈ MA,
�(ω) � 0 holds.

Let X̂�
0 be the optimal solution to the following problem:

minimize TrX̂0

subject to X̂0 � TrB

M−1∑
m=0

ĉmB̂(ω)
m ∀ω ∈ �. (B12)

Also, let

Ŷ (t,q) ≡ X̂�
0 − t

⎛
⎝J−1∑

j=0

qjbj + ε

⎞
⎠ 1̂A

dA
, (B13)

where t ∈ R+. From Eqs. (B12) and (B13) we have

Ŷ (t,q) � TrB

M−1∑
m=0

ĉmB̂(ω)
m − t TrB

J−1∑
j=0

qj

M−1∑
m=0

âj,mB̂(ω)
m

= TrB

M−1∑
m=0

ẑm(tq)B̂(ω)
m = σ̂ω(tq), (B14)

where the first and second lines follow from �(ω) � 0 and
the definition of ẑm(λ) given by Eq. (11), respectively. Thus,
[Ŷ (t,q),tq] ∈ X ◦ holds, which gives s[Ŷ (t,q),tq] � s�. From
Eq. (B13) we obtain

s� � s[Ŷ (t,q),tq] = TrŶ (t,q) + t

J−1∑
j=0

qjbj

= TrX̂�
0 − tε. (B15)

Since TrX̂�
0 is constant, TrX̂�

0 − tε → −∞ as t → ∞. There-
fore, s� = −∞ holds. �

APPENDIX C: PROOF OF THEOREM 2

We will show (a) ⇒ (b), (b) ⇒ (c), and (c) ⇒ (a) in this
order. After that, we will show that (X̂,λ) is an optimal solution
to Problem DP if condition (b) holds.

First, we show (a) ⇒ (b). Let (X̂,λ) be an optimal solution
to Problem DP. Since Â(�) = 1̂A and ηj (Â) � 0 hold, the
second and third terms of the right-hand side of Eq. (A1) are
zero and non-negative, respectively, which gives L(Â,X̂,λ) �
f (Â) = f �. Also, since X̂ � σ̂ω(λ) and Â(ω) � 0 hold, the
second term of the right-hand side of Eq. (A6) is nonpositive,
which gives L(Â,X̂,λ) � s(X̂,λ) = s� holds. Since f � = s�

holds from Theorem 1, we obtain

f � = L(Â,X̂,λ) = s�, (C1)

i.e., the third term of the right-hand side of Eq. (A1) and
the second term of the right-hand side of Eq. (A6) must be
zero. Thus, Eqs. (17) and (18) hold. Note that Eq. (17) follows
from the fact that x̂ŷ = 0 holds for any x̂,ŷ ∈ S+

A satisfying
Tr(x̂ŷ) = 0.

Next we show (b) ⇒ (c). Integrating both sides of Eq. (17)
and using Â(�) = 1̂A gives

X̂ =
∫

�

σ̂ω(λ)Â(dω). (C2)

Further, X̂ � σ̂ω(λ) gives Eq. (19). Equation (20) is equivalent
to Eq. (18).
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We show (c) ⇒ (a). We define X̂ as in Eq. (C2). We have
that for any POVM Â′ ∈ M◦

A,

f (Â) − f (Â′)

� f (Â) −
J−1∑
j=0

λjηj (Â) − f (Â′) +
J−1∑
j=0

λjηj (Â′)

=
M−1∑
m=0

Tr
[
ẑm(λ)�̂(Â)

m − ẑm(λ)�̂(Â′)
m

]

= TrX̂ − Tr
∫

�

σ̂ω(λ)Â′(dω)

= Tr
∫

�

[X̂ − σ̂ω(λ)]Â′(dω) � 0. (C3)

The second line follows from Eq. (20) and ηj (Â′) � 0. The
third line follows from Eqs. (2), (3), and (11). The fourth line
and the last inequality respectively follow from Eqs. (12) and
(19) [i.e., X̂ � σ̂ω(λ)]. From Eq. (C3), Â is an optimal solution
to Problem P.

Finally, we will show that (X̂,λ) is an optimal solution
to Problem DP if condition (b) holds. From Eqs. (A6)
and (17), L(Â,X̂,λ) = s(X̂,λ) holds. Also, from Eqs. (A1)
and (18), L(Â,X̂,λ) = f (Â) = f � holds. Thus, s(X̂,λ) = f �

holds, which means that (X̂,λ) is an optimal solution to
Problem DP. �

APPENDIX D: PROOF OF THEOREM 3

1. Outline

Let b ≡ {bj }J−1
j=0 ∈ RJ . Also, let f •(β) be the optimal

value of the optimization problem obtained by replacing b of
Problem P with β ≡ {βj }J−1

j=0 ∈ RJ . We will first show that
f •(β) is a concave function. We will also show that there exists
an optimal solution to Problem P with at most d2

A outcomes if
f •(β) is strictly concave at β = b and with at most (J + 1)d2

A
outcomes otherwise.

2. Preparations

Before proceeding to the proof, we make some preparations.
From Theorem 1 of Ref. [60], any Â ∈ MA can be expressed as

Â(ω) =
∫

�

Ê(γ )(ω)p(dγ ), (D1)

where Ê(γ ) ∈ MA is a POVM with at most d2
A outcomes, �

is the entire set of indices γ such that Ê(γ ) is a POVM with
at most d2

A outcomes, and p is a probability measure, which
satisfies p(�) = 1. From Eqs. (1), (2), and (D1), we have

f (Â) =
M−1∑
m=0

Tr

[
ĉm

∫
�

(∫
�

Ê(γ )(dω)p(dγ )

)
⊗ B̂(ω)

m

]

=
∫

�

f [Ê(γ )]p(dγ ). (D2)

Let us define �◦ as

�◦ ≡ {γ ∈ � : Ê(γ ) ∈ M◦
A

}
, (D3)

which is the entire set of indicesγ such that Ê(γ ) is a feasible so-
lution to Problem P. Let Â be an optimal solution to Problem P.

We show the following lemma.

Lemma 1. If p(�◦) = 1 holds, then there exists an optimal
solution to Problem P with at most d2

A outcomes.
Proof. Let γ � be an index satisfying

γ � ∈ arg max
γ∈�◦

f [Ê(γ )]. (D4)

From Eq. (D2), we have

f � = f (Â) =
∫

�

f [Ê(γ )]p(dγ )

=
∫

�◦
f [Ê(γ )]p(dγ ) � f [Ê(γ �)]. (D5)

On the other hand, from γ � ∈ �◦ (i.e., Ê(γ �) ∈ M◦
A),

f [Ê(γ �)] � f � must hold. Thus, f [Ê(γ �)] = f �. Therefore,
Ê(γ �), which is a POVM with at most d2

A outcomes, is an
optimal solution to Problem P. �

3. Proof

We first consider the case J = 0. From �◦ = �, p(�◦) = 1
holds. Thus, from Lemma 1 there exists an optimal solution to
Problem P with at most d2

A outcomes. For the remainder of the
proof, the case J � 1 is considered.

In the following, we will show that f •(β) is a concave func-
tion. It suffices to consider the range of β such that f •(β) >

−∞. LetM•
A(β) ⊆ MA be the feasible set of the optimization

problem obtained by replacing b of Problem P with β. Now we
consider distinct β(1),β(2) ∈ RJ . For each k ∈ {1,2}, there ex-
ists Âk ∈ M•

A[β(k)] satisfying f (Âk) = f •[β(k)]. Since tÂ1 +
(1 − t)Â2 ∈ M•

A[tβ(1) + (1 − t)β(2)] with 0 � t � 1 holds,
we obtain

f •[tβ(1) + (1 − t)β(2)]

� f [tÂ1 + (1 − t)Â2]

= tf (Â1) + (1 − t)f (Â2)

= tf •[β(1)] + (1 − t)f •[β(2)]. (D6)

Therefore, f •(β) is concave.
Let us consider a linear function fL(β) such that

fL(β) − f •(β) � fL(b) − f •(b) = 0. (D7)

Since −f •(β) is convex and thus subdifferentiable at each
point [61], there always exists such fL(β). Let

D ≡ {β ∈ RJ : fL(β) = f •(β)}. (D8)

It follows that D is a convex set including b. Let ED be the
entire set of extremal points of D. Also, let E be the entire set
of β ′ ∈ RJ such that f •(β) is strictly concave at β = β ′. We
can easily verify ED ⊆ E .

First, we consider the case b ∈ ED. From b ∈ E , f •(β) is
strictly concave at β = b. From Lemma 1 it suffices to show
p(�◦) = 1; assume by contradiction that p(�◦) < 1. Let, for
each j ∈ IJ ,

�j ≡ {γ ∈ � : ηk[Ê(γ )] � 0(∀k ∈ Ij ),ηj [Ê(γ )] > 0}. (D9)

For simplicity, let �J ≡ �◦. The {�j }Jj=0 are obviously disjoint

sets satisfying
⋃J

j=0 �j = �. Let pj ≡ p(�j ) and, for each
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j ∈ IJ+1,

Âj (ω) ≡
{∫

�j
Ê(γ )(ω)p(dγ )

pj
for pj > 0

0, otherwise;
(D10)

then Âj is in MA if pj > 0 holds. From Eqs. (D1) and (D10)
we have

Â(ω) =
J∑

j=0

∫
�j

Ê(γ )(ω)p(dγ ) =
J∑

j=0

pj Âj (ω). (D11)

Thus, we obtain

f •(b) = f (Â) = f

⎛
⎝ J∑

j=0

pj Âj

⎞
⎠

=
J∑

j=0

pjf (Âj ) �
J∑

j=0

pjf
•[β(j )], (D12)

where β(k) ≡ {ηj (Âk)}J−1
j=0 . The inequality follows from the

fact that Âj ∈ M•
A[β(j )] (i.e., f (Âj ) � f •[β(j )]) holds when

pj > 0. On the other hand, it follows that pj < 1 holds for
any j ∈ IJ+1. Indeed, pJ = p(�◦) < 1 obviously holds. Also,
since ηj [Ê(γ )] > 0 holds for any j ∈ IJ and γ ∈ �j , if pj = 1
holds for some j ∈ IJ , then ηj (Â) = ηj (Âj ) > 0 holds from
Eq. (D10), which contradicts Â ∈ M◦

A. Thus, there exist at
least two distinct integers k ∈ IJ+1 satisfying pk > 0. This
implies that, from Eq. (D12), f •(β) is not strictly concave at
β = b (i.e., b 	∈ E), which contradicts b ∈ ED ⊆ E . Therefore,
p(�◦) = 1 must hold. From Lemma 1 there exists an optimal
solution to Problem P with at most d2

A outcomes.
Next we consider the case b 	∈ ED. Since D is convex, from

the finite-dimensional version of the Krein-Milman theorem
[62], D is the convex hull of ED. Thus, from Carathéodory’s
theorem, there exists a set of J + 1 points {b(j )}Jj=0 ⊆ ED such
that b ∈ D lies in the convex hull of {b(j )} [note that b(j ) and
b(j ′) (j 	= j ′) can be the same]. This indicates that there exists
{qj }Jj=0 ∈ RJ+1

+ with
∑J

j=0 qj = 1 such that b =∑J
j=0 qjb

(j ).
From b(j ) ∈ ED, similar to the above discussion, it follows that,
for each j ∈ IJ+1, there exists γj ∈ � satisfying f [Ê(γj )] =
f •[b(j )] and Ê(γj ) ∈ M•

A[b(j )]. Using such γj , let

Â′ ≡
J∑

j=0

qj Ê
(γj ); (D13)

then we have

f (Â′) = f

⎡
⎣ J∑

j=0

qj Ê
(γj )

⎤
⎦ =

J∑
j=0

qjf [Ê(γj )]

=
J∑

j=0

qjf
•[b(j )] = f •(b) = f �. (D14)

The fourth equality follows from the fact that, from b,b(j ) ∈ D
and Eq. (D8), f •(b) = fL(b) and f •[b(j )] = fL[b(j )] hold and
fL(β) is linear. Also, from Ê(γj ) ∈ M•

A[b(j )], Â′ ∈ M•
A(b) =

M◦
A holds. Thus, Â′, which is a POVM with at most (J + 1)d2

A
outcomes, is an optimal solution to Problem P. �

APPENDIX E: PROOF OF THEOREM 4

Using Eq. (34), we can easily verify that the following
equations hold for any g ∈ G, c ∈ R, and Q̂,R̂ ∈ S:

g ◦ (Q̂ + R̂) = g ◦ Q̂ + g ◦ R̂,

g ◦ (Q̂R̂) = (g ◦ Q̂)(g ◦ R̂),

g ◦ (cQ̂) = c(g ◦ Q̂),

g ◦ 1̂ = 1̂, (E1)

Tr(g ◦ Q̂) = TrQ̂,

g ◦ Q̂ � 0 ∀Q̂ � 0,

g ◦ TrBQ̂ = TrB(g ◦ Q̂).

The similar equations (except for the last one) for SA and SB

instead of S also hold. Also, from Eqs. (35) and (33), we have
that for any Q̂(A) ∈ SA and Q̂(B) ∈ SB,

g ◦ [Q̂(A) ⊗ Q̂(B)] = [g ◦ Q̂(A)] ⊗ [g ◦ Q̂(B)]. (E2)

In what follows, we will often make use of these equations
without mentioning it.

Let, for any g ∈ G and �̂ ∈ M◦
A,

�̂(g)(ω) ≡ g ◦ �̂(g ◦ ω). (E3)

From Eq. (36), we obtain

g ◦ �̂(�̂(g))
m =

∫
�

[g ◦ �̂(g)(dω)] ⊗ [g ◦ B̂(ω)
m

]
=
∫

�

�̂[d(g ◦ ω)] ⊗ B̂(g◦ω)
g◦m

= �̂(�̂)
g◦m. (E4)

We first show that the mapping κg : �̂ �→ �̂(g) is bijective
on M◦

A. We can easily verify that �̂(g) is a POVM. We have
that for any j ∈ IJ ,

M−1∑
m=0

Tr
[
âj,m�̂(�̂(g))

m

] =
M−1∑
m=0

Tr
[
(g ◦ âj,m)

(
g ◦ �̂(�̂(g))

m

)]

=
M−1∑
m=0

Tr
[
âg◦j,g◦m�̂(�̂)

g◦m
]

=
M−1∑
m′=0

Tr
[
âg◦j,m′�̂

(�̂)
m′
]

� bg◦j = bj , (E5)

where m′ = g ◦ m. The second and fourth lines follow from
Eq. (E4) and �̂ ∈ M◦

A, respectively. Thus, �̂(g) is in M◦
A.

Also, κg is the inverse mapping of κg . Therefore, κg is bijective
on M◦

A.
We next define Â ∈ M◦

A as

Â(ω) ≡ 1

|G|
∑
g∈G

�̂(g)(ω) (E6)
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and show Eq. (38), Â ∈ M◦
A, and f (Â) = f (�̂). We have that

for any g ∈ G and m ∈ IM ,

g ◦ Â(ω) = 1

|G|
∑
h∈G

g ◦ �̂(h)(ω)

= 1

|G|
∑
h′∈G

h′ ◦ �̂(h′ ◦ g ◦ ω)

= 1

|G|
∑
h′∈G

�̂(h′)(g ◦ ω) = Â(g ◦ ω), (E7)

where h′ = h ◦ g. This gives Eq. (38). From Eq. (E5) we have
that for any j ∈ IJ ,

M−1∑
m=0

Tr
[
âj,m�̂(Â)

m

] = 1

|G|
∑
g∈G

M−1∑
m=0

Tr
[
âj,m�̂(�̂(g))

m

]
� bj . (E8)

Thus, Â ∈ M◦
A holds. Moreover, we obtain

f (Â) =
M−1∑
m=0

Tr
[
ĉm�̂(Â)

m

]

= 1

|G|
∑
g∈G

M−1∑
m=0

Tr
[
ĉm�̂(�̂(g))

m

]

= 1

|G|
∑
g∈G

M−1∑
m=0

Tr
[
(g ◦ ĉm)

(
g ◦ �̂(�̂(g))

m

)]

= 1

|G|
∑
g∈G

M−1∑
m=0

Tr
[
ĉg◦m�̂(�̂)

g◦m

]

= 1

|G|
∑
g∈G

f (�̂) = f (�̂),

where the fourth line follows from Eq. (E4). In particular, if �̂

is an optimal solution to Problem P, then so is Â.
We finally show that there exists (X̂,λ) ∈ X ◦ satisfying

Eq. (39). Let

Ŷ (g) ≡ g ◦ Ŷ ,

ν(g) ≡ {ν(g)
j ≡ νg◦j

}J−1
j=0 ; (E9)

then we have that for any g ∈ G and m ∈ IM ,

g ◦ ẑm(ν) = ĉg◦m −
J−1∑
j=0

νj âg◦j,g◦m

= ĉg◦m −
J−1∑
j=0

ν
(g)
g◦j âg◦j,g◦m

= ẑg◦m[ν(g)]. (E10)

Thus, we have that for any ω ∈ �,

Ŷ (g) � g ◦ σ̂ω(ν)

= TrB

M−1∑
m=0

[g ◦ ẑm(ν)]
[
g ◦ B̂(ω)

m

]

= TrB

M−1∑
m=0

ẑg◦m[ν(g)]B̂(g◦ω)
g◦m

= σ̂g◦ω[ν(g)], (E11)

i.e., [Ŷ (g),ν(g)] ∈ X ◦. Also, we obtain

s[Ŷ (g),ν(g)] = TrŶ (g) +
J−1∑
j=0

ν
(g)
j bj

= TrŶ +
J−1∑
j=0

νg◦j bg◦j

= s(Ŷ ,ν). (E12)

Let us define (X̂,λ) as

X̂ ≡ 1

|G|
∑
g∈G

Ŷ (g), λj ≡ 1

|G|
∑
g∈G

ν
(g)
j . (E13)

We can easily verify that Eq. (39) holds. We have that for any
ω ∈ �,

σ̂ω(λ) = 1

|G|TrB

∑
g∈G

M−1∑
m=0

ẑm[ν(g)]B̂(ω)
m

= 1

|G|
∑
g∈G

σ̂ω[ν(g)], (E14)

which gives

X̂ − σ̂ω(λ) = 1

|G|
∑
g∈G

[Ŷ (g) − σ̂ω[ν(g)]] � 0, (E15)

i.e., (X̂,λ) ∈ X ◦. Moreover, from Eqs. (E12) and (E13) we
obtain

s(X̂,λ) = TrX̂ +
J−1∑
j=0

λjbj

= 1

|G|
∑
g∈G

⎡
⎣TrŶ (b) +

J−1∑
j=0

ν
(g)
j bj

⎤
⎦

= 1

|G|
∑
g∈G

s[Ŷ (g),ν(g)] = s(Ŷ ,ν). (E16)

In particular, if (Ŷ ,ν) is an optimal solution to Problem DP,
then so is (X̂,λ). �

APPENDIX F: PROOF OF THEOREM 9

Let (ζ,�̂) be a minimax solution to Problem Pm. Also, let
μ� ≡ {μ�

k}K−1
k=0 with

μ�
k ≡ 1

|G|
∑
g∈G

ζg◦k. (F1)

We can see that μ� ∈ P and the first line of Eq. (63) hold. More-
over, similar to Eq. (E6), let Â�(ω) ≡ |G|−1∑

g∈G �̂(g)(ω),

where �̂(g) is defined by Eq. (E3); then, from Eq. (E7), the
second line of Eq. (63) holds. The only thing we have to show
now is that (μ�,Â�) is also a minimax solution. From Theorem
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5 it suffices to show fk(Â�) � F�(μ�) for any k ∈ IK . In what
follows, we will show fk(Â�) � F�(ζ ) and F�(ζ ) � F�(μ�).

First, we show fk(Â�) � F�(ζ ) for any k ∈ IK . We have
that for any k ∈ IK ,

fk(Â�) = 1

|G|
M−1∑
m=0

∑
g∈G

Tr
[
ĉk,m�̂(�̂(g))

m

]+ dk

= 1

|G|
M−1∑
m=0

∑
g∈G

Tr
[
(g ◦ ĉk,m)�̂(�̂)

g◦m

]+ dk

= 1

|G|
M−1∑
m′=0

∑
g∈G

Tr
[
ĉg◦k,m′�̂

(�̂)
m′
]+ dk

= 1

|G|
∑
g∈G

[
M−1∑
m′=0

Tr
[
ĉg◦k,m′�̂

(�̂)
m′
]+ dg◦k

]

= 1

|G|
∑
g∈G

fg◦k(�̂) � F�(ζ ), (F2)

where m′ = g ◦ m. The second line follows from Eq. (E4).
The inequality follows from the fact that, from Theorem V C,
fk(�̂) � F�(ζ ) holds for any k ∈ IK .

Next we show F�(ζ ) � F�(μ�). Let ζ (g) ≡ {ζ (g)
k ≡

ζg◦k}K−1
k=0 ; then we have that for any g ∈ G,

F�[ζ (g)] = max
�∈M◦

A

K−1∑
k=0

ζg◦k

[
M−1∑
m=0

Tr
[
ĉk,m�̂(�̂)

m

]+ dk

]

= max
�∈M◦

A

K−1∑
k′=0

ζk′

[
M−1∑
m′=0

Tr
[
ĉk′,m′�̂

(�̂(g))
m′

]+ dk′

]

= F�(ζ ), (F3)

where k′ = g ◦ k and m′ = g ◦ m. From Eq. (F3) we obtain

F�(μ�) = max
�∈M◦

A

1

|G|
∑
g∈G

K−1∑
k=0

ζ
(g)
k fk(�)

� 1

|G|
∑
g∈G

max
�∈M◦

A

K−1∑
k=0

ζ
(g)
k fk(�)

= 1

|G|
∑
g∈G

F�[ζ (g)] = F�(ζ ); (F4)

thus, (μ�,Â�) is a minimax solution. �

APPENDIX G: DERIVATION OF (X̂�,λ�)

We will obtain an optimal solution (X̂�,λ�) to the problem
of Eq. (22). This can be derived by extending methods de-
scribed in Refs. [36,53], in which a minimum-error sequential
measurement for double trine states is obtained.

Now we consider the problem of Eq. (22) in which λ is
fixed. An optimal solution, denoted by X̂�(λ), to this problem
can be expressed by X̂�(λ) = υ(λ)1̂A, where υ(λ) is a real-
valued function of λ. It follows that υ(λ) is the minimum value
satisfying υ(λ)1̂A � σ̂ω(λ) for any ω ∈ �, which means that

υ(λ) is the maximum value of the largest eigenvalues of σ̂ω(λ)
over all ω ∈ �.

Substituting Eq. (65) into Eq. (23) gives

σ̂ω(λ) =
2∑

m=0

l(ω)
m |φm〉〈φm| , (G1)

where

l(ω)
m ≡ 1

3 〈φm|[B̂(ω)
m + λB̂

(ω)
3

]|φm〉 . (G2)

Let υ+
ω (λ) and υ−

ω (λ) be the eigenvalues of σ̂ω(λ) with υ+
ω (λ) �

υ−
ω (λ). Here Ûθ is defined as

Ûθ ≡ (cos θ )1̂ + sin θ (|1〉〈0| − |0〉〈1|), (G3)

which is a unitary operator corresponding to a rotation of θ .
There exists θ such that

σ̂ω(λ) = Ûθ/2[υ−
ω (λ) |0〉〈0| + υ+

ω (λ) |1〉〈1|]Û †
θ/2. (G4)

Using Eqs. (G1), (G3), and (G4) and doing some algebra gives

υ+
ω (λ) =

2∑
m=0

1

2

[
1 − cos

(
θ − 2πm

3

)]
l(ω)
m . (G5)

Substituting Eq. (G2) into Eq. (G5) yields

υ+
ω (λ) = λ + 1

2

3∑
m=0

Tr
[
ρ̂(θ)

m B̂(ω)
m

]
, (G6)

where

ρ̂(θ)
m ≡

{
1−cos(θ− 2πm

3 )
3(λ+1) |φm〉〈φm| , m < 3

λ
∑2

r=0 ρ̂(θ)
r , m = 3.

(G7)

We can easily see
∑3

m=0 Trρ̂(θ)
m = 1.

The Tr[ρ̂(θ)
m B̂(ω)

m ] in Eq. (G6) equals the average success
probability of the POVM {B̂(ω)

m }3
m=0 for the quaternary states

{ρ̂(θ)
m }3

m=0. Let P �
θ be the average success probability of a

minimum-error measurement for {ρ̂(θ)
m }; then, from Eq. (G6),

we have

υ+
ω (λ) � λ + 1

2
P �

θ . (G8)

This gives

υ(λ) = max
ω

υ+
ω (λ) � λ + 1

2
max

θ
P �

θ . (G9)

By the symmetry of the problem, we may, without loss of
generality, consider only the case 0 � θ � π/3 (i.e., Trρ̂(θ)

0 �
Trρ̂(θ)

2 � Trρ̂(θ)
1 ). Using the method described in Ref. [63]

(the method of Ref. [64] can also be used), we can obtain an
analytical expression of P �

θ for each θ . To avoid cumbersome
details, we do not give an analytical expression of P �

θ , but note
that P �

θ achieves its maximum value if and only if θ = 0 holds
and satisfies

P �
θ � P �

0 =
⎧⎨
⎩

2+√
3

4(λ+1) for λ � 1
2 + 1

2
√

3

λ(3λ−1)
2(λ+1)(2λ−1) otherwise,

(G10)
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where we assume λ � 1 to simplify the discussion (it is
sufficient to consider only this case, as described in the main
text). From Eqs. (G9) and (G10) we have

υ(λ) � λ + 1

2
P �

0 =
{

2+√
3

8 for λ � 1
2 + 1

2
√

3
λ(3λ−1)
4(2λ−1) otherwise.

(G11)

A minimum-error measurement, denoted by {B̂•
m}3

m=0, for the
states {ρ̂(0)

m }3
m=0 (i.e., in the case of θ = 0) is given by

B̂•
m = |Bm〉〈Bm| , |B0〉 = 0,

|B1〉 =
√

1

2
|0〉 −

√
1 − α

2
|1〉 , (G12)

|B2〉 =
√

1

2
|0〉 +

√
1 − α

2
|1〉 ,

|B3〉 = √
α |1〉 ,

where

α = 2(6λ2 − 6λ + 1)

3(2λ − 1)2
. (G13)

Let ω0 be in � such that {B̂(ω0)
m } = {B̂•

m}. In the case of ω =
ω0, from Eqs. (G1) and (G2), Eq. (G4) with θ = 0 holds. Since,
in this case, υ+

ω0
(λ) = λ+1

2 P �
0 holds, the equality in Eq. (G11)

holds. By substituting this into Eq. (22) and optimizing λ, we
obtain Eq. (67). From Eq. (67), in the case of λ = λ�, we have

α = 4pI

3
. (G14)
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