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Entanglement increase from local interaction in the absence of initial quantum correlation
in the environment and between the system and the environment
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We consider a bipartite quantum system S = AB such that the part A is isolated from the environment E and
only the part B interacts with E. Under such circumstances, entanglement of the system may experience decreases
and increases, during the evolution of the system. Here, we show that the entanglement of the system can exceed
its initial value, under such local interaction, even though, at the initial moment, there is no entanglement in
the environment and the system and the environment are only classically correlated. The case which is studied
in this paper possesses another interesting feature too: The reduced dynamics of the system can be modeled as
a completely positive map. In addition, we introduce the concept of inaccessible entanglement to explain why
entanglement can exceed its initial value, under local interactions, in open quantum systems.
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I. INTRODUCTION

Recently, many studies have been focused on the dynamics
of entanglement in open quantum systems, both in bipartite
and multipartite cases [1]. Entanglement may decrease or even
experience revivals during the interaction of the system with
the environment.

An important case is when the system is bipartite and
each part interacts with its local (quantum) environment [2,3].
One may expect that in this case only entanglement decrease
(sudden death) will occur. But, interestingly, entanglement
revivals occur in such cases [2,4–8]. This phenomenon is
usually explained as a consequence of the non-Markovianity
of the dynamics and so the memory effects of the environment.

A more interesting case is when the entanglement of the
system exceeds its initial value. An interaction (with the envi-
ronment) which is local according to a bipartition of the system,
can be nonlocal according to another bipartition and so leads
to entanglement increase (according to this latter bipartition)
in the system [9]. Also, if the evolution of one part of our
bipartite system is given by a non-Hermitian Hamiltonian, then
the entanglement of the system can exceed its initial value [10].

Interestingly, even in the context of the conventional quan-
tum mechanics, one can also find examples for which entan-
glement exceeding, under local interactions, occurs [11–16].
In such cases, though each part of our bipartite system interacts
with its local environment, the reduced dynamics of the system
is not given by local operations and so entanglement exceeding
occurs in the system. In other words, though the dynamics of
the whole system-environment is given by a local operation (a
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local completely positive map), the reduced dynamics of the
system is not so and this can lead to entanglement increase.

Now, an important question arises: If the entanglement
of the system starts to increase at time t1 and increases
monotonically during the time interval [t1,t2] (t1 < t2), can
the reduced dynamics of the system, from t1 to t ′1, where
t ′1 ∈ (t1,t2], be given by a (nonlocal) completely positive map?

This question has been considered in Ref. [11]. It has been
shown that, for the case studied there, the time evolution of
the system, from t1 to t ′1, is given by a non-completely-positive
map, in fact, by a non-trace-preserving map.

Interestingly, entanglement exceeding in the system can
occur even when the reduced dynamics of the system is com-
pletely positive. For example, in Ref. [12], a four-qubit case
AEA; BEB has been considered, where EA andEB are two sep-
arated atoms, each interacting with its local cavity mode, A and
B, respectively. The initial state of AEA; BEB was chosen as

|�0〉 = |0A〉 ⊗ |0B〉 ⊗ |�EAEB
〉, (1)

where |�EAEB
〉 is an entangled state in EAEB and |0A〉 and

|0B〉 are some fixed states (the vacuum states) in A and B,
respectively. Let’s consider AB as our bipartite system and
EA and EB as local environments of A and B, respectively.
So, the entanglement of the system AB, which is initially
zero, can increase just from the initial moment t = 0 [12]. The
initial state of the system-environment in Eq. (1) is factorized.
So, the reduced dynamics of the system is completely positive
[17]. Therefore, entanglement increase can occur even when
the reduced dynamics of the system is completely positive.

Note that the initial state of the environment EAEB in
Eq. (1) is entangled. So, one can argue that the transfer of
the entanglement from the environment to the system results
in entanglement exceeding in the system.
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Can we find a case in which entanglement exceeding
occurs in the system, even when the environment is initially
unentangled and the reduced dynamics of the system is, in
addition, completely positive? Finding such a case is the
subject of this paper.

In this paper, we consider a two-qubit system S = AB, such
that the qubit A is isolated from the environment and only the
qubit B is interacting with the environment E. In our case:

(1) Unlike the cases studied in Refs. [12–15], there is
no (initial) entanglement in the environment and so, there is
no transfer of the entanglement from the environment to the
system, during the evolution.

(2) Unlike (the first initial state considered in) Ref. [16],
there is no initial entanglement between the subsystem A (B)
and the environment E and so, entanglement exceeding in the
system S = AB cannot be related to the transfer of this initial
entanglement from AE (BE) to AB.

(3) And, finally, (unlike Ref. [11]) the reduced dynamics of
the system S = AB is given by a completely positive map
(which is, obviously, nonlocal, otherwise no entanglement
exceeding is possible).

Finding this interesting case is, to some extent, due to
our previous results in Refs. [18,19]. Especially, we will use
the following result of Ref. [19]: Under local interactions,
entanglement increase can occur only when the initial state
of the whole system-environment is not a so-called Markov
state.

Exceeding the entanglement cannot be related to the mem-
ory effects of the environment, in general. When the entangle-
ment of an open system initially decreases and then revives,
we can say that the environment stores the entanglement of
the system, during its decrease, and then gives it back to the
system, during the revival. In general, the above explanation
is no more valued for the case that the entanglement of the
system exceeds its initial value.

In addition, as stated before, when the initial entanglement
of the environment and the initial entanglement between the
system and the environment are zero, entanglement exceeding
in the system cannot be related to the transfer of the entangle-
ment from the environment to the system.

In such circumstances, we argue that there is an initial
supply of entanglement in the whole system-environment,
which is initially inaccessible for the system, and the transfer
of (a part of) this supply to the system, during the interaction
of the system and the environment, results in exceeding the
entanglement of the system.

The paper is organized as follows. In the next section,
we introduce the concurrence, an entanglement monotone
which will be used in this paper. Markov states are introduced
in Sec. III. In addition, their role, in the phenomenon of
entanglement exceeding, is discussed there. In Sec. IV, the
model system and the related results are given. Section V is on
the explanation of the phenomenon of entanglement exceeding,
introducing the concept of inaccessible entanglement. Finally,
our paper is ended in Sec. VI, with a summary of our results.

II. CONCURRENCE

Consider a bipartite system S = AB. For a pure state
|ψ〉 ∈ HA ⊗ HB , where HA and HB are the Hilbert spaces of

the subsystems A and B, respectively, concurrence is defined
as [20]

C(|ψ〉) =
√

2
[
1 − Tr

(
ρ2

r

)]
, (2)

where ρr is the reduced state of either the subsystem A or
the B. C(|ψ〉) = 0 if and only if |ψ〉 is a product state. The
generalization of the above definition for mixed states is as [20]

C(ρ) = min
{pi ,|ψi 〉}

∑
i

piC(|ψi〉), (3)

where the minimum is taken over all decompositions of ρ into
pure states: ρ = ∑

i pi |ψi〉〈ψi |, where pi � 0 and
∑

i pi = 1.
The state ρ is separable if and only if C(ρ) = 0. But, unfor-
tunately, C(ρ) cannot be computed, in general. Only for the
two-qubit case the problem has been solved, i.e., the minimum
in Eq. (3) can be taken, for which we have [21]

C(ρ) = max

⎧⎨
⎩�1 −

4∑
j>1

�j,0

⎫⎬
⎭, (4)

where �j are the square roots of the eigenvalues of the matrix
R = ρ(σA

y ⊗ σB
y )ρ∗(σA

y ⊗ σB
y ), in decreasing order. σy is the

second Pauli matrix and ρ∗ is the complex conjugation of ρ in
the computational basis.

An important property of the concurrence is that it is an
entanglement monotone [22]. An entanglement monotone does
not increase, on average, under local operations and classical
communication (LOCC) [23]. Therefore, if, under LOCC, the
initial state ρ transforms to an ensemble of the final states
{qk,ρ

′
k}, where {qk} is a probability distribution (qk � 0 and∑

k qk = 1) and ρ ′
k are the different possible final states, we

have

C(ρ) �
∑

k

qkC(ρ ′
k). (5)

We will use this property of concurrence in Sec. V.

III. MARKOV STATES

A tripartite state ρABE is called a Markov state if there exists
a decomposition of the Hilbert space of the subsystem B, HB ,
as HB = ⊕

k HbL
k

⊗ HbR
k

such that

ρABE =
⊕

k

λk ρAbL
k

⊗ ρbR
k E, (6)

where {λk} is a probability distribution, ρAbL
k

is a state onHA ⊗
HbL

k
, and ρbR

k E is a state on HbR
k

⊗ HE [24]. (HA and HE are
the Hilbert spaces of A and E, respectively.)

It can be shown that if a tripartite state ρABE is a Markov
state, then each localized dynamics as

ρ ′
ABE =

∑
j

(
IA ⊗ f

(j )
BE

)
ρABE

(
IA ⊗ f

(j )†
BE

)
,

∑
j

f
(j )†
BE f

(j )
BE = IBE, (7)
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reduces to a localized subdynamics as

ρ ′
AB =

∑
i

(
IA ⊗ E

(i)
B

)
ρAB

(
IA ⊗ E

(i)†
B

)
,

∑
i

E
(i)†
B E

(i)
B = IB, (8)

and vice versa [18,19,25]. In Eq. (7), f
(j )
BE are linear operators

on BE and, in Eq. (8), E
(i)
B are linear operators on B, ρAB =

TrE(ρABE) is the initial state of S = AB, and ρ ′
AB = TrE(ρ ′

ABE)
is the final state of S. In addition, IA, IB , and IBE are the identity
operators on A, B, and BE, respectively.

Consider a bipartite system S = AB, such that the part A is
isolated from the environment E and only the part B interacts
with the E. So, the evolution of the whole system-environment
is as Eq. (7). Now, if the initial state of the system-environment
ρABE is a Markov state as Eq. (6), then the reduced dynamics
of the system will be localized as Eq. (8). Entanglement of
the system S = AB does not increase under local operations
as Eq. (8) [26]. So, in order to see entanglement exceeding
in the system, we must choose the initial state of the system-
environment, a non-Markovian state. We will use this fact in
the next section.

The definition of the Markov states can be generalized to the
quadripartite case, too. A quadripartite state ρAEABEB

is called
a Markov state if there exist decompositions of HA and HB as
HA = ⊕

j HaL
j

⊗ HaR
j

and HB = ⊕
k HbL

k
⊗ HbR

k
, such that

ρAEABEB
=

⊕
j,k

λjk ρaL
j EA

⊗ ρaR
j bL

k
⊗ ρbR

k EB
, (9)

where {λjk} is a probability distribution, ρaL
j EA

is a state on
HaL

j
⊗ HEA

, ρaR
j bL

k
is a state on HaR

j
⊗ HbL

k
, and ρbR

k EB
is a

state on HbR
k

⊗ HEB
[18,19]. (HEA

and HEB
are the Hilbert

spaces of EA and EB , respectively.)
It can be shown that if the initial state ρAEABEB

, of our
quadripartite configuration, is a Markov state as Eq. (9),
then each localized dynamics as FAEA

⊗ FBEB
, on the whole

AEABEB , reduces to a localized subdynamics as EA ⊗ EB , on
the S = AB, where FAEA

, FBEB
, EA, and EB are completely

positive maps on AEA, BEB , A, and B, respectively [18,19].
[A completely positive map, on a state ρ, is a map which can
be written as

∑
i KiρK

†
i , where Ki are linear operators such

that
∑

i K
†
i Ki = I (I is the identity operator) [17].]

Note that if the reduced dynamics of S = AB can be
written as EA ⊗ EB , then the entanglement of S does not
increase under such localized evolution. Therefore, if, for a
localized dynamicsFAEA

⊗ FBEB
on the whole AEABEB , the

entanglement of S increases, then we conclude that the initial
state of AEABEB is not a Markov state as Eq. (9).

For example, for the case studied in Ref. [12], the initial state
|�0〉, in Eq. (1), is not a Markov state. From Eq. (9), we know
that, for a Markov state ρAEABEB

, ρEAEB
= TrAB(ρAEABEB

) is
a separable state, but |�EAEB

〉 is entangled. Therefore, though
the whole dynamics of AEABEB is localized asFAEA

⊗ FBEB
,

the reduced dynamics of S = AB, can be nonlocalized and lead
to exceeding the entanglement of S. This is in agreement with
the result of Ref. [12].

It is also worth noting that the non-Markovianity of the
initial state of the system-environment, though a necessary

condition, is not sufficient for entanglement exceeding, in
general. For example, for the case studied in Ref. [16], which
we will discuss in detail in the next section, the first and the
second initial states of the system-environment, considered
there, are not Markov states. But, as has been shown in
Ref. [16], their second initial state of the system-environment
does not lead to entanglement exceeding.

IV. MODEL AND RESULTS

We consider a bipartite system S = AB, including two sep-
arated spin-1/2 particles. In addition, for simplicity, we assume
that the spin (qubit) A is isolated from the environment and
only the spin (qubit) B interacts with its local environment E,
which includes N spin-1/2 particles, through the (interaction)
Hamiltonian

H =
N∑

i=1

g(σB
+ I

(i)
− + σB

− I
(i)
+ ), (10)

where σB
± and I

(i)
± are the raising and lowering operators for

the spin B and the ith environmental spin, respectively, and
g denotes the coupling strength between the spin B and each
spin in the environment. Physically, the above Hamiltonian can
describe the hyperfine interaction between an electron spin,
confined in a quantum dot, with spins of its surrounding nuclei
[16,27].

Therefore, the whole dynamics of the system-environment
is given by the localized dynamics USE(t) = IA ⊗ UBE(t),
whereUBE(t) = e−iH t/h̄. So, according to the previous section,
to observe entanglement exceeding, we must choose the initial
state of the whole system-environment a state which is not a
Markov state as Eq. (6).

In Ref. [16], the entanglement dynamics of the above
system S = AB, for three different initial states of the system-
environment, has been studied. In the first case, they chose the
initial state of the system-environment as

|ω0〉 = x|0A〉|0B〉|1E〉 + y|0A〉|1B〉|0E〉 + z|1A〉|0B〉|0E〉,
(11)

where x, y, and z are real nonzero coefficients, such that
x2 + y2 + z2 = 1. |0〉 and |1〉 denote the spin-down and the
spin-up states of the particle, respectively. In addition, |0E〉 =
|00 . . . 0〉 (with N spin down) and |1E〉 = 1√

N

∑N
i=1 I

(i)
+ |0E〉

are the ground and the first excitation states of the environment,
respectively. |ω0〉 is a W -class genuine tripartite entangled
state [28]. It can be shown simply that ρAE = TrB(|ω0〉〈ω0|) is
entangled. Equation (6) results in, for a Markov state ρABE , the
reduced state ρAE = TrB(ρABE) being separable. Therefore,
|ω0〉 is not a Markov state. So, entanglement exceeding can
occur in this case. This is in agreement with the results of
Ref. [16].

The third initial state of the system-environment, considered
in Ref. [16], is a factorized state as ρABE = ρAB ⊗ ρE . So, it
is a Markov state, which is due to the case that, in Eq. (6),
HB = HbL ⊗ HbR andHbR is a trivial one-dimensional Hilbert
space. Therefore, entanglement of the system S = AB never
exceeds its initial value. This is also in agreement with the
results of Ref. [16].
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Note that, for the initial state |ω0〉 in Eq. (11), obviously,
there is no entanglement in the environment, since the environ-
ment is simply one partite. So, the first case studied in Ref. [16],
in fact, shows that the entanglement of the system can exceed
its initial value, even if the dynamics of the whole system-
environment is localized and there is no initial entanglement
in the environment.

However, the initial state of the whole system-environment
|ω0〉, in Eq. (11), is entangled. In other words, initially,
there is nonclassical correlation between the system and the
environment. In the following, we choose the initial state for the
system-environment such that, at the initial moment, there is
only classical correlation between the system and the environ-
ment and there is no entanglement in the environment, but, in-
terestingly, entanglement exceeding in the system occurs for it.

Instead of the second initial state of the system-
environment, considered in Ref. [16], we choose the following
state as our initial state of the system-environment:

ρSE = ρABE = p
∣∣ψ (1)

AB

〉〈
ψ

(1)
AB

∣∣ ⊗ |1E〉〈1E|
+ (1 − p)

∣∣ψ (2)
AB

〉〈
ψ

(2)
AB

∣∣ ⊗ |0E〉〈0E|, (12)

where 0 � p � 1 and
∣∣ψ (1)

AB

〉 = cos α|1A〉|0B〉 + sin α|0A〉|1B〉,
∣∣ψ (2)

AB

〉 = cos β|1A〉|1B〉 + sin β|0A〉|0B〉, (13)

where 0 � α,β � 2π . Note that 〈ψ (2)
AB |ψ (1)

AB〉 = 0. In addition,
〈0E|1E〉 = 0. So, the system S and the environment E are
only classically correlated; i.e., the quantum discord of the
(bipartite) state ρSE , in Eq. (12), is zero [29].

According to Eq. (10), we see that the time evolu-
tion operator USE preserves the excitations of the whole
system-environment. In addition, the initial state ρSE ,
in Eq. (12), is a state on the subspace spanned by
{|0A0B0E〉,|1A1B0E〉,|0A1B1E〉,|1A0B1E〉,|0A0B2E〉}, where
|2E〉 =

√
2

N(N−1)

∑N
i,j=1;i<j I

(i)
+ I

(j )
+ |0E〉. The state |0A0B0E〉

spans the one-dimensional subspace of zero excitation. So it is
invariant during the evolution. The states |1A1B0E〉, |0A1B1E〉,
|1A0B1E〉, and |0A0B2E〉 span the subspace of two excitations.
The restriction of USE , on this four-dimensional subspace,
has been given in Ref. [16]. Therefore, we can simply obtain
the reduced state of the system, at the time t , as ρAB(t) =
TrE[USE(t)ρSEU

†
SE(t)].

Finally, using Eq. (4), we obtain the concurrence of our
two-qubit system as

C[ρAB(t)] = 2max{0,C1(t),C2(t)},
C1(t) = |e cos(
1t) cos(
t)|

−
√

[b cos2(
t)+f sin2(
t)][a+d sin2(
1t)],

C2(t) = |c cos(
t)|
−

√
[b sin2(
t) + f cos2(
t)]d cos2(
1t),

(14)

where a = (1 − p) sin2 β, b = (1 − p) cos2 β, c = 0.5(1 − p)
sin 2β, d = p sin2 α, e = 0.5p sin 2α, f = p cos2 α, 
 =
g
√

N , and 
1 = g
√

2N − 2.

FIG. 1. Concurrence (black solid line), mutual information (red
dashed line), and C(ρA;BE), given in Eq. (24), (blue dotted line), as
the functions of the scaled time 
t , for p = 0.5 and α = β = π/4.

In Fig. 1, the concurrence of the system (the black solid line)
is plotted as the function of the scaled time 
t , for p = 0.5
and α = β = π/4. As we see, the concurrence starts to exceed
just from the initial moment.

In example 2 of Ref. [18], we have shown that ρABE

in Eq. (12), for α 	= nπ
2 or β 	= nπ

2 (n = 0, . . . ,4), is not a
Markov state, i.e., it cannot be written as Eq. (6). Therefore,
though the whole dynamics of the system-environment is
localized, the reduced dynamics of the system S = AB, can
be nonlocalized and so lead to exceeding the entanglement of
the system, as illustrated in Fig. 1.

Note that, since the whole dynamics of the system-
environment is as IA ⊗ UBE(t), the reduced state of the
qubit A remains unchanged during the evolution. But, e.g.,
during the time interval (
t1 = 0,
t2 = 1.111] for which
the concurrence of the system increases monotonically, the
reduced dynamics of the system S = AB is not equivalent to
any localized map as idA ⊗ EB , where idA is the identity map
on A and EB is a completely positive map on B. In fact, it is not
equivalent to any local operation and, even, any LOCC map.

But, interestingly, the reduced dynamics of the system can
be represented by a completely positive map, using the result
of Ref. [30]. Let’s define∣∣ψ (3)

AB

〉 = sin α|1A〉|0B〉 − cos α|0A〉|1B〉,
∣∣ψ (4)

AB

〉 = sin β|1A〉|1B〉 − cos β|0A〉|0B〉. (15)

From Eqs. (13) and (15), we see that {|ψ (i)
AB〉} is an orthonormal

basis for our two-qubit system S = AB. In addition, we define
|μ(1)

E 〉 = |1E〉 and |μ(2)
E 〉 = |0E〉 and we choose |μ(3)

E 〉 and
|μ(4)

E 〉, arbitrarily. Therefore, ρSE in Eq. (12) can be rewritten
as

ρSE = ρABE =
4∑

i=1

pi

∣∣ψ (i)
AB

〉〈
ψ

(i)
AB

∣∣ ⊗ ∣∣μ(i)
E

〉〈
μ

(i)
E

∣∣, (16)

with p1 = p, p2 = 1 − p and p3 = p4 = 0.
Note that, since |ψ (i)

AB〉 are orthonormal, the system S and
the environment E are only classically correlated. In other
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words, the quantum discord (between the system S = AB and
the environment E) for any bipartite state ρSE , which can be
written as Eq. (16), is zero [29].

Now, it has been shown in Ref. [30] that if the initial state
of the whole system-environment is as Eq. (16), with arbitrary
probability distribution {pi}, but fixed |ψ (i)

AB〉 and |μ(i)
E 〉, then,

for any arbitrary completely positive dynamics for the whole
system-environment, the reduced dynamics of the system is
given by a completely positive map. For example, in our case,
for which the whole dynamics of the system-environment is
given by IA ⊗ UBE , the reduced dynamics of the system S =
AB is given by the completely positive map

ρ ′
AB =

∑
i,k

Eik ρABE
†
ik,

∑
i,k

E
†
ikEik = IAB, (17)

where ρAB = TrE(ρABE) is the initial state of the system and
ρ ′

AB = TrE(ρ ′
ABE) is the final state of the system (ρ ′

ABE =
IA ⊗ UBEρABEIA ⊗ U

†
BE). In addition, Eik = Dik�i are lin-

ear operators on S = AB, where Dik = IA ⊗ 〈kE|UBE|μ(i)
E 〉,

�i = |ψ (i)
AB〉〈ψ (i)

AB |, and {|kE〉} is an orthonormal basis for the
environment E. Note that, though Dik is localized, but, because
of the factor �i , Eik is not so.

Let’s end this section with an additional remark. The
mutual information of a bipartite state ρAB is defined as
I (A : B)ρ = S(ρA) + S(ρB) − S(ρAB), where ρA = TrB(ρAB)
and ρB = TrA(ρAB) are the reduced states and S(ρ) is the von
Neumann entropy of the state ρ: S(ρ) = −Tr(ρ log ρ) [17].
Now, in the theorem 11.15 of Ref. [17], it has been shown that
if ρ ′

AB = idA ⊗ EB(ρAB), where idA is the identity map on A

and EB is a completely positive map on B, then

I (A : B)ρ � I (A : B)ρ ′ . (18)

Now, from Fig. 1, we see that, e.g., for all 
t ′1 ∈
(
t1 = 2.603,
t2 = 3.333] for which the concurrence of
the system increases monotonically and so ρAB(t ′1) 	= idA ⊗
EB[ρAB(t1)], the mutual information decreases. Therefore, the
reverse of the above theorem is not valid, in general: When the
mutual information I (A : B) decreases, we cannot conclude
that the dynamics of the system is equivalent to a localized
dynamics as idA ⊗ EB . (In Fig. 1, we have plotted the mutual
information using log10 instead of log2. This is equivalent to
multiplication by a (less than 1) positive constant which makes
the mutual information of a similar order as the concurrence
and improves the comparison between them.)

V. INACCESSIBLE ENTANGLEMENT

Consider the case that the two parts A and B of our bipartite
system are separated from each other and each part interacts
with its own local environment. We denote the local environ-
ment of A as EA, the local environment of B as EB , and the
whole state of the system-environments as ρAEA;BEB

. There-
fore, our quadripartite configuration consists of two separated
parts AEA and BEB . Let’s define inaccessible entanglement as

MI = M(ρAEA;BEB
) − M(ρA;B), (19)

where M is an appropriate entanglement measure (monotone)
and ρA;B = TrEAEB (ρAEA;BEB

). Note that, since M is an
entanglement monotone defined for bipartite systems,

M(ρAEA;BEB
) is calculated according to the bipartition

(AEA; BEB). In addition, since the partial traces over EA and
EB are local operations [17,23], M(ρAEA;BEB

) � M(ρA;B)
and so we always have MI � 0.

Assuming that we have access only to the system and not
to the environments, the meaning of the inaccessible entangle-
ment is clear: It measures the amount of entanglement which
is present between the two separated parts AEA and BEB ,
but is inaccessible for us. If, at the initial moment, we have
MI > 0, it means that there is a supply of entanglement, in
the whole system-environment, which is inaccessible, initially.
But, during the interaction of the system and the environments,
even if this interaction is localized, (a part of) this supply can
transfer to the system and lead to exceeding the entanglement
of the system, rather than its initial value.

In this paper, we use the concurrence as the entanglement
measure (monotone). So, we rewrite Eq. (19) as

CI (t) = C[ρAEA;BEB
(t)] − C[ρA;B(t)]. (20)

Let’s consider the case studied in the previous section. First,
note that, from Eq. (2), we have

C
(∣∣ψ (1)

AB

〉 ⊗ |1E〉) = C
(∣∣ψ (1)

AB

〉)
,

C
(∣∣ψ (2)

AB

〉 ⊗ |0E〉) = C
(∣∣ψ (2)

AB

〉)
, (21)

where the concurrence is calculated according to the bipartition
(A; BE). So, for the initial state of the system-environment,
given in Eq. (12), according to Eq. (3), we have

C(ρA;BE) � pC
(∣∣ψ (1)

AB

〉) + (1 − p)C
(∣∣ψ (2)

AB

〉)
. (22)

On the other hand, performing the local projective measure-
ment, given by {IAB ⊗ |0E〉〈0E|,IAB ⊗ |1E〉〈1E|,IAB ⊗ (IE −
|0E〉〈0E| − |1E〉〈1E|)}, the initial state, given in Eq. (12), trans-
forms to the ensemble {(p,|ψ (1)

AB〉 ⊗ |1E〉),(1 − p,|ψ (2)
AB〉 ⊗

|0E〉)}. Therefore, from Eqs. (5) and (21), we have

C(ρA;BE) � pC
(∣∣ψ (1)

AB

〉) + (1 − p)C
(∣∣ψ (2)

AB

〉)
. (23)

So, combining Eqs. (22) and (23) gives us

C(ρA;BE) = pC
(∣∣ψ (1)

AB

〉) + (1 − p)C
(∣∣ψ (2)

AB

〉)
. (24)

In addition, since the whole dynamics of the system-
environment is given by the local unitary transformation
IA ⊗ UBE(t), we have C[ρA;BE(t)] = C[ρA;BE(0)]. Therefore,
Eq. (20) can be rewritten as

CI (t) = pC
(∣∣ψ (1)

AB

〉) + (1 − p)C
(∣∣ψ (2)

AB

〉) − C[ρA;B(t)].

(25)

In Fig. 1, C[ρA;BE(t)] = C[ρA;BE(0)] = pC(|ψ (1)
AB〉) +

(1 − p)C(|ψ (2)
AB〉) is plotted, as the blue dotted line. So, CI (t)

is given by the difference between this blue dotted line and
the black solid curve, which gives the C[ρA;B(t)]. Since
CI (0) > 0, there is an initial supply of entanglement, in the
whole system-environment, which is initially inaccessible for
the system. As we see from Fig. 1, during the time evolution,
(a part of) this supply can transfer to the system and lead to
the exceeding C[ρA;B(t)] than C[ρA;B(0)], for some times t .

Note that, as mentioned in the previous section, since the
environment is one partite, the (initial) supply of the entangle-
ment in the environment is zero. But, interestingly, the initial
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supply of the entanglement in the whole system-environment,
which is initially inaccessible for the system, i.e., CI (0), is
greater than zero and leads to entanglement exceeding, in the
system.

It is also worth noting that the previously introduced concept
of hidden entanglement, in Ref. [31], is, in fact, a special case
of the inaccessible entanglement, introduced here. This can be
shown simply, using a result of Ref. [32]. Hidden entanglement
has been introduced to explain the entanglement revival in
a system which interacts with a classical environment. For
example, consider a bipartite quantum system S = AB, such
that the part A is isolated from the environment and only the
part B interacts with a random classical field. The effect of the
random classical field on B can be modeled as acting random
unitary operators U

(j )
B on B, each with the probability pj [32].

Therefore, the whole dynamics of the system can be written
as [32]

ρAB(t) =
∑

j

pj

(
IA ⊗ U

(j )
B (t)

)
ρAB(0)

(
IA ⊗ U

(j )†
B (t)

)
,

(26)

where ρAB(0) is the initial state of the system and ρAB(t) is the
state of the system at time t .

We can model the whole system-environment evolution
as the following [32]. We get the initial state of the system-
environment as

ρSE(0) = ρAB(0) ⊗
∑

j

pj |jE〉〈jE |, (27)

where {|jE〉} is an orthonormal basis for the environment E.
In addition, the system-environment undergoes the evolution
given by the unitary operator,

USE(t) =
∑

j

IA ⊗ U
(j )
B (t) ⊗ |jE〉〈jE|. (28)

From Eqs. (27) and (28), it can be shown simply that the
reduced dynamics of the system S = AB is given by Eq. (26).
In addition, the reduced state of the environment remains
unchanged during the evolution, as expected. We have ρE(t) =∑

j pj |jE〉〈jE| = ρE(0), which is a classical state, i.e., it
contains no superposition of the basis states |jE〉.

First, note that, since the initial state ρA;BE(0) in Eq. (27)
is factorized, it can be shown simply that C[ρA;BE(0)] =
C[ρA;B(0)]. In addition, since the dynamics of the whole
system-environment is given by the local unitary transforma-
tion, given in Eq. (28), we have

C[ρA;BE(t)] = C[ρA;BE(0)] = C[ρA;B(0)]. (29)

On the other hand, if we define

ρ
(j )
A;B(t) = (

IA ⊗ U
(j )
B (t)

)
ρAB(0)

(
IA ⊗ U

(j )†
B (t)

)
, (30)

then, since under local unitary transformations entanglement
does not change, we have C[ρ(j )

A;B (t)] = C[ρA;B(0)]. Therefore,
we can rewrite Eq. (29) as

C[ρA;BE(t)] = C[ρA;B(0)] =
∑

j

pjC
[
ρ

(j )
A;B(t)

]
. (31)

Finally, similar to Eqs. (19) and (20), we have

CI (t) = C[ρA;BE(t)] − C[ρA;B(t)]

=
∑

j

pjC
[
ρ

(j )
A;B(t)

] − C[ρA;B(t)], (32)

which coincides with the definition of the hidden entanglement,
given in Ref. [31]. [Note that Eqs. (19) and (20) are written for
the quadripartite configuration, but Eq. (32) is for the tripartite
configuration.]

In this case, since CI (0) = 0, there is no initial supply of
entanglement in the system-environment which is inaccessible
for the system. So, the entanglement of the system cannot
exceed its initial value. In this case, only the entanglement
revival can occur; i.e., for some times t > 0 the entanglement
of the system can reach its initial value, but can not exceed it.
This is in agreement with the results of Refs. [31,32].

It is also worth noting that, in fact, there are two minor
differences between the inaccessible entanglement in Eq. (32)
and the definition of hidden entanglement, given in Ref. [31].
First, there, entanglement of formation [1,26] is used as the
entanglement measure, instead of concurrence which we used
here. Entanglement of formation is also an entanglement
monotone [22,23] and so a similar line of reasoning, similar to
that given from Eqs. (29)–(32), can be given for it, too. Second,
there, the definition of the hidden entanglement is restricted to
the case that (the initial state of the system is pure and so)
the final ensemble is an ensemble of pure states. Here, it is
generalized to include the case that (the initial state of the
system is mixed and so) the final ensemble is an ensemble of
mixed states as {pj ,ρ

(j )
A;B (t)}.
VI. CONCLUSION

In this paper, we have considered the case that the system
S = AB is bipartite and the part A is isolated from the
environment and only the part B of the system interacts with
its local environment E. We have focused on the phenomenon
of exceeding the entanglement, rather than its initial value, in
such system.

First, using the results of Refs. [18,19], we have emphasized
that the phenomenon of entanglement exceeding in the system,
under local interactions with the environment, can occur only
when the initial state of the whole system-environment is not
a Markov state as Eqs. (6) or (9).

Second, we have shown that this phenomenon can occur
even if we have the three following features, simultaneously:

(1) The (initial) entanglement of the environment is zero.
(2) The initial state of the system-environment contains only

classical correlation between the system and the environment.
(3) The reduced dynamics of the system is completely

positive.
Finding this interesting case is not only due the interaction

model, considered in Sec. IV as Eq. (10), but also, due
choosing the initial state of the system-environment ρSE(0),
appropriately, as Eq. (12). In Fig. 1, if we change the initial
moment from t0 = 0 to another t0 > 0, the dynamics of the
entanglement, for t � t0, may not possess the above three
features, simultaneously. However, this does not change the
interesting fact that when we choose the initial moment as
t0 = 0 [when we choose the initial state as Eq. (12)], the
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dynamics of the entanglement, for t � 0, possesses all the three
above features, simultaneously.

And third, we have given an explanation of entanglement
exceeding, introducing the concept of inaccessible entangle-
ment CI . If, at the initial moment, CI > 0, this means that
there is an initial supply of entanglement in the whole system-
environment, which is initially inaccessible for the system.
Transfer of (a part of) this supply to the system, during the in-
teraction of the system and the environment, leads to exceeding
the entanglement of the system, rather than its initial value.

The applicability of the inaccessible entanglement CI is
not restricted to the case studied in Sec. IV. This concept can
be used to explain entanglement exceeding and entanglement
revival, in any open quantum system, interacting with the
environment locally. For example, we have shown that the
previously introduced concept of hidden entanglement in
Ref. [31], which was introduced to explain entanglement
revival when the system is interacting locally with a classical
environment, is a special case of the inaccessible entanglement,
introduced in this paper.
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