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Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics
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We study the entanglement dynamics of two coupled mechanical oscillators, within a modulated optome-
chanical system. We find that, depending on the strength of the mechanical coupling, one could observe either a
stationary or a dynamical behavior of the mechanical entanglement, which is extremely robust against the oscillator
temperature. Moreover, we have shown that this entanglement dynamics is strongly related to the stability of the
normal modes. Taking mechanical damping effects into account, an analytical expression corresponding to the
critical mechanical coupling strength, where the transition from stationary to dynamical entanglement occurs, is
also reported. The proposed scheme is analyzed with experimentally realistic parameters, making it a promising
means to realize macroscopic quantum entanglement within current state-of-the-art experimental setups.
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I. INTRODUCTION

The generation of quantum entanglement between two
macroscopic, massive objects has been a task of paramount
importance, both in fundamental research, in particular for fun-
damental tests of quantum mechanics [1–4] and in numerous
futuristic potential applications related to quantum computing,
quantum information processing, quantum communication,
and so on [5–9]. Thanks to the fast growing field of cavity
optomechanics [10,11], which provides a versatile platform
to prepare such an entangled state in mechanical motions,
research in the area has virtually exploded in recent times.
Relying on the generic radiation-pressure coupling, many stud-
ies have already been reported on the entanglement generation
between a cavity field and a mechanical oscillator [12–19]. Be-
sides, based on similar architecture, a lot of emphasis has been
currently brought forward to realize entanglement between two
macroscopic mechanical oscillators. These studies mostly in-
clude light-to-matter entanglement transfer [20,21], driving the
optical cavity with a two-tone field [22,23], dissipation induced
optomechanical entanglement [24,25], and the reservoir engi-
neered based schemes [26–30]. We also note that, recently, an
experimental demonstration of entangling two micromechani-
cal oscillators has been reported in Ref. [31]. However, in most
of the cases, the possibility of observing such a nonclassical
state is seriously hindered by the presence of the environmental
noise. Hence a lot of emphasis has currently been put on
realizing quantum entanglement at higher bath temperature.

While the search for robust and hot entanglement [32] in
optomechanical systems is on, it occurs that modulating an
optomechanical system may be a very rewarding proposition
in achieving a more robust nonclassicality. For example, in
2009, Mari et al. [33] showed that by gently modulating an
optomechanical system, one could not only enhance the degree
of squeezing in mechanical quadratures but also improve
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the stationary entanglement between the cavity field and the
nanomechanical resonator. Following Ref. [33], Farace et al.
[34] studied the effect of both the amplitude modulation and
frequency modulation in an optomechanical system. They
showed that there exists an optimal modulation regime where
the desired quantum effects can either be enhanced or sup-
pressed. Along this line, Schmidt et al. [35] implemented a suit-
able amplitude modulation scheme in optomechanical circuits
for continuous variable (CV) quantum state processing. More
recently, Chen et al. [36] has exploited the same amplitude
modulation to improve the stationary mechanical entanglement
in a double cavity optomechanical system.

In parallel to the developments in optomechanical systems,
one modulation scheme of particular interest is the so-called
periodic modulation of the coupling strength. It is now well
established that by periodically driving the coupling strength
with a frequency twice that of the oscillator frequency, one can
squeeze the collective quadratures, leading to entanglement
generation between the two harmonic oscillators. In 2010,
within a similar framework, two identical harmonic oscillators
in contact with two independent thermal baths and coupled
via a time periodic driving, Galve et al. [37] demonstrated
the existence of stationary entanglement at a relatively high
temperature. Following Ref. [37], Roque et al. [38] reported
the dynamics of quantum correlations between two coupled
harmonic oscillators in contact with a common heat bath.
They found that it is not the bath temperature, rather the
system parameters to which the entanglement dynamics is
more sensitive. However, it should be noted that in their
study they could not find any steady-state behavior of the
generated entanglement. On the other hand, recently, Chen
et al. [39] considered a system of two coupled harmonic
oscillators connected via a weak time-dependent coupling. In
the absence of any environmental decoherence, they reported
that a transition from bounded to unbounded entanglement
dynamics occurs when the modulation strength crosses a
critical value.

In this work, we theoretically study the entanglement
dynamics of two coupled mechanical oscillators, placed within
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FIG. 1. Schematic diagram of the considered optomechanical
system. The cavity is driven by an amplitude modulated laser E(t),
and, the two mechanical oscillators are coupled via a periodically
modulated coupling strength λ(t).

a modulated optomechanical system. We show that, unlike
Ref. [38], both the stationary and dynamical behavior of the
mechanical entanglement could be achieved. Moreover, by
taking the mechanical damping terms into account, we give
an analytical estimation of the critical mechanical coupling
strength where the dynamical transition occurs. The rest of
the paper is organized as follows. In Sec. II we introduce our
physical model of the optomechanical system and derive the
equation of motion corresponding to the correlation matrix.
In Sec. III we give a detailed discussion of the dynamical
behavior of the mechanical entanglement for various mechan-
ical coupling strengths, and show the connection between the
entanglement dynamics and the stability of the normal modes.
Finally, we present our concluding remarks in Sec. IV.

II. MODEL AND DYNAMICS

The system under consideration consists of two identical
mechanical oscillators placed within an optical cavity. An
external laser with a time-dependent amplitude E(t) and
frequency ωl drives the cavity which makes the two oscilla-
tors couple indirectly via the radiation-pressure interaction.
Besides, there is a direct mechanical coupling between the two
oscillators, with a periodically modulated coupling strength
λ(t). The schematic of our system is depicted in Fig. 1, and the
Hamiltonian (in a frame rotating with the laser frequency) is
written as follows (in the unit of h̄ = 1):

H = �0a
†a +

2∑
j=1

ωm

2

(
q2

j + p2
j

) + ga†a
2∑

j=1

qj + λ(t)q1q2

+ i[E(t)a† − E∗(t)a]. (1)

Here, a (a†) refers to the annihilation (creation) operator
of the cavity field (with frequency ωc and decay rate κ),
qj (pj ) is the dimensionless position (momentum) operator
of the j th mechanical oscillator (with frequency ωm and
damping rate γm). g refers to the strength of the single-photon
radiation-pressure coupling. In Hamiltonian Eq. (1), the first
and second terms correspond to the Hamiltonian of the driven
cavity and the mechanical oscillators, respectively, with �0 =
ωc − ωl being the optical detuning. The third term describes
the optomechanical interaction between the cavity field and
the mechanical oscillators, while the fourth term refers to the
bilinear coupling between the two oscillators. Finally, the last
term gives the external laser driving.

In addition to this, the system dynamics is unavoidably
subjected to the fluctuation-dissipation processes affecting
both the cavity field and the mechanical oscillators. Taking
all the damping and noise terms into account, the dynamics of
the system is fully described by the following set of nonlinear
quantum Langevin equations (QLEs):

q̇j = ωmpj , (2a)

ṗj = −ωmqj − ga†a − λ(t)q3−j − γmpj + ξj (t), (2b)

ȧ = −
⎧⎨
⎩i

⎛
⎝�0 + g

2∑
j=1

qj

⎞
⎠ + κ

⎫⎬
⎭a + E(t) +

√
2κain,

(2c)

where ain is the vacuum input noise operator, with the only
nonzero correlation function [40]

〈ain(t)a†
in(t ′)〉 = δ(t − t ′). (3)

ξj (t) are the stochastic Hermitian Brownian noise operator,
with the non-Markovian correlation function given by [41]

〈ξj (t)ξk(t ′) = δjk

2π

γm

ωm

∫
ωe−iω(t−t ′)

[
coth

(
h̄ω

2KBT

)
+ 1

]
dω

(4)

(kB being the Boltzmann constant and T being the temperature
of the mechanical oscillators). However, in the limit of large
mechanical quality factorQ = ωm/γm � 1, one could well ap-
proximate this Brownian noise to a Markovian delta-correlated
relation [42],

〈ξj (t)ξj (t ′) + ξj (t ′)ξj (t)〉/2 � γm(2nth + 1)δ(t − t ′), (5)

with nth = [exp( h̄ωm

KBT
) − 1]

−1
being the number of mean ther-

mal phonons.
Next, when the system is strongly driven to a large clas-

sical mean value, we can adopt the standard linearization
technique and rewrite each Heisenberg operator as follows:
o(t) = 〈o(t)〉 + δo(t) (o = qj ,pj ,a). Here, 〈o(t)〉 refers to the
classical c-number mean value and δo(t) is the zero-mean
quantum fluctuation around the classical mean value. The
equation of motion corresponding to the classical mean values
is given by the following set of nonlinear differential equations:

〈q̇j (t)〉 = ωm〈pj (t)〉, (6a)

〈ṗj (t)〉 = −ωm〈qj (t)〉 − g|〈a(t)〉|2
− λ(t)〈q3−j (t)〉 − γm〈pj (t)〉, (6b)

〈ȧ(t)〉 = −
⎧⎨
⎩i

⎛
⎝�0 + g

2∑
j=1

〈qj (t)〉
⎞
⎠ + κ

⎫⎬
⎭〈a(t)〉 + E(t).

(6c)

On the other hand, the dynamics of the quantum fluctuations is
governed by the following linearized QLEs, written in a matrix
form:

˙u(t) = A(t)u(t) + n(t). (7)

Here, uT (t) = (δq1(t),δp1(t),δq2(t),δp2(t),δX(t),δY (t)) is
the vector of quadrature fluctuation operators, nT (t) =
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(0,ξ1(t),0,ξ2(t),
√

2κXin(t),
√

2κYin(t)) is the vector of corre-
sponding noises, and

A(t) =

⎛
⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0
−ωm −γm −λ(t) 0 Gx(t) Gy(t)

0 0 0 ωm 0 0
−λ(t) 0 −ωm −γm Gx(t) Gy(t)

−Gy(t) 0 −Gy(t) 0 −κ �(t)
Gx(t) 0 Gx(t) 0 −�(t) −κ

⎞
⎟⎟⎟⎟⎟⎠

(8)

is the drift matrix. The time-dependent coupling and the
detuning terms are, respectively, defined as follows:

G(t) = −
√

2g〈a(t)〉, (9a)

G(t) = Gx(t) + iGy(t), (9b)

�(t) = �0 + g

2∑
j=1

〈qj (t)〉. (9c)

It should be noted that in Eq. (7) we have used the quadrature
operators for the cavity field with the corresponding Her-
mitian input noise operators, respectively defined as δX ≡
(δa+δa†)√

2
, δY ≡ (δa−δa†)

i
√

2
, and Xin ≡ (ain+a

†
in)√

2
, Yin ≡ (ain−a

†
in)

i
√

2
.

Due to the above linearized dynamics and the zero-mean
Gaussian nature of the quantum noises, the quantum fluctu-
ations in the stable regime evolve to an asymptotic Gaussian
state which is completely characterized by its 6 × 6 correlation
matrix, given by

Vij = [〈ui(t)uj (t) + uj (t)ui(t)〉]/2. (10)

The equation of motion corresponding to the correlation
matrix, using Eqs. (7) and (10), can be written as follows:

V̇ (t) = A(t)V (t) + V (t)AT (t) + D, (11)

where D = Diag[0,γm(2nth + 1),0,γm(2nth + 1),κ,κ] is the
matrix of noise correlation. Note that Eq. (11) is an inhomoge-
neous first-order differential equation with 21 elements which
could be numerically solved with the initial condition V (0) =
Diag[nth + 1/2,nth + 1/2,nth + 1/2,nth + 1/2,1/2,1/2].
Here, we have assumed that each mechanical oscillators are
prepared in their thermal states at temperature T and the
cavity field is in its vacuum state.

III. RESULTS AND DISCUSSION

Before proceeding to a direct numerical investigation of
the mechanical entanglement, we first specify the exact form
of time modulation for both the external driving and the
mechanical coupling strength, as follows:

E(t) = E0 + E1cos(
t), λ(t) = λ0cos(
t). (12)

Moreover, we choose the following set of pa-
rameters for our numerical simulations: �0/ωm =
1.0, κ/ωm = 0.1, γm/ωm = 5 × 10−4, g/ωm = 1 × 10−5,

E0/ωm = 1 × 104, E1/ωm = 1 × 103, T0/ωm = h̄/kB,


/ωm = 2.003 (this particular choice will be justified later)
and τ = 2π/
.

In Fig. 2, we plot the time evolution of the mechanical
entanglement EN (see Appendix A 1) for multiple values of

FIG. 2. Entanglement dynamics of the two coupled mechanical
oscillators for λ0/ωm = [0,0.005] (from bottom to top) at T = 0.
The left-hand panel shows the asymptotic nature of the mechanical
entanglement.

λ0/ωm. It can be observed that in the absence of the mechanical
coupling (λ0/ωm = 0), the two oscillators exhibit a very small
degree of stationary entanglement. However, as soon as the
mechanical coupling is introduced, there is a sudden but
significant enhancement in EN at initial time, which finally
converges to an asymptotic steady-state value. We note that
this enhancement becomes more profound with an increase in
coupling strength λ0/ωm. Moreover, in the asymptotic regime,
we find that the entanglement acquires the same period of
modulation (see the right-hand panel of Fig. 2). Hence one can
identify the degree of the entanglement as the maximum over
one period τ = 2π/
 of modulation, defined as follows [34]:

EN = max
t∈[T ,T +τ ]

EN (t), (13)

after a long enough time T � 1/κ,1/γm. It is worth
mentioning that, with the application of periodically modulated
mechanical coupling, λ0/ωm = 0.005, we obtain a remarkable
degree of stationary entanglement, EN = 0.34, as opposed
to EN = 0.04, which is achieved with no direct mechanical
coupling.

The dependence of the stationary mechanical entanglement
on the oscillator temperature is exhibited in Fig. 3. As expected,

FIG. 3. Dependence of stationary mechanical entanglement on
the oscillator temperature for λ0/ωm = [0,0.005] (from bottom to
top). The other parameters are fixed as in Fig. 2.
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FIG. 4. Entanglement dynamics of the two coupled mechani-
cal oscillators for λ0/ωm = [0.01,0.05] (from bottom to top) at
(a) T/T0 = 0 and (b) T/T0 = 3. The other parameters are fixed
as Fig. 2.

it could be seen that the degree of entanglement decreases
monotonically with increase in temperature T . However, one
should note the improved robustness for the same mechanical
entanglement with an increase in the coupling strength λ0. For
example, it is shown that in the presence of the mechanical cou-
pling λ0/ωm = 0.005, the degree of entanglement survives up
to a relatively high temperature T/T0 ≈ 0.9, in sharp contrast
to the case where entanglement is found to persist up to temper-
ature T/T0 ≈ 0.3 in the absence of the mechanical coupling.

Next, in Fig. 4(a), we once again depict the time evolution
of EN , similar to Fig. 2 but with a set of higher values of
λ0/ωm. Now one could observe that, with increase in λ0, the
entanglement not only grows much faster in time but also
decays quickly to zero. Thus, it is evident that depending on
the strength of the mechanical coupling, one could achieve
a completely different dynamical behavior of the mechanical
entanglement. In order to investigate the role of oscillator
temperature on the entanglement dynamics, we have redone
the calculations for T = 3T0 and depicted it in Fig. 4(b). It
exhibits that with the increase in temperature, EN decreases
and there is a delay in the entanglement formation as well as
reduction in survival time for entanglement, compared with
its T = 0 counterpart. It should be noted that this feature is
also reported in Ref. [38]. However, if one compares Figs. 3
and 4(b), it is clear that a significant degree of entanglement
could be attained at a relatively high temperature, with higher
mechanical coupling strength.

Now, to further probe into the entanglement dynamics and
the role of the mechanical coupling on it, we introduce the
normal modes for the mechanical oscillators as follows: δq± =
(δq1 ± δq2)/

√
2, δp± = (δp1 ± δp2)/

√
2, and, rewrite the lin-

earized optomechanical Hamiltonian in the following way:

H lin = H+ + H−, (14)

where H± is given by

H+ = �

2
(δX2 + δY 2) + 1

2
{ωmδp2

+ + [ωm + λ(t)]δq2
+}

−
√

2(GxδX + GyδGy)δq+, (15a)

H− = 1

2
{ωmδp2

− + [ωm − λ(t)]δq2
−}. (15b)

FIG. 5. The Wigner function for “+” and “−” mode at different
times, for the mechanical coupling strengthλ0/ωm = 0.005. The other
parameters are fixed as in Fig. 2.

The above Hamiltonian Eq. (14) describes two independent
parametric oscillators, one of which (“+” mode) is coupled
to the cavity field via the usual optomechanical interaction,
while the other one (“−” mode) is completely free. Following
a similar procedure, used to obtain Eq. (11), we construct the
correlation matrix corresponding to the normal modes and the
cavity field.

In order to illustrate the dynamics of the normal modes in the
so-called phase space, in Figs. 5 and 6 we depict the respective
Wigner functions [Eq. (A2)] at some specific times, for
two different mechanical coupling strengths λ0/ωm = 0.005
and λ0/ωm = 0.01. We note that the value of the coupling
strengths are so chosen to yield two different kinds of entan-
glement dynamics. The localization of the Wigner function
in phase space, for the “+” mode, could be clearly seen in
Figs. 5(a)–5(c) and 6(a)–6(c), and, this localization is inde-
pendent of the mechanical coupling strengths. On the contrary,
the “−” mode exhibits both the localization and delocalization
phenomena depending on the strength of the mechanical
coupling. Figures 5(d)–5(f) show localization of the “−” mode
when we have λ0/ωm = 0.005, which is maintained even for a
sufficiently long time t/τ = 5000. However, as could be seen

FIG. 6. The Wigner function for “+” and “−” mode at different
times, for the mechanical coupling strength λ0/ωm = 0.01. The other
parameters are fixed as in Fig. 2.

022336-4



ENTANGLEMENT DYNAMICS OF TWO COUPLED … PHYSICAL REVIEW A 97, 022336 (2018)

from Figs. 6(d)–6(f), with increase in λ0/ωm, the delocalization
occurs quickly in time: The Wigner function stretches along
the dynamical rotating axis along with a contraction in the
perpendicular direction. This feature becomes quite prominent
if one observe the dynamics at a time t/τ = 300.45. This
clearly signifies a dynamical instability corresponding to the
“−” mode. Therefore, we can infer that the asymptotic nature
of the mechanical entanglement is directly related to the
instability in the “−” mode.

Now, to explicitly derive the relationship between the
entanglement dynamics and the strength of the mechanical
coupling, we focus on the stability of the “−” mode. Starting
from the Hamiltonian equation (15b), we derive the equation
of motion corresponding to the “−” mode, as given below:

δ̈q− + (
ω2

m − ωmλ0 cos 
t
)
δq− + γmδ̇q− = 0. (16)

The above equation corresponds to a dissipative classical
parametric oscillator, with a time modulated mechanical fre-
quency ω2

m(t) = ω2
m − ωmλ0 cos(
t). Following a substitution

t̃ = 
t
2 , we can rewrite Eq. (16) in the following form:

δ̈q− + (ω̃m − 2λ̃0 cos 2t̃)δq− + γ̃mδ̇q− = 0, (17)

where the dimensionless parameters are defined as follows:

ω̃m = 4ω2
m


2
, λ̃0 = 2ωmλ0


2
, γ̃m = 2γm



. (18)

Now, defining δq− = δ̃q−e−γ̃mt̃/2 and substituting in Eq. (17),
we get the standard form of the canonical Mathieu equation,

¨̃δq− + [δ − 2ε cos(2t̃)]δ̃q− = 0, (19)

where δ and ε are respectively given by δ = 4ω2
m−γ 2

m


2 and ε =
2ωmλ0


2 . It is clear that, for a modulation frequency 
2 ≈ 4ω2
m,

we have δ ≈ 1 and ε � 1. In this limit, one can neglect all the
higher-order terms in the eigenvalues of Mathieu’s equation
(19) (see Appendix A 2 for a better discussion) and obtain

α1(ε) ≈ 1 + ε, (20a)

β1(ε) ≈ 1 − ε. (20b)

FIG. 7. Stable (white) and unstable (grey) phase of the “−” mode,
for ε � 1. Here, the circle (green), diamond (blue), and square (red)
respectively corresponds to the λ0/ωm = 0.005, 0.006, and 0.007.
The other parameters are fixed as in Fig. 2.

FIG. 8. Dependence of stationary mechanical entanglement EN

on the modulation frequency. The other parameters are fixed as in
Fig. 2.

The stability of the “−” mode in the ε-δ plane is depicted
in Fig. 7. One can observe that, for the “−” mode to be stable,
the following stability criteria must be satisfied:

β1(ε) = 1 − ε � δ � α1(ε) = 1 + ε. (21)

Solving Eq. (21) in terms of the 
, ωm, and γm, we can obtain
an analytical expression for the critical mechanical coupling
strength λ0c, given as follows:

λ0

ωm

� λ0c

ωm

= 
2 − 4ω2
m + γ 2

m

2ω2
m

. (22)

It should be noted that for the modulation frequency 
m =
2.003ωm, one gets the following critical mechanical coupling
strength λ0c/ωm = 0.006. This situation is further illustrated
in Fig. 7, respectively, for the three distinct mechanical cou-
pling strengths λ0/ωm = 0.005 (green circle), λ0/ωm = 0.006
(blue diamond), and λ0/ωm = 0.007 (red square). We can see
that the points corresponding to the aforementioned coupling
strengths, respectively, locate in the stable, on the boundary,
and in the unstable zone of the “−” mode. This well justifies our
previously obtained entanglement dynamics, corresponding to
the different sets of the mechanical coupling strengths.

Finally, in Fig. 8 we depict the dependence of the stationary
mechanical entanglement on the modulation frequency. It can
be seen that the entanglement EN is quite sensitive to the
variation in the modulation frequency, which can be attributed
directly to the instability in the “−” mode. Furthermore, one
can observe that the peak of the stationary entanglement is
obtained exactly at 
/ωm = 2.003, which justifies our initial
choice of the modulation frequency.

IV. CONCLUSION

In conclusion, we have proposed a scheme to entangle two
directly coupled mechanical oscillators in an optomechanical
system. Our scheme exploits the periodic modulation tech-
nique, in both the external driving and mechanical coupling
strengths. We observe that an abrupt transition from stationary
to dynamical mechanical entanglement occurs when the “−”
mode becomes unstable. More importantly, it is shown that
in the presence of the mechanical coupling, a significant
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improvement in the robustness of the generated entanglement
could be achieved with respect to the oscillators temperature.
Finally, based on the eigenvalues of Mathieu’s equations, we
give an analytical estimation corresponding to the critical
mechanical coupling strength, where the transition occurs.
The feasibility of the chosen parameters makes our proposed
scheme a promising means to realize macroscopic quantum
entanglement within current state-of-the-art experimental se-
tups.
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APPENDIX

1. Entanglement in Gaussian States

In the context of continuous-variable (CV) quantum infor-
mation, Gaussian states are of central importance. These are the
states with Gaussian Wigner function and are completely char-
acterized by its first and second moment of the field quadrature
operators. For any N mode Gaussian state, the vector of the first
moments reads R̄ = (〈R1〉,〈R1〉, . . . ,〈RN 〉,〈RN 〉), while that
of the second moments is denoted by the 2N × 2N correlation
matrix (CM) V of elements,

Vij = 1
2 (〈RiRj + RjRi〉) − 〈Ri〉〈Rj 〉. (A1)

Here, R stands for the 2N -dimensional vector of CV opera-
tors RT = (q1,p1,q2,p2,, . . . ,qN ,pN ). However, by following
a local unitary transformation the first moments could be easily
adjusted to zero, without affecting any informationally relevant
properties. With this consideration, the Wigner function for a
N mode Gaussian state could be written as follows [6]:

W (R) = 1

(2π )N
√

DetV
e−(1/2)RT V −1R. (A2)

Now, to discuss entanglement in CV systems, we consider
a very prototypical CV entangled state, i.e., a two-mode
Gaussian state. This type of state can be represented by the

following correlation matrix:

V2 =
(

A C

CT B

)
, (A3)

where A, B, and C are 2 × 2 block matrices, respec-
tively, describing the local properties mode A, mode B,
and the intermode correlation between A and B. The de-
gree of entanglement between the two modes is calcu-
lated by the so-called logarithmic negativity EN [43,44],
defined as

EN = max[0,− ln 2ν−]. (A4)

Here ν− ≡ 2−1/2[�(V2) −
√

�(V2)2 − 4detV2]
1/2

is the
smallest symplectic eigenvalue of the partial transpose of V2

with �(V2) ≡ det(A) + det(B) − 2det(C). A Gaussian state is
said to be entangled (EN > 0) if and only if ν− < 1/2 which
is equivalent to Simon’s necessary and sufficient nonpositive
partial transpose criteria [45].

2. Matheu’s Equation

The canonical form of Matheu’s equation for the parameters
δ and ε is given by [46,47]

ÿ + [δ − 2ε cos(2t)]y = 0. (A5)

This equation is a linear second-order differential equation,
with periodic coefficients. In general, the solution of such
an equation varies depending on the choice of δ and ε.
However, it should be noted that to maintain the periodicity
of the solution, δ and ε must be interrelated. Therefore, one
has a set of eigenvalues αn(ε) (n = 0,1,2,3, . . .) and βn(ε)
(n = 0,1,2,3, . . .) necessary to yield a solution of Eq. (A5).
For small ε, the first three αn(ε) and βn(ε) could be written as
follows [46]:

αo = − 1
2ε2 + 7

128ε4 + O(ε6), (A6a)

α1 = 1 + ε − 1
8ε2 − 1

64ε3 + O(ε4), (A6b)

β1 = 1 − ε − 1
8ε2 + 1

64ε3 + O(ε4). (A6c)
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