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Dissipative environment may improve the quantum annealing performances
of the ferromagnetic p-spin model

G. Passarelli, G. De Filippis, V. Cataudella, and P. Lucignano
Dipartimento di Fisica, Università di Napoli “Federico II,” Monte S. Angelo, 80126 Napoli, Italy

and CNR SPIN, Monte S. Angelo Via Cinthia, 80126 Napoli, Italy

(Received 4 December 2017; published 14 February 2018)

We investigate the quantum annealing of the ferromagnetic p-spin model in a dissipative environment (p = 5
and p = 7). This model, in the large-p limit, codifies Grover’s algorithm for searching in an unsorted database
[L. K. Grover, Proceedings of the 28th Annual ACM Symposium on Theory of Computing (ACM, New York,
1996), pp. 212–219]. The dissipative environment is described by a phonon bath in thermal equilibrium at finite
temperature. The dynamics is studied in the framework of a Lindblad master equation for the reduced density
matrix describing only the spins. Exploiting the symmetries of our model Hamiltonian, we can describe many
spins and extrapolate expected trends for large N and p. While at weak system-bath coupling the dissipative
environment has detrimental effects on the annealing results, we show that in the intermediate-coupling regime,
the phonon bath seems to speed up the annealing at low temperatures. This improvement in the performance
is likely not due to thermal fluctuation but rather arises from a correlated spin-bath state and persists even at
zero temperature. This result may pave the way to a new scenario in which, by appropriately engineering the
system-bath coupling, one may optimize quantum annealing performances below either the purely quantum or
the classical limit.
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I. INTRODUCTION

Hard optimization problems can be mapped onto Ising spin
Hamiltonians, whose ground states (GSs) encode the solution
of the given problem [1]. Finding the GS configuration is then
the key issue in many optimization tasks. A well known case
is the Ising spin glass [2,3]. A very common strategy to obtain
the GS configuration is the so-called thermal or simulated
annealing (SA) [4], where the main idea is to “freeze” the
system in its ground state by slowly reducing its temperature
T towards zero. Unfortunately, SA, when applied to complex
models such as the Ising spin glass, can suffer a severe slowing
down, making the approach unfeasible.

By contrast, it has been suggested that quantum annealing
(QA) [5], employing quantum, rather than thermal, fluctua-
tions, could reduce the slowing down, allowing the system
to reach the GS. The QA proceeds from an initial Hamilto-
nian with a trivial ground state (easy to prepare) to a final
Hamiltonian whose ground state encodes the solution of the
computational problem. The adiabatic theorem guarantees that
the system will track the instantaneous ground state if the
Hamiltonian varies sufficiently slowly. That is why QA is also
referred to as adiabatic quantum computation (AQC) [6]. In the
past few years, there has been a renewed interest in QA [7–11].
It has been shown that in some cases QA performs better
than thermal annealing [12,13]. However, there are also cases
where QA performs worse [14,15]. To the date, there are only
a few problems where this quantum speed-up has been clearly
demonstrated [16], while in general such rigorous evidence is
missing and one must rely on numerical simulations, with out-
comes strongly depending on the specific problem addressed.
Physical implementation of quantum annealers [17–19] on a
finite number of spins (up to thousands of spins) have been

already used to obtain the GS of complex spin models, but
a significant improvement compared to SA has not been yet
demonstrated.

In a realistic system, the presence of an unavoidable dissi-
pative environment requires approaching the problem of QA
with great care. Although adiabatic quantum computation has
been shown to be less sensitive to thermal noise with respect
to universal quantum computation [20], thermal relaxation
phenomena, in general, are expected to have a negative effect
on quantum adiabatic algorithms, since thermal excitations
decrease the probability of finding the system in the lowest-
lying energy state and the eigenstate populations are expected
to tend to the Gibbs equilibrium populations after a relaxation
time T1 [21,22]. Exceptions to this behavior have been shown
in Refs. [23,24]. Moreover, in a recent paper it has been proven
that the working temperature must be appropriately scaled
down with the problem size to be confident with the result [25].

In specific cases, however, it has been suggested that the
external environment may be even beneficial in reaching the
target ground state showing better performance than closed-
system quantum annealing [26–30]. The point here is that
the evolution of a far-from-thermal equilibrium spin system
coupled to a large set of oscillators describing the external
environment is not fully understood. The environment is no
longer a mere source of decoherence, but can participate in the
system dynamics in a nontrivial way.

In order to infer the behavior of “realistic” macroscopic
quantum devices, we study a large-N spin system with a
reasonably simple yet nontrivial model Hamiltonian to get suf-
ficiently close to the thermodynamical limit. Since the Hilbert
space dimension describing N qubits grows exponentially (as
2N ), we focus on a model Hamiltonian having a spin symmetry
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that allows us to work with Hilbert spaces of reasonable
dimensions, the so-called ferromagnetic p-spin model [31,32],
which we will introduce in the next section. Then the effect of
the environment on the dynamics of such a system is studied
by comparing what happens with and without the coupling to
a set of oscillators that mimics the external environment. The
main result of the paper is that, for coupling strong enough, the
environment “helps” the annealer to reach the target GS in a
shorter time. Such speed-up seems to be an open issue, as, in the
case of the one-dimensional Ising chain, it has been observed
in Ref. [29], but not in Ref. [33]. Following Ref. [34], we
compare our dynamics also with that obtained by the simulated
annealing, discussing limitations and advantages of the two
approaches.

II. FERROMAGNETIC p-SPIN MODEL

The ferromagnetic p-spin model is an Ising spin system in
which each spin interacts with p − 1 other spins [35]. This
model is particularly interesting since, in the limit p → ∞,
it codifies Grover’s algorithm for searching in an unsorted
database [16]. Classical algorithms require 2N steps (where
N is the number of entries) to solve such a problem. However,
quantum mechanics allows for a quadratic speed-up (i.e., 2N/2

steps are required) [16]. As mentioned in the Introduction,
we focused on this model because it allows us to study larger
systems exploiting the total spin conservation.

The p-spin Hamiltonian is given by

Hp = −N

(
1

N

N∑
i=1

σ z
i

)p

, (1)

where the Pauli matrix σ z
i refers to the ith spin. Quantum

fluctuations are introduced by a transverse field

H0 = −�

N∑
i=1

σx
i (2)

and the full time-dependent Hamiltonian is built as a linear
interpolation between (1) and (2),

H (t) =
(

1 − t

tf

)
H0 + t

tf
Hp. (3)

The linear schedule is the simplest possible one, yet other
interpolating functions may be tested [36]. We choose �

as our reference energy scale (and τ = h̄/� as time scale)
except where explicitly mentioned otherwise. The evolution
of the system state |ψ〉 is evaluated by means of a dynamical
equation for the corresponding density matrix ρ = |ψ〉〈ψ |,
in the presence of a dissipative bath made up of harmonic
oscillators (phonons) [37]. This dynamical equation is known
as the Lindblad master equation [21,38] and it guarantees
the complete positivity of the density matrix at any time,
hence preserving the probabilistic interpretation of its diagonal
elements in the Hamiltonian eigenbasis [21,38]. It reads

dρ(t)

dt
= −i[H + HLS,ρ(t)] + D[ρ(t)], (4)

where HLS is the Lamb shift Hamiltonian and D is the
dissipator superoperator (see Appendix A). These terms

appear because of the coupling with the environment [21].
In deriving Eq. (4), we assume that the thermal bath is in
an equilibrium state at an inverse temperature β and that
system-bath correlations can be disregarded because of small
system-bath couplings (Born approximation); moreover, the
evolved density operator does not have a memory of itself
at preceding times (Markov approximation) and is calculated
within the rotating-wave approximation, which enforces the
energy conservation.

III. ANNEALING PROCEDURE

At t = 0, the annealing starts by preparing the system in
the trivial ground state of the Hamiltonian (2). In the σ z basis,
also called computational basis, it reads

|ψ(t = 0)〉 =
N⊗

i=1

[
1√
2

(|0〉i + |1〉i)
]

(5)

and quantum fluctuations continuously flip each spin from
up to down (and vice versa) at a rate �/h̄. The full system
Hamiltonian (3) commutes with the total spin operator S2. Both
the initial and the final state belong to the subspace with the
largest eigenvalue of S2, thus the dynamics will never bring the
evolved ket state outside this subspace. Also the coupling to
the environment, which will be introduced in the following,
preserves this property. Hence, instead of studying the full
Hilbert space of dimension 2N , we can restrict our analysis to
the eigenspace associated with S = N/2, which has dimension
N + 1. This provides an exponential simplification in studying
the behavior of this system in the large-N limit.

The strength of the transverse field is then progressively
reduced to zero in a time tf. The effectiveness of the annealing
is quantified by calculating some relevant observables, such
as the fidelity, which is the probability of finding the system
in the ground state, and the residual energy, which is the
difference between the exact ground-state energy of the p-spin
Hamiltonian and the instantaneous energy at t = tf. The latter
is a powerful indicator if one is interested in finding just
one configuration that minimizes the Hamiltonian (1) without
being concerned about accidental degeneracies,

εres(tf) = 1

N
(〈Hp〉 − EGS), (6)

where EGS is the target GS energy. The adiabatic theorem of
quantum mechanics ensures that if the evolution is slow enough
(tf → ∞) the system will remain in its instantaneous ground
state at any time [39], hence we expect the residual energy
to decrease to zero with increasing tf. The optimal tf has to be
larger than the inverse of the squared minimum gap 	 between
the ground state and the first excited state [40–42]. This means
that we expect the residual energy to scale as t−2

f when a fully
adiabatic regime is reached. Indeed, if the annealing time is too
short, a succession of diabatic Landau-Zener (LZ) transitions
will excite the system and reduce the fidelity of the adiabatic
algorithm [43].
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FIG. 1. Residual energy in units � as a function of the annealing
time tf in units τ , for the Hamiltonian (3) with p = 2 (bilogarithmic
scale). Three different regimes can be observed: a constant beginning
region, an intermediate LZ region, and the final power-law tail
proportional to 1/t2

f .

IV. QUANTUM ANNEALING WITHOUT COUPLING
TO THE ENVIRONMENT

In this section we describe the annealing of the isolated
system at T = 0 to be compared with that of the open system
described in the following. The adiabatic theorem limits the
applicability of AQC to systems with nonvanishing energy
gaps. The p-spin ferromagnetic model is subject to a quantum
phase transition (QPT) at T = 0, separating a disordered
paramagnetic phase to an ordered ferromagnetic phase. At the
quantum critical point, the minimum gap 	 approaches zero
in the thermodynamical limit and the annealing time required
to satisfy the adiabatic theorem diverges [44].

For p = 2, the p-spin Hamiltonian has a second-order
QPT and the minimum gap scales as [45] 	 ∼ N−1/3. By
contrast, for p > 2, the model has a first-order QPT, with an
exponentially vanishing minimum gap [45] when N → ∞.

The behavior of the residual energy as a function of tf reflects
the gap dependence on the system dimension. As an example,
in Fig. 1 we show the behavior of the residual energy as a
function of the total annealing time for p = 2 and for various
dimensions of the spin chain N . The curves in Fig. 1 show
three different regimes. In the first regime, the system state
remains trapped in the paramagnetic phase. The annealing time
is too short for the system to follow the ground state across
the critical point and the residual energy is approximately
constant [34]. In the third regime, the residual energy scales
as 1/t2

f independently of the system size, as predicted by the
adiabatic theorem. The intermediate regime is governed by the
diabatic Landau-Zener transitions [43]. This suggests that, in
the intermediate regime, the residual energy scales as

εres(tf) = C

N
e−tf/τN , (7)

where C is a dimensional constant and τN is proportional
to 	−2 and hence depends on N2/3. Thus, the larger N is,
the larger the time tf needed to satisfy the adiabatic theorem
is [34].

When p = 5, the residual energy behaves as shown in Fig. 2.
The first and third regimes are very similar to that for the

FIG. 2. Residual energy in units � as a function of the annealing
time tf in units τ , for the Hamiltonian (3) with p = 5 (bilogarithmic
scale). The power-law adiabatic tail is not visible when N > 16 in the
analyzed range of annealing times.

case p = 2. By contrast, the intermediate regime is different,
because in this case the minimum gap exponentially vanishes in
N , hence the characteristic time of the LZ transitions increases
exponentially [34].

V. QUANTUM ANNEALING WITH DECOHERENCE

At finite temperatures T �= 0, the p-spin system is subject
to a classical phase transition. The critical temperature Tc

separates the ordered ferromagnetic phase (T < Tc) from the
disordered paramagnetic phase (T > Tc). In addition, thermal
excitations tend to populate excited states. This effect is
relevant when the temperature T is comparable to or larger than
the minimum gap 	. Thus, we expect the fidelity to approach
the Boltzmann equilibrium value for long tf 	 T1,

P
eq
1 (tf) = e−βE1(tf)

Z , (8)

where Z is partition function

Z =
N+1∑
i=1

e−βEi . (9)

In the Lindblad approach, each mode of the thermal bath is
coupled to the qubit system through a spectral density function,
which is proportional to a coupling energy ηg2 and represents
how each phononic mode is coupled to the reduced system
(the explicit form of the coupling is described in Appendix A).
In this section we focus on small chains (eight sites) because
of the large computational cost of building the dissipator D
and the Lamb shift Hamiltonian at each time step. We choose
p = 5 to study the hard case in which the quantum phase
transition of our model is first order.

In Fig. 3, we compare the residual energy of a closed system
(ηg2 = 0) with N = 8 and p = 5 to that of an open system,
coupled with ηg2 = 10−4 or ηg2 = 10−2 to a thermal bath
in equilibrium at an inverse temperature β = 2 [Fig. 3(a)] or
β = 10 [Fig. 3(b)]. We choose these two temperatures as they
characterize two different experimentally accessible regimes.
In order to understand what the temperatures are related to
these values, we have to restore the real units. Here all the
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FIG. 3. Residual energy in units � for an open or closed quantum system as a function of the annealing time tf in units τ , for N = 8 and
p = 5, with (a) β = 2 and (b) β = 10. The scale is bilogarithmic. Different system-bath couplings are shown. When the temperature is lower,
the driving force of the bath towards the ground state is more evident.

energies are measured in units of �. We are interested in
describing experimental facts related to the current technology
based on superconducting flux qubits, where �/h̄ is of the
order of gigahertz, hence we set �/h̄ = 1 GHz. Thus β = 2
corresponds to T ∼ 25 K and β = 10 corresponds to T ∼
5 K, describing two interesting (low and ultralow) operating
temperatures, both accessible with currently available dilution
refrigerators.

Inspection of Fig. 3 shows that the effect of the bath is
negligible for small tf and becomes relevant at longer tf.
At intermediate temperatures β = 2, independently of the
coupling strength, the unitary dynamics (ηg2 = 0) is always
more efficient in reaching the ground state.

At low temperatures β = 10, this picture is no longer valid
and the scenario becomes richer and more interesting. By
inspection of Fig. 3(b) we can notice that at weak coupling
ηg2 = 10−4 the bath has a detrimental effect on the annealing
procedure and the residual energy (red curve with squares) is
always larger than that of the closed system (blue curve with
circles), independently of tf. This is a manifestation of ther-
malization processes. Unexpectedly enough, by increasing the
system-bath coupling, things change drastically. The residual

FIG. 4. Bilogarithmic plot of the residual energy in units � as a
function of tf in units τ , for N = 8, p = 5, and β → ∞. The speed-up
in the quantum annealing of the open p-spin model is observed also
at T = 0; it is most likely a quantum effect.

energy at ηg2 = 10−2 (green curve with triangles) is smaller
than that of the closed system, until tf ∼ 102. Further increasing
the coupling, at ηg2 = 10−1, the residual energy is always way
smaller than that of the isolated system.

These results show that the velocity of convergence to the
ground state at low temperatures (with respect to energy gaps)
is strongly influenced by the system bath-coupling whose
increase seems to speed up the calculation, giving rise to
a residual energy that decreases more and more rapidly to
zero. In particular, the stronger the coupling is, the faster the
residual energy goes to zero. It is important to note that our
results at ηg2 = 10−1 may not be as accurate as for weaker
couplings. Indeed,ηg2 = 10−1 falls very close to the maximum
system-bath coupling where the Lindblad approach (which
is a weak-coupling theory) can be applied. However, we are
currently approaching the same problem using a variational
approach [46] and preliminary results seem to confirm this
scenario.

This speed-up could be due to either quantum or classical
effects or a combination of both. However, we guess that it
is most likely a quantum effect, as it happens also at T = 0,
as clear from Fig. 4, and arises because of the formation of
an entangled system-bath state that will be addressed in detail
elsewhere [46].

VI. QUANTUM VS THERMAL ANNEALING

In this section, we will compare the quantum annealing
(both unitary and dissipative) of the p-spin model with the
simulated thermal annealing [4]. Simulated annealing is per-
formed by linearly reducing the temperature T (t) = T0(1 −
t/tf) + Tf from an initial temperature T0 larger than the critical
temperature of the system Tc to a final temperature Tf 
 Tc.
Following Ref. [34], simulated annealing is performed using a
Glauber master equation for the magnetization of the system,
choosing a heat bath form for the transition rates.

To make a fair comparison between SA and QA we fix
the final temperature of the simulated annealing at Tf = 1/β,
where β is the inverse temperature of the phononic bath of
the quantum annealing. The outcomes of simulated annealing
are largely independent T0, hence we choose T0 = 2 in all the
calculations.
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FIG. 5. Comparison of the SA residual energy of a chain of N = 8 qubits with that at the end of a quantum annealing, for β = 1/Tf = 10
and (a) p = 5 or (b) p = 7. The scale is bilogarithmic. Several system-bath couplings are shown for the QA dynamics; a cross-over t∗

f is present,
when thermal annealing starts to outperform QA. Interestingly, t∗

f seems to become longer with increasing p.

As shown in Ref. [34], for p = 2 simulated annealing
outperforms quantum annealing. This result is mostly due
the fact that the simulated annealing residual energy decrease
exponentially in time and is independent of the system size.

The comparison for p > 2 is less simple, as the residual
energy in simulated annealing is no longer size independent
and moreover it is more difficult to extrapolate its limiting
behavior for large N [34]. Due to our difficulties in simulating
large systems, in what follows we focus on N = 8 and p = 5,7.

In the preceding section we showed that at very low
temperature (β = 10) and for strong system-bath couplings
ηg2 = 10−1 the environment may help to reduce QA residual
energy. However, at such temperatures SA is still expected
to perform better than QA. The adiabatic theorem ensures a
1/t2

f asymptotic dependence of the residual energy in QA,
as opposed to the expected 1/tf asymptotic behavior for SA,
and this should endorse quantum over thermal annealing for
long tf. However, the minimal time at which the adiabatic
regime is recovered is an exponential function of N . Thus,
for macroscopic systems the asymptotic behaviors might be
reached only at impractically long annealing times, hence
the performances of the two techniques have to be compared
in the intermediate-tf regime. At intermediate tf, the QA of
the open system seems to perform better than SA at low
temperatures and for strong system-bath coupling [see, for
example, Fig. 5(a) for N = 8, p = 5, and β = 10]. The time
tf at which simulated annealing starts to outperform quantum
annealing seems to be directly proportional to the exponent
p, as is evident by comparing Figs. 5(a) and 5(b), where
we reported our simulations relative to the case p = 7. How-
ever, this conclusion necessitates a deeper analysis for longer
chains.

VII. CONCLUSION

Adiabatic quantum computation (also quantum annealing)
is a modern tool employing quantum mechanics to solve a class
of optimization problems even if there is no general consensus
on whether or not it can perform faster than conventional
computing. From a theoretical of view, quantum annealing
has a serious limitation when dealing with systems showing
a quantum phase transition, since the effectiveness of an

adiabatic algorithm is proportional to the inverse minimum
gap in the energy spectrum. In these cases, simulated thermal
annealing might be better suited to investigate such systems,
as suggested by our simulations.

The p-spin ferromagnetic model, discussed in this paper,
shows a second-order QPT for p = 2 and a first-order QPT
for p > 2. When p = 2, the minimum energy gap scales as
N−1/3 and quantum annealing converges to the ground state in
polynomial time; when Tf = 0, the thermal annealing residual
energy vanishes exponentially with tf and is size independent,
making simulated annealing the method of choice. This con-
clusion cannot be extended trivially to the case p > 2, where
the quantum annealer scaling is much more difficult to obtain.
In this case we are not able to provide a definite answer in
choosing the faster method between the two of them.

At low temperatures, the thermal bath may speed up
quantum annealing, but simulated thermal annealing is still
expected to be faster for long annealing times tf, because in
quantum annealing the residual energy scales as a power law
of the annealing time in the adiabatic regime, as opposed to the
exponential decrease of the residual energy in SA. However,
for intermediate tf, the out-of-equilibrium dynamics of the set
of oscillators simulating the external environment pushes the
interacting p-spin system towards the target GS, providing a
faster convergence. This is achieved until a crossover time
t∗f is reached. Unexpectedly, our analysis shows that that tf
grows with increasing p. This could suggest that for very
large p, QA could perform better than SA, in an accessible
time window in the presence of a realistic (i.e., not extremely
weak) coupling to the environment. This effect is likely not
due to thermal fluctuations, but rather arises because of a
renormalization of the quantum p-spin Hamiltonian for the
effect of the bath. For p → ∞, this may indicate that quantum
annealing is faster than thermal annealing when studying
Grover’s problem; further analysis for longer chains is needed
to test our hypothesis.
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APPENDIX A: LINDBLAD EQUATION

The equation of motion for the reduced density matrix
(representing only the spin variables) used in this work is
Eq. (4), where the adiabatic dissipator is

D[ρ(t)] =
∑
αβ

∑
ω

γαβ(ω)

[
Lβω(t)ρ(t)L†

αω(t)

− 1

2
{L†

αω(t)Lβω(t),ρ(t)}
]

(A1)

and the Lamb shift Hamiltonian takes the form

HLS(t) =
∑
αβ

∑
ω

Sαβ(ω)L†
αω(t)Lβω(t). (A2)

They are both expressed in terms of the Lindblad operators
Lαω(t), which are defined in the instantaneous energy eigen-
basis {εa(t)} as

Lαω(t) =
∑

εa (t)−εb(t)=ω

|εa(t)〉〈εa(t)|Aα|εβ(t)〉〈εb(t)| . (A3)

The operators Aα are the spin operators appearing in the
general form of the system-bath coupling Hamiltonian

HI =
∑

α

Aα ⊗ Bα, (A4)

where Bα are bath operators.
The matrices γαβ(ω) and Sαβ(ω) are, respectively, the real

and imaginary parts of �αβ(ω),

�αβ(ω) = 1
2γαβ(ω) + iSαβ(ω), (A5)

which is the Fourier transform of the two-point correlation
function of the bath Bαβ(τ ) ≡ 〈Bα(τ )Bβ(0)〉,

�αβ(ω) ≡
∫ ∞

0
eiωτBαβ(τ )dτ. (A6)

We suppose that the spin system is coupled to a bath of
harmonic oscillators (phonons), described by the Hamiltonian

HB =
∞∑

k=0

ωkb
†
kbk, (A7)

where the bk satisfy the algebra [bk,bk′] = 0, [b†k,b
†
k′ ] = 0, and

[bk,b
†
k′] = δkk′ . In this work, the interaction Hamiltonian has

the form

HI =
N∑

i=1

σ z
i ⊗ B, (A8)

where the operator B is expressed in terms of annihilation and
creation operators of each phonon mode

B = g
∑

k

(b†k + bk). (A9)

The constant g couples the z component of the total spin
operator with each mode of the environment, as is customary
in the spin-boson model [21,37,38]. Moreover, we assume that
the bath frequency spectrum is continuous and that the bath
is in equilibrium at an inverse temperature β; thus, its density
operator is just

ρB = e−βHB

Z . (A10)

The Fourier transform of the bath correlation function can be
expressed as

γ (ω) = 2πJ (|ω|)
1 − e−β|ω| g

2[�(ω) + e−β|ω|�(−ω)], (A11)

where �(±ω) are Heaviside functions [38]. The model is fully
specified once we assign the explicit form of the function J (ω).
In this paper, we employ an Ohmic bath [21], characterized by

J (ω) = η
ων

ων−1
c

e−ω/ωc with ν = 1, (A12)

where ωc is a high-frequency cutoff and η is a dimensional
parameter.

APPENDIX B: SIMULATED THERMAL ANNEALING

In our model, the Glauber master equation can be writ-
ten in terms of the probability P (m,t) of observing a
magnetization m:

∂ P (m,t)

∂t

= N

2

∑
α=±

(
1 + αm + 2

N

)
Wm,m+2α/NP

(
m − α

2

N

)

−N

2

∑
α=±

(1 + αm)Wm−2α/N,mP (m,t). (B1)

The element Wm,m±2/N is the rate for a single spin flip that we
choose in the heat bath form

Wa,b = e−β	Eab/2

e−β	Eab/2 + eβ	Eab/2
. (B2)

There are four terms on the right-hand side of Eq. (B1): the
first two increase the probability P (m,t) because of transitions
from the states with a magnetization that differs from ±2/N

from m; the last two terms represent the inverse processes.
At t = 0 the system is originally prepared in the equilibrium

configuration at some temperature T0 	 Tc (T0 = 2). Then the
temperature is decreased with a linear schedule in a time tf
towards a final temperature Tf, ideally zero. At the end of the
annealing the residual energy is evaluated similarly to QA,

εres(tf) = 1

N

(∑
m

Hc(m)P (m,tf) − EGS

)
, (B3)

where EGS is the true GS energy.
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