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Simple factorization of unitary transformations
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We demonstrate a method for general linear optical networks that allows one to factorize any SU(n) matrix
in terms of two SU(n − 1) blocks coupled by an SU(2) entangling beam splitter. The process can be recursively
continued in a straightforward way, ending in a tidy arrangement of SU(2) transformations. The method hinges
only on a linear relationship between input and output states, and can thus be applied to a variety of scenarios,
such as microwaves, acoustics, and quantum fields.
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I. INTRODUCTION

Linear optics constitutes an outstanding setting for in-
formation processing. The Knill-Laflamme-Milburn [1] pro-
tocol for scalable quantum computing, experimental boson
sampling [2–5], or the generation of quantum random
walks [6–11], are good examples of how the growing capa-
bilities of fabrication technologies are transforming the field
of quantum photonics [12]. In addition, these capabilities are
altering classical areas, such as microwave photonics [13] or
optical networking [14,15].

A basic ingredient for all these developments is the design
of reconfigurable setups that can perform any linear operation.
The influential work by Reck et al. [16], which can be traced
back to the elegant results of Murnaghan [17], established
that a specific array of basic two-mode operations is sufficient
to implement any unitary in U(n). In this way, it is indeed
possible to construct a single device with ample versatility to
implement any possible unitary operation up to the specified
number of modes. Recently, demonstrations of large-scale
linear networks have appeared [18,19].

Continued interest in these universal processors for classical
and quantum applications has led to new designs [20,21].
In particular, an intriguing proposal came out [22] requiring
roughly half the optical depth of the original Reck et al.
design [16]. This is important for minimizing optical losses
and reducing fabrication resources.

We discuss here a decomposition of any n × n unitary in
terms of two (n − 1) × (n − 1) unitaries coupling the same
n − 1 modes, and a single 2 × 2 unitary coupling one of those
n − 1 to the remaining mode [23]. The scheme is recursive; it
can be halted at any dimensionality of subtransformations or
performed in its end, resulting in a tidy arrangement of SU(2)
gadgets. The structure is thus

Rn(�) = Rn−1(�̃) R12(α,β,α) Rn−1(�̃′). (1)

This factorization is economical from a computational per-
spective: It requires the evaluation of fewer matrices than that

of Reck et al. [16] and this advantage increases with n. This
economy is particularly relevant as multiparticle scattering by
large unitary arrays are now within the realm of experimental
feasibility. Finally, with the transformations Rn−1(�̃) and
Rn−1(�̃′) in the same subgroup, the scheme is well adapted to
calculations using the Gelfan’d-Tseitlin machinery [24–27].

We demonstrate the universality of the design and explain
in detail some pertinent examples that reveal the directness of
the procedure.

As a byproduct, the Haar measure of U(n) can easily be
factorized according to our scheme. There is a fresh interest
in realizing Haar random unitary matrices [28], because of
the important role they play in various tasks for quantum
cryptography [29] and quantum protocols [30]. From this
viewpoint, our analysis, which is reminiscent of the ideas
sketched in Ref. [23], might be instrumental for a simpler
implementation of these operations [31,32].

Finally, it is important to note that, while our scheme is
generally versatile, applies to any n, and can be used for
arbitrary representations of SU(n), there exist other algorithms
in dimension 2m (see, e.g., Refs. [33–35]) that achieve more
efficient decompositions with respect to the quantum circuit
model. Our decomposition does not improve on the bounds
presented in this other work, but instead offers a convenient
and experiment-driven parametrization that retains the same
scaling with n regardless of the internal tensor-product struc-
ture of the system.

II. RECURSIVE FACTORIZATION OF UNITARY
TRANSFORMATIONS

An ideal, lossless linear optical circuit with n input channels
and n output channels performs an optical transformation
which can be described by an n × n matrix; i.e., it belongs
to the group U(n). We can always factor an overall phase to
make the determinant equal to 1, so we deal with SU(n) [17],
which has n2 − 1 independent parameters.
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Our goal is to explore an intuitive factorization of SU(n)
transformations, which is especially germane for our purposes
here and has the additional advantage of being highly recursive.
To be more precise, our method can be symbolically stated in
the following way: Any Rn(�) ∈ SU(n) can be written as in
Eq. (1), where Rn−1(�̃),Rn−1(�̃′) ∈ SU(n − 1). Here, Rij is a
matrix of the form,

Rij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0

0 1
...

...
. . .

...
... Rij

...
...

. . .
...

... 1 0

0 · · · · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

coupling adjacent modes i and j (with j = i + 1) via an SU(2)
transformation Rij (α,β,γ ) acting on them.

We recall that any R(α,β,γ ) ∈ SU(2), parametrized by the
Euler angles, can be always written as

R(α,β,γ ) = Rz(α) Ry(β) Rz(γ ) =
(

eiα/2 0

0 e−iα/2

)

×
(

cos(β/2) − sin(β/2)

sin(β/2) cos(β/2)

) (
eiγ /2 0

0 e−iγ /2

)
,

(3)

where we follow the standard notation of Ref. [36]. This
factorization is in turn a prescription for how to construct
the SU(2) device: When the information is encoded in the
polarization, a set of three wave plates is enough [37]; for
path encoding, this can be mapped to a beam splitter of
transmittance cos2(β/2) and phase shift γ , plus a phase shifter
that gives the required extra phase α. The action of Rij can also
be devised for more complex systems, such as ion traps [38]
and superconducting circuits [39].

Let us illustrate our scheme in a constructive way, starting
with the simplest case of SU(3). Of course, other parametriza-
tions of SU(3) elements are possible [40–42], but one that is
particularly useful [43] is into a sequence of adjacent SU(2)i i+1

transformations mixing channels i and i + 1. More explicitly,
with R3(�) ∈ SU(3), we have

R3(�) = R23(α1,β1,γ1) R12(α2,β2,α2) R23(α3,β3,γ3). (4)

The middle transformation in the sequence depends only on
two parameters (so, it is just a pure beam splitter), and the
whole R3(�) depends on eight, as it should. This factorization
is symbolically denoted by a sequence of 2 × 2 squares
representing SU(2) transformations, as illustrated in Fig. 1.
To lighten the notation, we write Rij (k) where k denotes the
number of parameters in the transformation. For example,

Rij (2) := Rij (α,β,α), Rij (3) := Rij (α,β,γ ) (5)

is used throughout. In addition, the parameters in the first
and last R23 operations are understood to be different even

3 3

2

FIG. 1. A schematic illustration of the factorization of an SU(3)
transformation into a sequence of SU(2) transformations. Each mode
is represented by a line. Transformations between modes are repre-
sented by boxes, into which the modes are fed. The number on each
box indicates the number of parameters in the transformation; we use
color for visual ease of distinguishing between transformations on the
same number of modes, but differing numbers of parameters.

if this is not indicated in the boxes. For completeness we
recall that finite transformations of the Rij type are obtained
by exponentiation of generator matrix elements:

Rij (α,β,γ ) = e−i α
2 (Cii−Cjj )e− β

2 (Cij −Cji )e−i
γ

2 (Cii−Cjj ), (6)

where Cij , with i,j = 1, . . . n, are generators of U(n) mixing
modes (ij ) when i �= j or measuring the population i when
i = j .

To proceed further, we next factorize an SU(4) matrix. We
start with a 4 × 4 special unitary matrix M which we write
generically as

M =

⎛
⎜⎜⎜⎝

x ∗ ∗ ∗
y ∗ ∗ ∗
z ∗ ∗ ∗
w ∗ ∗ ∗

⎞
⎟⎟⎟⎠. (7)

Apply R−1
34 (α1,β1,γ1) indicated in Eq. (2), namely

R−1
34 (α1,β1,γ1) =

(
12×2 02×2

02×2 R−1
34 (α1,β1,γ1)

)
. (8)

Choose now the Euler angles as

e− 1
2 i(α1+γ1) cos

(
1

2
β1

)
= z√

1 − |x|2 − |y|2 ,

e− 1
2 i(α1−γ1) sin

(
1

2
β1

)
= w√

1 − |x|2 − |y|2 , (9)

to obtain

R−1
34 (α1,β1,γ1) M =

⎛
⎜⎜⎜⎝

x ∗ ∗ ∗
y ∗ ∗ ∗√

1 − |x|2 − |y|2 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎟⎟⎠,

(10)

that is, we make a 0 appear at position (4,1). The second step
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FIG. 2. A schematic illustration of the factorization of an SU(4)
transformation as a sequence of SU(3) transformations, each itself
written as SU(2) blocks.

is to apply R−1
23 to make a 0 appear at position (3,1), and finally

R12 to produce a 0 in position (2,1):

R−1
12 R−1

23 R−1
34 M =

⎛
⎜⎜⎜⎝

1 0 0 0

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎟⎟⎠, (11)

M = R34R23R12

⎛
⎜⎜⎜⎝

1 0 0 0

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎟⎟⎠, (12)

with the phases chosen so that 1 occurs in position (1,1). Since∑4
j=1 |aij |2 = 1 for any row of a unitary matrix, the last step

also forces 0s on the first row. As all the Rij s are unitary,
the result of R−1

12 R−1
23 R−1

34 acting on the original matrix is a
3 × 3 unitary submatrix, for which the original decomposition
in Eq. (4) can be applied.

Parameter counting (after suitable relabeling of the modes)
can be neatly understood graphically. First, consider an SU(4)
transformation obtained from an SU(2) one of the type
R12(α,β,α), sandwiched between two SU(3) transformations,
as illustrated in Fig. 2. Each SU(3) transformation is of the
type given in Fig. 1, and they are indicated by shaded squares.

Closer inspection of Fig. 2 shows that there are two adjacent
R34, joined by a red arrow, that commute with the middle
R12, as they mix completely disjoint channels. One can thus
“push together” or combine these transformations, as they are
of the same SU(2) type, so their combination is a single SU(2)
matrix of the R34 type. This is symbolically indicated by a box
of different color. The resulting system is in a green shaded
triangle, which represents just a full SU(3) transformation. The
total number of parameters is 15, as it should be. Moreover, as
a result of pushing together boxes, the partial SU(3) sequence

3
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2

2

2

2

2

3

2

2

2

15 15

3 3

FIG. 3. A schematic illustration of the factorization of an SU(5)
transformation as a sequence of two SU(4) transformations, coupled
by an SU(2). The bottom panel shows the final result in terms of SU(2)
blocks. The shaded triangle is an equivalent SU(4) transformation.

R23R34 in Eq. (12) is an SU(3)/SU(2) transformation obtained
from Eq. (4) by setting the second R23 to 1.

We can now immediately generalize the scheme to construct
an SU(5) transformation as an SU(2) sandwiched in between
two SU(4) transformations, represented as green boxes (with
15 parameters) in Fig. 3. Again, boxes can be combined into a
single SU(3) following the same pushing procedure. The final
result is just a SU(4) transformation (indicated again by the
shaded triangle) and the total number of parameters is 24. We
have written a PYTHON software package capable of gener-
ating the entire set of parameters, which we make available
online [44].

At this time it would be useful to compare our decomposi-
tion to other existing schemes. We recall that factorizations are
representation independent: Even if a scheme is found using the
fundamental n × n representation of SU(n), it remains valid
for any other representation of SU(n). Any general SU(n)
transformation must also depend on n2 − 1 parameters: The
number of exponentiations in any scheme must always amount
to n2 − 1 else the transformation is not general.

In Fig. 4 we illustrate the designs of Reck et al. [16]
and Clements et al. [22] for four modes. Both exclusively
employ two-parameter SU(2) transformations; i.e., the mesh
is made only of beam splitters. The single-mode phase shifts
are programmed at the output of the channels. This is in
contradistinction with our results displayed in Fig. 2.

The decomposition of Reck et al. [16] uses transformations
on both adjacent and nonadjacent modes, for which the evalu-
ation of Rij transformations for every possible (ij ) pair of the
network is necessary. The scheme is recursive with SU(n − 1)
transformations easily identifiable as a subblock of the full
SU(n).
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FIG. 4. Illustration of the factorization schemes of Clements et al.
[22] (top) and Reck et al. [16] for the case of four modes.

Our scheme is also recursive, but with the same type
of SU(n − 1) transformations appearing twice in Eq. (1),
and mixes only adjacent modes. It achieves computational
economy over Reck et al. [16] because some generators are
used multiple times, so that fewer of them need to be computed.
For instance, our SU(4) transformation uses a (34) block three
times, (23) twice, and (12) once (in general, Ri i+1 is used i

times so Ci i+1 and its transpose conjugate are used i times).
Then our scheme requires nine types of matrix elements:

six of the type C34,C43,C23,C32,C22,C33,C44 for SU(3) trans-
formations of modes (234), plus three more C12,C21,C11 for
the SU(2) transformation of modes (12). Taking into account
the fact that Cji = CT

ij , this generalizes to n − 1 matrices
of the type Ci i+1 and n diagonal matrices Cii for SU(n).
Reck et al., on the other hand, require the evaluation of three
additional matrices for the nonadjacent transformations of
the type R13,R14, or R24, which entails the computation of
1
2 (n2 − n) generators of the Cij type with j > i, and n diagonal
matrices Cii for SU(n). Our scheme thus saves the evaluation
of 1

2 (n − 1)(n − 2) generators over Reck et al. [16], with the
additional advantage that the associated scaling in the number
of Ci i+1 needed is linear rather than polynomial. In fact one
can see that, by reusing (i,i + 1) blocks, our scheme minimizes
the number of matrix elements to be computed, as one cannot
construct a general transformation by using fewer types of
blocks.

This economy becomes very relevant in large networks
containing many particles, as the following pertinent exam-
ple confirms. Consider the scattering of p indistinguishable
photons by an n × n interferometer. This system, currently
very popular in the context of boson sampling, is described
by an

(
n+p−1

p

)
-dimensional representation of SU(n) obtained

by exponentiating generators using the same factorization as
the fundamental n × n representation, with each SU(n − 1) a
block diagonal submatrix. Thus for n = 9 and p = 5 [45], one
must exponentiate a sequence of matrices of size 1287 × 1287.
Permanents are entries of the full 1287 × 1287 matrix; i.e., D

functions for this irreducible representation [46]. Whereas the
decomposition of Reck et al. [16] (or its primal version by

Murnaghan [23]) requires the evaluation of 36 nondiagonal
Cij with j > i, their transpose conjugates, and nine Cii , our
scheme requires the evaluation of only eight Ci i+1 matrices,
their transpose conjugates, and nine Cii . As the size of practical
interferometers increases, the linear scaling of this scheme thus
stands to offer substantial computational savings. For boson
sampling, where the number of modes n is ideally expected to
scale like the square of the number p of photons, the matrices of
the symmetric representation are of size ∼105 × 105 for p = 5.
Clearly, minimizing the number of Cij to evaluate becomes an
issue important from a resource and accuracy perspective.

Note that the factorization of Eq. (1) is also very natural
as the canonical set of basis states, enumerated in terms of
Gelfan’d-Tseitlin patterns |(m)n〉, also follow the SU(n) ↓
SU(n − 1) subgroup chain [24–27]. Thus the group functions,

〈(m)n|Rn−1(�̃)R12(α,β,α)Rn−1(�̃′)|(m′)n〉, (13)

are naturally expressed as a sum of products of SU(n − 1) ×
SU(2)× SU(n − 1) group functions. A byproduct of this form
is that the SU(n − 1) subgroup transformations are block-
diagonal in the Gelfan’d-Tseitlin basis, a useful feature to
check calculations.

The scheme of Clements et al. [22] has a different structure,
corresponding instead to a rectangular mesh of beam splitters.
One might expect the triangular scheme to be more resilient
to losses in experiments in which only a small proportion of
its input ports are accessed, whereas the rectangular scheme is
likely to be beneficial for experiments that involve accessing
most of its inputs.

Algorithmically, our scheme differs from the scheme of
Clements et al. [22] in the order in which 0s are made to
appear when working on the original matrix M . As a result (and
by design), the scheme mixes channels “as early as possible”
and achieves depth of n. In contradistinction our scheme
mixes channels “as late as possible”: This is necessary to
achieve the highly recursive factorization structure of Eq. (1),
but the tradeoff is a scheme of depth 2n − 3, on par with
Reck et al. [16].

This difference in optical depth is the reason why, in a simple
loss model that assumes equal insertion loss for every beam
splitter, Clements et al. [22] always has better performance.
A careful analysis can be found in Ref. [22]. In other words,
in Clements et al. [22] all the modes encounter roughly the
same number of beam splitters; in the triangle, transformation
Rij occurs i times, then modes experiencing more beam
splitters experience more loss and so the lower modes get more
scrambled than those at the top of the triangle.

Finally, we stress that in our scheme the rightmost Rn−1

transformation is a full subgroup transformation, while the
leftmost is a partial subgroup transformation. Pushing and
combining boxes show how an SU(n) device can be con-
structed from two SU(n − 1) devices and a single SU(2)
device. In this respect, it is worth mentioning that the recent
interest in networks of multiport devices instead or beam
splitters [47,48] makes our algorithm especially relevant, as
we can decompose a unitary as coupled SU(d) devices, with
d chosen at will. This makes also the difference with the
well-known decompositions of quantum gates [35,49,50].
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III. RECURSIVE HAAR MEASURES

The recursive factorization in Eq. (1) also implies a recur-
sive form of the Haar measure. We just briefly recall that a
Haar measure is an invariant measure on the group manifold.
It thus provides a natural probability distribution over the
group, in the sense that it equally weighs different regions,
thus behaving like a uniform distribution on SU(n). This is of
utmost importance for the generation of statistical ensembles
of unitary matrices [28], which is a useful tool in many fields
of physics, as heralded in the Introduction.

For SU(2) we have

d�2 = sin βdβdαdγ. (14)

Simple application of the usual method yields [51] the
SU(3) measure, namely,

d�3 = d�2(1)
[

sin β2 sin2
(

1
2β2

)
dα2dβ2

]
d�2(3), (15)

with d�2(k) = sin βkdβkdαkdγk an SU(2) measure.
For SU(4), we find

d�4 = d�̃3(1,2)
[

sin4 (
1
2β3

)
sin β3

]
d�3(4,5,6), (16)

where d�3(i,j,k) is an SU(3) measure of the arguments in
parentheses and

d�̃3(1,2) = d�2(1)
[

sin β2 sin2
(

1
2β2

)
dα2dβ2

]
(17)

is a coset measure, with fewer parameters compared to the
full measure. The effect of combining R34 transformations by
pushing an R34 transformation under R12, which we discussed
in the previous section, results in the removal of one d�2 factor
in d�̃3(1,2).

In SU(5) we find

d�5 = d�̃4(1,2,3)
[

sin6
(

1
2β4

)
sin β4

]
d�4(5,6,7,8,9,10),

(18)

with d�4 and d�̃4(1,2,3) having the same meaning as before.
The recursion steps to higher n are clear. Quite clearly the

middle factor is conveniently found to be of the form,

sin βn−1 sin2(n−2)
(

1
2βn−1

)
, (19)

with maximum at cos βn−1 = −(n − 2)/(n − 1). This is in
agreement with the result of [23] and other results obtained
from different perspectives [32,52] and it is very useful in many
instances, e.g., for the parametrization of the families of most
probable matrices.

The parametrization of Eq. (1) and the examples above
also neatly illustrate how to isolate from the full measure
the coset measure d�̃n−1 over SU(n)/U(n − 1): It is obtained
by removing the full SU(n − 1) part containing (n − 1)2 − 1
factors from full measure. The usefulness of this coset measure
comes from applications to coherent states [53]; these states
“live” in the coset space SU(n)/U(n − 1) so the coset measure
is what is required for integration over these states.

IV. CONCLUDING REMARKS

In conclusion, we have discussed the design for universal
linear n × n optical networks which arises very naturally by
recycling as much as possible the elements already present in a
network of size (n − 1) × (n − 1). Our algorithm decomposes
unitary matrices into a sequence of unitary matrices of one
dimension less, entangled by a beam splitter. We expect that
our compact method will play an important role in the devel-
opment of optical processors for both classical and quantum
applications.

In a more technical context, our method allows one to
write SU(n) group functions in terms of SU(n − 1) group
functions, thereby extending the result of Ref. [43] and the
parametrization of coherent states in SU(n)/U(m) for arbitrary
representations of SU(n) when the highest weight state is U(m)
invariant. Work along these lines is now in progress.
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