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Entanglement measures in embedding quantum simulators with nuclear spins
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We implement an embedding quantum simulator (EQS) in nuclear spin systems. The experiment consists of
a simulator of up to three qubits, plus a single ancillary qubit, where we are able to efficiently measure the
concurrence and the three-tangle of two-qubit and three-qubit systems as they undergo entangling dynamics.
The EQS framework allows us to drastically reduce the number of measurements needed for this task, which
otherwise would require full-state reconstruction of the qubit system. Our simulator is built of the nuclear spins
of four 13C atoms in a molecule of trans-crotonic acid manipulated with NMR techniques.
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I. INTRODUCTION

Entanglement, having no classical counterpart, is one of
the most distinctive features of quantum mechanics [1,2],
and it is considered to be a fundamental resource for quan-
tum information processing and quantum communication
[3]. Therefore, it is not surprising that the quantification of
entanglement is a major topic for both the theoretical and
the experimental quantum information communities. In this
respect, entanglement monotones have been introduced as
functionals of a quantum state that take a null value for
separable states and do not increase under local operations
and classical communication [4]. Unfortunately, it is believed
that the measurement of entanglement monotones requires, in
general, full-state tomography (FST) of the system of interest,
something that makes it experimentally intractable in scalable
quantum systems, as the number of necessary measurements
for FST grows exponentially with the system size [5–7].
For instance, 4n − 1 observables need to be measured to
reconstruct the wave function of n qubits, which pose a
difficulty comparable to the classical simulation of such a wave
function with ordinary computers. There have been efforts to
circumvent this difficulty. A paradigmatic example is that of
“entanglement witnesses” which were introduced as detectors
of entanglement. In this case, the value of a physical observable
indicates whether an arbitrary quantum state is entangled or not
[8]; however, only witnesses for specific kinds of entanglement
are known, and not universal ones. Moreover, entanglement
witnesses may detect but not quantify, in general, the amount of
entanglement and therefore do not serve as a comparative tool
among different entangled states. Other alternative methods
rely on collective measurements on many identical copies of
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a given quantum state, which is experimentally demanding
as well [9,10]. On the other hand, it is known that FST is
necessary for universal entanglement detection with single-
copy observables [11]. All in all, quantum computers and
quantum simulators do not seem a priori to be efficient tools
for the quantification of entanglement, at least when compared
to classical computers.

Embedding quantum simulators (EQSs) [12,13] have been
proposed as a path to solve this conflict in the context of
scalable quantum platforms. A one-to-one quantum simulator,
which directly implements the wave function of interest and
its dynamics in a controllable quantum system, is bound to
direct detection of the entanglement present on it, if it measures
the entanglement of the system that it simulates. However,
in many situations, one is not necessarily interested in the
entanglement present in the physical system but rather in
the entanglement predicted by the simulated model and its
evolution in time, in the same manner that the numerical
simulation of quantum systems is not concerned about the
inexistent entanglement among the classical bits employed for
the simulation. Therefore, a suitable mapping of the model of
interest to the quantum simulator that exposes the entangle-
ment of the simulated system without the necessity of FST is
of interest. EQSs provide a systematic manner to construct
quantum simulators on which entanglement monotones are
accessible with a reduced number of measurements when
compared to FST. This is done by the addition of a single
ancillary qubit and a suitable mapping of the initial state and
the Hamiltonian dynamics that allows for the measurement of
antilinear operators.

In this work, we show the first implementation of the EQS
framework with nuclear spins. We implement two EQSs: first
a simulator of two qubits implemented with three nuclear
spins, and second a three-qubit quantum simulator built of
four nuclear spins. For the two-qubit simulator we measure the
concurrence of the system as it evolves under an entangling
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Hamiltonian. We do this with the measurement of just 2
observables, as opposed to the 15 needed for FST. In the
second case, we measure the three-tangle of the system,
which is an entanglement monotone that detects genuine
tripartite entanglement in a three-qubit system. In this case,
the necessary observables are reduced from the 63 needed for
full-state reconstruction to only 6 observables.

II. EQS AND ENTANGLEMENT MONOTONES

For a given Hamiltonian of interest, we assume a matrix
representation that can be decomposed in its real and imaginary
parts as H = A + iB, where A and B are real matrices,
which are respectively Hermitian,A = A†, and anti-Hermitian,
B = −B†. If we consider an arbitrary initial state |φ(0)〉, a
one-to-one quantum simulator would directly implement it in
a physical system and evolve it under Hamiltonian H . In con-
trast, an EQS implements it in an enlarged Hilbert space onto
which both the initial state and the Hamiltonian are mapped.
The initial state is mapped as |�(0)〉 = |0〉 ⊗ Re|φ(0)〉 + |1〉 ⊗
Im|φ(0)〉 and the Hamiltonian as H ′ = iσ0 ⊗ B − σy ⊗ A,
where σ0 is a 2 × 2 identity matrix and σx,y,z are Pauli matrices.
Under this mapping, which only requires the addition of one
ancillary qubit, regardless of the size of the simulated system,
expectation values of antilinear operators can be retrieved with
the measurement of two observables. Antilinear operators take
the form OK , where O is an observable and K is the complex
conjugation operator, which acts on the vector elements of a
ket state by complex conjugating them, K|φ〉 = |φ∗〉. Anti-
linear operators are not Hermitian and therefore they are not
observables, generally requiring full-state reconstruction of the
quantum state of a system to compute their expectation value.
However, under the mapping introduced above, antilinear
operators can be efficiently computed in an EQS according
to the relation

〈φ(t)|O|φ∗(t)〉 = 〈�(t)|σz ⊗ O|�(t)〉
− i〈�(t)|σx ⊗ O|�(t)〉. (1)

It is known that entanglement monotones for qubit systems
can be systematically constructed from antilinear operators
[14]. For instance, the concurrence, which is a two-qubit
entanglement monotone, can be represented as C = 〈φ(t)|σy ⊗
σy |φ∗(t)〉. In an embedding quantum simulator, this would be
retrieved from the expectation values of observables σzσyσy

and σxσyσy in the enlarged space,

C = |〈σz ⊗ σy ⊗ σy〉 − i〈σx ⊗ σy ⊗ σy〉|, (2)

reducing the number of required observables to 2, from the 15
required to do FST of a two-qubit system.

As another paradigmatic example, we can mention the
three-qubit entanglement monotone three-tangle, which can
be defined in terms of antilinear operators as

E3 = | − 〈O1K〉2 + 〈O2K〉2 + 〈O3K〉2|, (3)

with O1 = σ0σyσy , O2 = σxσyσy , and O3 = σzσyσy . Each of
the antilinear operators can be mapped onto two Hermitian
operators in the EQS, which makes the three-tangle accessible
with the measurement of just 6 observables, as opposed to the

C1 C2 C3 C4

C1 -1705.5

C2 41.64 -14558.1

C3 1.48 69.78 -12330.5

C4 7.06 1.18 72.36 -16764.1

T2 1.02 0.92 0.87 0.94

FIG. 1. Molecular structure and Hamiltonian parameters of 13C-
labeled trans-crotonic acid. In experiments, C1, C2, C3, and C4 are
used as a four-qubit simulator. In the table, the chemical shifts and
J -couplings (in Hz) are presented by the diagonal and off-diagonal
elements, respectively. The last row of the table shows T2 (in seconds).

63 required to do FST of three qubits: σzσ0σyσy , σxσ0σyσy ,
σzσxσyσy , σxσxσyσy , σzσzσyσy , and σxσzσyσy .

III. EXPERIMENTAL REALIZATION IN NMR

For a proof-of-principle demonstration of EQSs in spin
systems, we choose a platform of verified controllability and
precision like NMR [15]. Although the potentiality of NMR
platforms to scale up to relevant system sizes is unclear, it is im-
portant to demonstrate the working principles of EQSs in spin
systems. This opens the door to the implementation of EQSs in
other more scalable spin-based quantum platforms that are as
well manipulated with NMR or analogous techniques. This
include nitrogen-vacancy (NV) centers in diamond crystals
[16], hyperfine-qubits in ion traps [17,18], or color centers in
two-dimensional materials [19].

In our experiment, we have used four qubits in a sample of
13C-labeled trans-crotonic acid dissolved in d6-acetone. The
four-qubit quantum simulator is implemented with the nuclear
spins of four carbon atoms of the trans-crotonic acid molecule
labeled from C1 to C4, after canceling their coupling to the
methyl group M and to the hydrogen atoms labeled H1 and
H2. In Fig. 1 we give a pictorial representation of the molecular
structure together with the values of some relevant parameters.
All experiments were carried out on a Bruker AVANCE
400-MHz spectrometer at room temperature. The Hamiltonian
of our system under the weak coupling approximation can be
written as

Hint =
4∑

j=1

π (νj − ν0)σ j
z +

4∑
j<k,=1

π

2
Jjkσ

j
z σ k

z , (4)

where νj and Jjk are the chemical shifts and the J -coupling
strengths, respectively. ν0 is the reference frequency of the 13C
channel in the NMR platform.

We initialize the system in a pseudopure state (PPS), which
is the pure state of interest |0000〉 only with probability ε and
a maximally mixed state otherwise. This is represented with
the density matrix ρ0000 = (1 − ε)σ⊗4

0 /16 + ε|0000〉〈0000|,
where the polarization ε takes the value ε = 10−5 in our
experiment. Conveniently enough, the expectation value of any
observable measured for such a state will be that corresponding
to the state |0000〉 and its time evolution, as the identity
part of the state does not evolve nor contribute to the NMR
signals. To generate this PPS from the initial thermal state,
we used the spatial averaging technique [20–22] and then
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FIG. 2. Quantum circuit and corresponding NMR pulse sequence. (a) Quantum circuit consisting of four controlled-NOT gates and one
local rotation Ry(θ ), which implements the evolution associated with the Hamiltonian H = −ω σy ⊗ σx ⊗ σx . The upper (red) line represents
the ancillary qubit in the EQS, which is held by the nuclear spin of atom C3. Black solid and dashed lines represent the work and idle qubits,
respectively. The dotted controlled-NOT gates can be avoided for initial states of the form |0000〉. (b) NMR pulse sequence corresponding to
the circuit in panel (a). The orange and blue rectangles represent, respectively, π/2 and π pulses around the directions indicated on top of
them. Parameters τ1 and τ2 take values τ1 = 1/2JC3,C4 and τ2 = 1/2JC3,C2. (c) Quantum circuit for the implementation of the Hamiltonian
H = −ω σy ⊗ σx ⊗ σx ⊗ σx , consisting of six controlled-NOT gates and one local rotation Ry(θ ).

performed FST [23,24] to benchmark the quality of our PPS.
A fidelity of 98.77% is computed between the target pure
state |0000〉〈0000| and the experimentally sensitive part of the
constructed PPS, setting the ground for reliable subsequent
simulations.

For a first experiment, we consider a small toy model
consisting of the two-qubit initial state |φ2(0)〉 = |00〉 evolving
under the entangling Hamiltonian (h̄ = 1) H2 = ωσx ⊗ σx .
The common method to track the evolution of concurrence
for such a small model would involve performing FST of the
evolved state |φ2(t)〉 = e−iH2t |00〉 at a collection of times ti ,
which would require the measurement of 15 observables at
each time ti . Then with the whole wave function concurrence
would be computed according to C = |〈φ(t)|σy ⊗ σy |φ∗(t)〉|,
which for this specific system can be shown to be C =
| sin 2ωt |.

Using the EQS formalism, the problem is recast into the
initial state |�2(0)〉 = |000〉 evolving under the Hamiltonian
H̃2 = −ωσy ⊗ σx ⊗ σx . In Fig. 2(a), we show the quantum
circuit that implements such an evolution, which includes
four controlled-NOT gates and one local rotation Ry(θ ) =
exp(−iθσy/2) acting on the ancillary qubit with θ = −2ωt .
Considering that the initial state |000〉 is unaffected by the first
two controlled-NOT gates, one can reduce the circuit to that
one indicated by the continuous lines in Fig. 2(a), disregard-
ing the diagram parts represented with discontinuous lines.
Controlled-NOT gates Ua,b, with qubit a and b representing the
control and target qubits, respectively, can be decomposed into
a suitable form for their implementation in NMR, consisting

of local rotations and J -coupling kind evolutions [25]:

Ua,b =
√

iRa
z

(π

2

)
Rb

z

(
−π

2

)
Rb

x

(π

2

)
U

(
1

2J

)
Rb

y

(π

2

)
. (5)

Here, U ( 1
2J

) is the J -coupling evolution e−iπσ a
z σ b

z /4. Moreover,
any z-rotation Rz(θ ) can be decomposed in terms of rotations
around the x and y axes, Rz(θ ) = Ry(π/2)Rx(−θ )Ry(−π/2).
Local rotations Ry(θ ) can be realized by setting the reference
frequency ν0 to satisfy the condition ν3 − ν0 = −50 Hz and
using refocusing pulses to cancel the phase accumulated on
the unaddressed 13C because of the offset [26]. The specific
pulse sequence consisting exclusively of local rotations and J -
coupling evolutions is illustrated in Fig. 2(b). Because selective
excitations are usually imperfect in homonuclear systems and
the effect of too many pulses is accumulative, resulting in a
snowball effect of imprecisions, we choose to pack up all the
pulses together and implement the simulation via the gradient
ascent pulse engineering (GRAPE) technique [27,28]. The
GRAPE approach provides a 15-ms shaped-pulse width and
over 99.5% fidelity for the whole package of pulses.

In our setup, we can measure expectation values of ob-
servables of the forms σx,y ⊗ σ⊗n−1

0,z and σx,y ⊗ |k〉〈k|⊗n−1

by measuring the free induction decay (FID) signal at the
end of the protocol (see Appendix B). Here, n is the total
number of system qubits and k can take values 0 and 1. For
the simulation of this first model, we only need three physical
qubits. Therefore, we leave qubit C4 as a spectator qubit that
does not take part in the dynamics, as indicated in Fig. 2, and we
handle the data in the subspace associated with the initial state
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FIG. 3. Experimental results for the evolution of concurrence,
C(t). Panels (a) and (b) show the time evolution of the expectation
values of the EQS observables σzσyσy and σxσyσy , respectively.
(c) Reconstructed concurrence C(t) of the simulated model from the
values of the measured 〈σzσyσy〉 and 〈σxσyσy〉. The dots represent
experimental data and the lines stem from theory predictions. The
error bars are calculated from the estimated imperfections of the
GRAPE pulses, PPS preparation, and T2-decoherence effects.

|0〉 of qubit C4. This means that the two observables of interest,
σzσyσy andσxσyσy , are retrieved from the expectation values of
the four-qubit operators σzσyσy ⊗ |0〉〈0| and σxσyσy ⊗ |0〉〈0|.
We consider 25 temporal points ranging from ωtin/2π = 0.01
to ωtf/2π = 0.49 with steps of ωtst/2π = 0.02. For each time
ti , we carry out the evolution of the EQS twice, and we measure
after each of the evolutions the expectation value of one of
the observables, 〈σzσyσy〉 or 〈σxσyσy〉 (see Appendix A). The
results and their comparison to theoretical predictions are
shown in Fig. 3.

We consider a somewhat more involved case now with
the simulation of a three-qubit entangling dynamics, which
consists of the initial state |φ3(0)〉 = |000〉 evolving under
the Hamiltonian H3 = ω σx ⊗ σx ⊗ σx . Following the same
recipe introduced in the analysis of the previous case, the
EQS for such a model consists of the Hamiltonian H̃3 =
−ω σy ⊗ σx ⊗ σx ⊗ σx acting on the initial state |�4(0)〉 =
|0000〉. Figure 2(c) illustrates the corresponding quantum
circuit, which includes six controlled-NOT gates and a local
operation Ry(θ ) = exp(−iθσy/2), with θ = −2ωt , acting on
the ancillary qubit. Based on the same considerations as those
of the previous experiment, the first three controlled-NOT gates
can be disregarded and the remaining pulse sequence packed
up and implemented with the GRAPE technique, which for this
case results in a 30-ms shaped-pulse with over 99.5% fidelity.
Then, we measure the expectation value of the six observ-
ables of interest: σzσ0σyσy , σxσ0σyσy , σzσxσyσy , σxσxσyσy ,

σzσzσyσy , and σxσzσyσy (see Appendix A). We consider the
same temporal points as those of the previous experiment. In
Fig. 4, we presents the results of these experiments and the
corresponding three-tangle E3 computed with them.

IV. DISCUSSION AND CONCLUSION

It is believed that liquid state NMR platforms present little
or no entanglement among their computational degrees of
freedom, however, they still serve as a rather stable and highly
controllable quantum platform, where unitary evolutions can
be implemented, at least in a small scale. In this respect, the
demonstration of algorithms in NMR serves as a test bed
for the implementation of such protocols in other spin-based
quantum platforms, where the physics and control techniques
are assumed to be similar. Here, we have demonstrated the
feasibility of EQSs with nuclear spins manipulated via NMR
techniques, something fundamentally different from previous
photonic implementations of EQSs and that could open the
door to their implementation in presumably more scalable
spin-based quantum platforms, like NV centers or microwave
trapped ions. In particular, we have employed a four-qubit
NMR platform to compute the evolution of entanglement on
a simulated three-body system. Notice that our approach does
not measure the entanglement present in the system, if any, but
it rather computes the entanglement in the simulated system.

For the mixed-state case the standard definition
of entanglement monotones invokes the convex roof
E(ρ) = min

∑
i piE(|φi〉), where the minimum is taken

over the infinite pure-state decompositions (pi,|φi〉) of ρ. In
this respect, an EQS could be combined with classical means to
provide a quantum-classical hybrid algorithm, where an EQS
would be employed to compute the entanglement monotones
associated with the pure states in each decomposition, E(|φi〉).
This information would be fed to a classical machine running
a minimization algorithm, which would indicate which
decomposition to try next until a minimum is found [12].

If scalable quantum simulators and quantum computers
are to be used as tools in the analysis of entanglement and
its dynamics, they will unavoidably need to be designed
under suitable mappings that guarantee that entanglement
measures can be efficiently retrieved. The EQS paradigm offers
a mapping which drastically reduces the number of observables
that codify this information, with a minimum added complexity
in the initialization and dynamics of the quantum simulator.
Here, we validate these ideas with two experiments in nuclear
spins controlled with NMR techniques. Our experimental
results show a high degree of correspondence with the theory
predictions, opening the door to the experimental field of EQSs
in spin-based platforms.

ACKNOWLEDGMENTS

T.X. and G.-L.L. are grateful to the following funding
sources: the National Natural Science Foundation of China
under Grants No. 11175094 and No. 91221205 and the Na-
tional Basic Research Program of China under Grant No.
2015CB921002. J.S.P. and E.S. acknowledge financial sup-
port from the following grants: Spanish MINECO/FEDER
FIS2015-69983-P and Basque Government IT986-16.

022322-4



ENTANGLEMENT MEASURES IN EMBEDDING QUANTUM … PHYSICAL REVIEW A 97, 022322 (2018)

-0.8

0.0

0.8

-0.8

0.0

0.8

-0.8

0.0

0.8

-1

0

1

0.00 0.13 0.25 0.38 0.50
-0.8

0.0

0.8

0.00 0.13 0.25 0.38 0.50
-0.8

0.0

0.8

0.00 0.13 0.25 0.38 0.50

0

1

<
>

<
>

<
>

<
>

<
>

<
>(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 4. Experimental results for the evolution of the three-tangle E3. Panels (a)–(f) show the expectation values of observables σzσ0σyσy ,
σxσ0σyσy , σzσxσyσy , σxσxσyσy , σzσzσyσy , and σxσzσyσy , respectively. Panel (g) provides the result of the time evolution of the three-tangle
E3(t) computed from the measurements of the previous six observables. The dots are experimental points and the lines are theory predictions.
The error bars are estimated from the noise introduced by the GRAPE pulses, imperfect PPS preparation, and the T2-decoherence effect.

APPENDIX A: MEASUREMENT OF
THE OBSERVABLES

In the first case explored in the main text, the two ob-
servables of interest, σzσyσy and σxσyσy , are retrieved from
the expectation values of the four-qubit operators σzσyσy ⊗
|0〉〈0| and σxσyσy ⊗ |0〉〈0|. In order to measure these opera-
tors, we perform rotations {YXXI,IXXI } before the mea-
surement of the FID signal, which results in the following
transformations:

σzσyσy ⊗ |0〉〈0| YXXI−→ σxσzσz ⊗ |0〉〈0|,
(A1)

σxσyσy ⊗ |0〉〈0| IXXI−→ σxσzσz ⊗ |0〉〈0|,

where X = exp(−iσxπ/4) and Y = exp(−iσyπ/4). In this
manner, the expectation values of interest are directly obtained
from the experimental spectrum. The pulses corresponding
to these last rotations in the measurement process are again
realized using the GRAPE technique, which in this case results
in a 1-ms shaped-pulse of fidelity 99.5%.

For the second experiment, we need to measure the ex-
pectation value of the six observables of interest, σzσ0σyσy ,
σxσ0σyσy , σzσxσyσy , σxσxσyσy , σzσzσyσy , and σxσzσyσy , to
reconstruct the three-tangle E3. For these, and in a fash-
ion similar to the procedure followed in the previous ex-
periment, we transform our final state under the rotations
{IIXX,YIXX,Y ȲXX,I ȲXX} in order to map the expecta-
tion values of interest to the measured FID signal at the end of

the protocol:

σxσ0σyσy,σxσzσyσy
IIXX−→ σxσ0σzσz,σxσzσzσz,

σzσ0σyσy,σzσzσyσy
YIXX−→ σxσ0σzσz,σxσzσzσz,

σzσxσyσy
Y ȲXX−→ σxσzσzσz,

σxσxσyσy
I ȲXX−→ σxσzσzσz. (A2)

Here, Ȳ = exp(iσyπ/4) and I is the identity operation. The
GRAPE technique is as well used to implement this last
sequence of pulses by applying a 1-ms shaped-pulse with a
fidelity of 99.5%.

APPENDIX B: MEASUREMENT OF n-BODY
SPIN OPERATORS

The FID signal of a four-qubit NMR system contains eight
peaks, with the mth peak encoding the expectation values of
operators

Mm
x = σx ⊗ |b(m − 1)〉〈b(m − 1)| and

Mm
y = σy ⊗ |b(m − 1)〉〈b(m − 1)|, (B1)

where b(m − 1) is the binary representation of number m − 1
in three bits. The expectation value of any tensor product of
Pauli matrices can be reconstructed by suitably combining the
expectation values of different Mm

x and Mm
y . For instance, the
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FIG. 5. Real and imaginary parts of the reconstructed PPS matrix.
Panels (a) and (b) respectively show the real and imaginary elements
of the PPS matrix reconstructed in the experiments. The x and y axes
represent the index number of the row and columns of the PPS matrix
from 1 to 16. The z axis shows the value of each element of the PPS
matrix.

four-qubit operator σxσzσzσz can be constructed as

σxσzσzσz = 1
8σx ⊗ (|0〉〈0| − |1〉〈1|)⊗3 (B2)

= 1
8

(
M1

x − M2
x − M3

x

+ M4
x − M5

x + M6
x + M7

x − M8
x

)
.

Other n-body spin operators can be measured in a similar way.

APPENDIX C: TOMOGRAPHY FOR PPS

FST was performed to evaluate the quality of our PPS.
Figure 5 shows the reconstructed real and imaginary parts
of the PPS density matrix, where only the deviation of the

state from the maximally mixed part is detectable. From these
measurements, we found that the fidelity between the target
pure state |0000〉〈0000| and the experimentally sensitive part
of the constructed PPS is about 98.77%.

APPENDIX D: COMPUTATION OF THE ERROR BARS

In small scale experimental setups, a good characterization
of the error sources can be useful to estimate the confidence
interval of the measured expectation values, with a reduced
number of experimental runs. In this respect, we follow a
standard procedure that goes as follows. For each experimental
realization, we numerically simulate the GRAPE pulse includ-
ing a good decoherence model of our qubits. We compare the
expectation values computed in this manner with the measured
ones. From their discrepancy, which on average was found
to be of 2.71% for the three-qubit simulator and 2.35% for
the four-qubit one, plus the 1.30% error associated with the
infidelity of the initial state preparation, we estimate bounds
for the experimental error of each point. We then assume a
Gaussian distribution that will yield values inside these bounds
with a 95% probability and we give the error bars of each point
associated with the width of this Gaussian distribution.

For experiments of bigger size, where the numerical simu-
lation of the experiment cannot be of assistance in computing
the error bars, one would increase the number of experimental
runs in order to have a statistically significant amount of data
from which a reliable value of the variance could be computed.
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