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Universal entanglement timescale for Rényi entropies
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Recently it was shown that the growth of entanglement in an initially separable state, as measured by the purity
of subsystems, can be characterized by a timescale that takes a universal form for any Hamiltonian. We show
that the same timescale governs the growth of entanglement for all Rényi entropies. Since the family of Rényi
entropies completely characterizes the entanglement of a pure bipartite state, our timescale is a universal feature
of bipartite entanglement. The timescale depends only on the interaction Hamiltonian and the initial state.
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I. INTRODUCTION

Composite quantum systems exhibit correlations among
subsystems which cannot be explained in terms of classical
probabilities. For pure states, these quantum correlations are
known as entanglement. In this paper, we study how en-
tanglement is generated by the mutual interactions among
subsystems as the overall state evolves in time.

The time evolution of entanglement has become a focus
in a variety of research fields. Its early study in quantum
optical systems [1,2] has bloomed into a major area of re-
search in many-body and condensed-matter systems [3–7], and
conformal field theories dual to theories of quantum gravity
[8–10]. For some classes of systems, general features have
been found, including scaling laws [11,12] and generic linear
growth [13–16].

The growth of entanglement is especially important in
experimental systems where entanglement between the system
and its environment leads to decoherence [17]. A complete un-
derstanding of the evolution of entanglement requires solving
the dynamics of the overall state. This is often not feasible,
including for decoherence where the Hamiltonian describing
interactions with the environment is not known explicitly.

It is therefore interesting to ask what aspects of entan-
glement growth, if any, are shared by all quantum systems.
Broad statements can be made in this direction with minimal
assumptions about system dynamics by relying on special
initial conditions instead.

To begin, bipartite entanglement between subsystems must
be defined with respect to a partition of the system’s degrees
of freedom, represented as a fixed factorization of the Hilbert
spaceH = HA ⊗ HB . The Hamiltonian for the full system can
be expressed as

H =
∑

n

An ⊗ Bn, (1)

where each An is an operator acting on subsystem HA, and
each Bn acts on HB . Any number of terms may be included as
long as H is Hermitian. Since the algebra of operators acting on
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H is isomorphic to the tensor product of subsystem algebras,
any Hamiltonian can be represented this way [18].

Recently it was shown by Yang [19] that starting from a
pure, unentangled state,

|�(0)〉 = |ψ(0)〉A ⊗ |ψ(0)〉B , (2)

the growth of entanglement under the unitary evolution gener-
ated by (1) is characterized by a universal timescale,

Tent =
[∑

n,m

(〈AnAm〉−〈An〉〈Am〉)(〈BnBm〉−〈Bn〉〈Bm〉)
]− 1

2

.

(3)

Here the expectation values are taken in the initial state. The
timescale is universal in the sense that it takes this form for
any quantum system that satisfies the requirements (1) and
(2). The entanglement timescale was derived by studying one
particular measure of the entanglement between subsystems
A and B, namely, the purity P (ρA) = trAρ2

A of the reduced
density matrix ρA = trBρ. By the assumption (2), the purity is
initially maximal so that its dynamics are governed at lowest
order in t by d2P/dt2. The second derivative is proportional
to T −2

ent which is entirely determined by the expectation values
of the interaction Hamiltonian operators in the initial state.

In this paper, we show that the same entanglement timescale
(3) governs the growth of entanglement as measured by the
entire family of quantum Rényi entropies [20],

Sα(ρA) = 1

1 − α
ln trAρα

A, (4)

where α is taken to be a positive integer. As a family,
the Rényi entropies provide complete information about the
eigenvalue distribution of the reduced density matrix ρA, and
hence completely characterize the entanglement in an over-
all pure, bipartite state [21,22]. Therefore, the entanglement
timescale (3) is a universal feature of bipartite entanglement.

The most common measure of entanglement, the entan-
glement entropy S(ρA) = −trA(ρAlnρA), corresponds to the
α → 1 limit of (4). Its second time derivative can be obtained
by an analytic continuation in α from our general results for
α � 2 after which (3) appears with a logarithmically divergent
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prefactor, reflecting the sensitivity of S(ρA) to small eigen-
values of the density matrix. We provide an example of these
results by working with the Jaynes-Cummings model [23].

Notably, the entanglement timescale can be computed
without the need to solve for the dynamics of the system.
For a given experimental preparation of an unentangled state,
our results provide an easily calculable estimate of when
entanglement will become significant. Advances in the optical
control of atoms have led to the first direct measurement of
a Rényi entropy in a many-body system, and subsequently
to measurements of its growth [24–28]. We return to these
measurements for comparison to the entanglement timescale
in Sec. IV.

II. THE ENTANGLEMENT TIMESCALE FOR
RÉNYI ENTROPIES

To begin, we briefly review the relevant properties of
Sα(ρA) defined in (4). For any positive integer α, Sα(ρA) is
an entanglement measure that is minimized at zero if and
only if the total state ρ = |�(t)〉 〈�(t)| is separable. When
ρ represents a pure bipartite system, the Rényi entropies of its
subsystems are equal, Sα(ρA) = Sα(ρB). The Rényi entropies
form a monotonically decreasing series inα since ∂Sα/∂α � 0.

In the remainder of this section, we derive an entanglement
timescale for the Rényi entropies of a pure bipartite state (2)
evolving under a general Hamiltonian (1). Initially the subsys-
tems are pure, ρA = ρ2

A, because (2) is separable and therefore
Sα(ρA)|t=0 = 1

1−α
ln trAρα

A|t=0 = 0. As the state evolves, the
interactions between subsystems will generate entanglement.
Starting at a minimum of Sα , the first time derivative is initially
zero. We will calculate the second derivative to obtain a Taylor
expansion around t = 0 of the form

Sα(ρA) = Cα

t2

T 2
ent

+ O(t3). (5)

We will find that the entanglement timescale Tent takes the same
form for all Rényi entropies, with Cα a constant.

Since the Rényi entropies are initially minimal,
their first derivatives must vanish. We find d

dt
Sα(ρA) =

α
1−α

(trAρα
A)−1trA[(trBρ)α−1trB( ∂ρ

∂t
)]. Note that in general,

[trB(∂ρ/∂t),trBρ] �= 0. However, inside the A trace,
we can cyclically permute each term produced by the
derivative into a common ordering as shown. Using the
von Neumann equation ∂ρ/∂t = −i[H,ρ] with h̄ = 1 and
using (1) and (2) in the t = 0 limit, we find d

dt
Sα(ρA)|t=0 =

iα
α−1 (trAρα

A)−1 ∑
n trB(ρBBn)trA(ρα−1

A AnρA − ρα
AAn) = 0.

The leading order of the time evolution comes from the second derivative,

d2

dt2
Sα(ρA) = 1

1 − α

((
trAρα

A

)−1
trA

{
d2

dt2
[trBρ(t)]α

}
− (

trAρα
A

)−2
{

trA

d

dt
[trBρ(t)]α

}2
)

. (6)

The second term vanishes when the t → 0 limit is taken; this was the result of the first derivative calculation. We are left with
the first term of (6) for which we find

trA

{
d2

dt2
[trBρ(t)]α

}
= αtrA

⎡
⎣(trBρ)α−1trB

∂2ρ

∂t2
+

α−2∑
β=0

(trBρ)β trB

∂ρ

∂t
(trBρ)α−2−β trB

∂ρ

∂t

⎤
⎦. (7)

The β sum keeps track of the noncommuting factors which cannot be permuted into a common ordering. Applying the von
Neumann equation leads to

d2

dt2
Sα(ρA)

∣∣
t=0 = α

α − 1

(
trAρα

A

)−1 ∑
n,m

⎡
⎣trB(BnBmρB)trA

(
2AnAmρα

A − 2AmρAAnρ
α−1
A

)

+ trB(BnρB)trB(BmρB)
α−2∑
β=0

trA

(
2ρ

β+1
A Anρ

α−β−1
A Am − ρ

β

AAnρ
α−β

A Am − ρ
β+2
A Anρ

α−2−β

A Am

)⎤
⎦. (8)

Before simplifying (8) for general α, it is useful to look at the unique case of α = 2 which corresponds to the purity studied
in [19]. In this case, the β sum contains only a single term. Using the assumption of purity at t = 0 allows us to write

d2

dt2
S2(ρA)

∣∣
t=0 = 4

∑
n,m

[trB(BnBmρB) − trB(BnρB)trB(BmρB)][trA(AnAmρA) − trA(AmρAAnρA)]. (9)

Note that we have not assumed that [An,Am] = 0. Instead, we have used the symmetry of trB(BnρB)trB(BmρB) in the n, m

indices to exchange An and Am. Indeed, (9) exactly matches the main result of [19] when we account for the difference in the
definitions of the purity and Rényi entropy. Defining the α purity, Pα(ρA) = trAρα

A, we have under our assumptions d2

dt2 Sα(ρA)|t=0 =
1

1−α
d2

dt2 Pα(ρA)|t=0.

Returning to the general case, it is possible to greatly simplify (8) by using the idempotency of ρA(t = 0), and ρ0
A = IA where

IA is the identity operator for subsystem A. The special case of ρ0
A = IA only occurs in the β sum when β takes on its extreme
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values of 0 and α − 2. Each other term in the sum vanishes. The general result for α > 2 is

d2

dt2
Sα(ρA)

∣∣
t=0 = 2α

α − 1

∑
n,m

[trB(BnBmρB) − trB(BnρB)trB(BmρB)][trA(AnAmρA) − trA(AmρAAnρA)]

= 2α

α − 1

∑
n,m

[〈BnBm〉 − 〈Bn〉〈Bm〉][〈AnAm〉 − 〈An〉〈Am〉] = 2α

α − 1
T −2

ent , (10)

where we have used the simplification trA(AmρAAnρA) = trA(AmρA)trA(AnρA) for pure ρA as shown in [19].

Equation (10) is our main result and shows that the second
derivative of every Rényi entropy for α > 2 is of the same
universal form as the α = 2 case studied previously. In fact,
the coefficient incorporates the α = 2 case in Eq. (9) as well.
The only remaining case is α = 1, which we turn to now.

The entanglement entropy S(ρA) = −trA(ρAlnρA) is the
most widely used entanglement measure in the literature. It
corresponds to the α → 1+ limit of Sα(ρA) after an analytic
continuation in α [3,4]. Inserting α = 1 at intermediate steps
in the derivation leading to (10) produces ill-defined quantities
since the density matrix ρA(t = 0) is pure, and therefore
singular. Nevertheless, we emphasize that inverse powers of ρA

do not appear in the final result (10). The prefactor 2α/(α − 1)
can be analytically continued in α and is analytic away from
the simple pole at α = 1. Taking the limit of 2α/(α − 1) as
α → 1+ along the real axis shows that d2S(ρA)/dt2|t=0 is
proportional to the entanglement timescale with a divergent
prefactor. This reflects the entanglement entropy’s sensitivity
to small eigenvalues of ρA via the logarithm.

To make this point more clear, let pi(t) be the eigenvalues of
ρA such thatp1(0) = 1 andpj (0) = 0 (j �= 1). Then the second
derivative of the entanglement entropy, S(ρA) = −∑

(pi lnpi),
in the t → 0 limit is

d2S

dt2
= −d2p1

dt2
−

∑
j �=1

[
(lnpj + 3)

d2pj

dt2

]
. (11)

Generically, limt→0(d2pj/dt2)lnpj is divergent since
d2pj/dt2 is not required to be zero initially. Still, the
divergence of d2S/dt2 at t = 0 does not imply that the
entanglement entropy itself diverges; on the contrary, S(ρA)
is strictly bounded above by the dimension of the Hilbert
space of subsystem A. Rather, d2S/dt2 appears in the Taylor
series as the coefficient of t2 which tames the logarithmic
divergence. It should be noted that higher derivatives also
diverge logarithmically at t = 0, but are suppressed by higher
powers of t .

III. EXAMPLE: JAYNES-CUMMINGS MODEL

Equation (11) shows that the divergence of d2S/dt2 at
t = 0 for an initially pure product state found in (10) is not
an artifact of the analytic continuation in α. This is the generic
behavior of the entanglement entropy for an initially separable
state. To explore the physical significance of the entanglement
timescale and to check the divergence of d2S/dt2|t=0, we
work with the Jaynes-Cummings model (JCM) of a two-level
atom interacting with a quantized radiation field [23,29]. This
system has been extensively studied in quantum optics because
of its interesting entanglement properties [1,30] and quantum

revivals [31,32]. In this section, we calculate the entanglement
timescale for initially separable states, first by finding an
analytic solution for the Rényi entropies at all times and then
by studying the expectation values of the interaction terms in
the initial state as dictated by (10). We explicitly show that the
divergence of d2S/dt2|t=0 is only logarithmic.

In the rotating-wave approximation, the JCM Hamiltonian
is [23]

H

h̄
= ω0

2
σz + ωa†a + λ(a†σ− + aσ+). (12)

Here, ω0 is the atomic transition frequency, ω is the char-
acteristic field frequency, and λ is a coupling constant. For
simplicity, we impose the resonance condition ω = ω0 and set
h̄ = 1. The Pauli operators can be written in terms of the atomic
ground state |g〉 and excited state |e〉 as σz = |e〉 〈e| − |g〉 〈g|,
σ− = |g〉 〈e|, and σ+ = |e〉 〈g|. The field mode has a Fock basis
|n〉 on which the creation and annihilation operators a†, a act
in the usual way. Notice that this Hamiltonian is of the assumed
product form (1) and is time independent.

Let the overall initial state be the product of an arbitrary
atomic state |ψ〉A = Cg |g〉 + Ce |e〉 and field state |ψ〉F =∑∞

n=0 Cn |n〉. Then the overall state at any time is [2]

|�(t)〉

=
∞∑

n=0

{[CeCn cos(λ
√

n + 1t) − iCgCn+1 sin(λ
√

n + 1t)] |e〉

+[−iCeCn−1 sin(λ
√

nt) + CgCn cos(λ
√

nt)] |g〉} |n〉 , (13)

which is entangled for most times. Since the exact solution
for the state is available, the Rényi entropies can be calculated
directly for either subsystem after a partial trace. When the
atom is initially excited (Ce = 1, Cg = 0),

d2

dt2
Sα(ρA)

∣∣∣∣
t=0

= 2α

α − 1
λ2

[ ∞∑
n=0

(n + 1)|Cn|2

−
∞∑

n,m=0

√
m + 1

√
n + 1C∗

n+1CnCm+1C
∗
m

]
.

(14)

For comparison, if the atom is initially in the ground state,
then the result in (14) changes slightly by the replacement
|Cn|2 → |Cn+1|2 in the first sum.

The entanglement timescale can alternatively be computed
from the Hamiltonian and initial state by using the definition in
(10). This is much simpler because it does not require solving
for the time evolution of the system. When the atom is initially
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(a) (b)

FIG. 1. (a) S2(ρA) for the Fock state with N = 3 and Ce = 1 is sinusoidal and C∞ smooth. S2 is compared to the quadratic approximation
with timescale λTent,e = 1/4 (dashed red line). (b) S(ρA) for the same state is differentiable, but d2S/dt2 is discontinuous at t = 0 (inset, dashed
line). Units of ln(2) are used in all figures.

excited, the only nonzero term in (10) is

T −2
ent,e = λ2(〈aa†〉 − 〈a〉〈a†〉)(〈σ+σ−〉 − 〈σ+〉〈σ−〉)

= λ2

[ ∞∑
n=0

(n + 1)|Cn|2

−
∞∑

n,m=0

√
m + 1

√
n + 1C∗

n+1CnCm+1C
∗
m

]
� 1.

(15)

Similarly for the ground-state case, we find a single nonzero
term,

T −2
ent,g = λ2(〈a†a〉 − 〈a†〉〈a〉)(〈σ−σ+〉 − 〈σ−〉〈σ+〉) � 0,

(16)
which is like (15) but with |Cn|2 → |Cn+1|2 in the first sum.

The growth of entanglement is always controlled by the
strength of the coupling λ between subsystems. Indeed, it was
pointed out in early studies of the JCM that λ−1 is proportional
to the time period over which the reduced states remain
approximately pure [2]. The positivity of Rényi entropies
requires that T −2

ent is positive. This is ensured by the results
of [19], but can be seen here as a consequence of the Cauchy-
Schwarz inequality which implies 〈a†a〉 � 〈a†〉〈a〉, etc.

From these general expressions, we can easily examine
the growth of entanglement for some common field states.
Consider when the field is initially in a Fock state, |ψ〉F = |N〉.
For the initially excited state, we find Tent,e = (λ

√
N + 1)−1

and for the ground state, Tent,g = (λ
√

N )−1. Figure 1 shows
S2(ρA) and S(ρA) for Ce = 1, Cg = 0, and N = 3, along with
the quadratic timescale approximation. Whereas Sα(ρA) for
α � 2 is C∞ smooth in this example, we see that d2S(ρA)/dt2

diverges at t = 0 as expected, while dS(ρA)/dt is continuous
at t = 0.

Instead, if the field starts in a coherent state,

|ψ〉F = e
− 1

2 |ν|2
∞∑

n=0

νn

√
n!

|n〉 , a |ψ〉F = ν |ψ〉F , (17)

then the excited state timescale is Tent,e = 1/λ, whereas for
the ground state, T −1

ent,g = 0. Notably, these timescales are
independent of ν. Figure 2 shows S2(ρA) and S(ρA) for the
coherent state with ν = 3 and Ce = 1, Cg = 0. Once again,
d2S(ρA)/dt2 diverges at t = 0, while dS(ρA)/dt is continuous
at t = 0.

For comparison, the coherent state with ν = 3 and Ce =
0, Cg = 1 remains effectively separable for some time, as
shown in Fig. 3. The divergence of the entanglement timescale
in this case means one must look to higher orders in the Taylor
expansion of Sα(t) to see the growth of entanglement. This is
one example of an initial state where the correlated quantum
uncertainty defined in [19] vanishes.

Equation (14) shows that the second time derivative of the
entanglement entropy typically will be divergent in separable
states. This is not a flaw of taking the α → 1 limit of the
Rényi entropy, but is the actual behavior of the entanglement

(a) (b)

FIG. 2. (a) S2(ρA) for the coherent state with ν = 3 and Ce = 1. The small-t behavior is independent of ν and described by the quadratic
timescale λTent,e = 1 (dashed red line). (b) S(ρA) for the same state is differentiable, but d2S/dt2 is discontinuous at t = 0 (inset, dashed line).
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(a) (b)

FIG. 3. (a) S2(ρA) for the coherent state with ν = 3 and Cg = 1, where T −1
ent,g = 0 indicates that the state remains effectively separable for a

significant time. The leading behavior around t = 0 is sixth order in t . (b) S(ρA) for the same state is C5 smooth, with d2S/dt2|t=0 = 0 (inset,
solid line) and d6S/dt6 discontinuous at t = 0 (inset, dashed line).

entropy. From the state (13), we can calculate the entanglement
entropy directly for all times by diagonalizing the reduced
density matrix of the atom ρA(t) and finding its eigenvalues,
p1(t) = 1

2 [1 + |
s(t)|], and p2(t) = 1
2 [1 − |
s(t)|] in terms of

the Bloch vector 
s(t) [33]. For instance, starting with the
atom in its excited state, we find d2p1/dt2|t=0 = −2T −2

ent,e =
−d2p2/dt2|t=0. Using (11) leads to the logarithmically diver-
gent result,

d2S

dt2

∣∣∣∣
t=0

= 2

[
−2+ln2− lim

t→0
ln

(
1−

∞∑
n=0

|Cn|2 cos2(λ
√

n+1t)

)]
T −2

ent,e.

(18)

A similar logarithmic divergence occurs for the atom initially
in its ground state.

IV. DISCUSSION

The main result of [19] showed that for any unentangled
pure bipartite state evolving under an arbitrary Hamiltonian,
the growth of entanglement is characterized by a timescale
which takes the universal form

Tent =
[∑

n,m

(〈AnAm〉−〈An〉〈Am〉)(〈BnBm〉−〈Bn〉〈Bm〉)
]− 1

2

(19)

where entanglement is measured by the purity of subsystems.
In this paper, we have shown that the same timescale charac-
terizes the growth of entanglement as measured by any Rényi
entropy. Since the family of Rényi entropies constitutes a
complete determination of the entanglement in a pure bipartite
system, the entanglement timescale universally describes the
initial growth of bipartite entanglement.

It is easy to prove that the entanglement timescale obeys
several properties expected of the Rényi entropy. As shown
in [19], T 2

ent is a manifestly positive quantity so that the Rényi
entropies initially increase from their minimum value. It is also
symmetric between the subsystems A and B which reflects
the symmetry Sα(ρA) = Sα(ρB) for overall pure states. Fur-

thermore, the coefficient 2α/(α − 1) in (10) is monotonically
decreasing in α, which is required by the general condition
∂Sα/∂α � 0.

Rényi entropies are widely used theoretically and have
recently been measured in isolated many-body systems [26],
including their time dependence after an interaction is turned
on [27]. The first such measurement was performed on a Bose-
Einstein condensate trapped in an optical lattice and evolving
under the Bose-Hubbard Hamiltonian in one dimension,

H = −J
∑
〈i,j〉

a
†
i aj + U

2

∑
i

a
†
i ai(a

†
i ai − 1). (20)

The first sum is over nearest-neighbor pairs and represents
tunneling between neighboring sites at a rate J . The second
sum over each lattice site represents the attractive energy
among bosons sharing a site. In the experiment [27], a product
of one-particle Fock states was prepared on six adjacent lattice
sites with a barrier on each end. After a quench in which the
interaction in (20) was turned on, the second Rényi S2(ρA) was
measured in time for all unique partitions of the six sites.

The only interaction term in (20) that couples A to
B is −J (a†

i ai+1 + aia
†
i+1), where sites i and i + 1 are

neighbors across the partition. Thus, for any nontrivial
partitioning, the entanglement timescale is the same, T −2

ent,BH =
J 2 〈1|a†

i ai |1〉 〈1|ai+1a
†
i+1|1〉 + J 2 〈1|aia

†
i |1〉 〈1|a†

i+1ai+1|1〉 =
4J 2. Using the experimental value of J/2π = 66 Hz, we can
estimate that the entanglement will become significant within
a time Tent,BH = 1.2 ms, which agrees with the experimental
result displayed in Fig. 3 of Ref. [27]. This comparison is
only approximate since the actual initial states prepared in the
experiment were not free of entanglement.

The original motivation to determine the entanglement
timescale was to estimate how quickly a generic quantum
system will decohere due to entanglement with gravitational
degrees of freedom [17,34,35]. This question is relevant to the
black-hole information problem [36,37], where the Hawking
quanta escaping from the black-hole horizon region may
entangle with the geometry itself. To make any concrete
statements about entanglement with gravitational degrees of
freedom, one needs to work with quantum field theory or, better
yet, quantum gravity. Since our derivation of the entanglement
timescale assumes that the initial state is pure and unentangled,
it is difficult to generalize these results to quantum field theory,
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where typical states are highly entangled on all scales [38–40].
UV divergent entanglements can be avoided by considering the
entanglement difference between states, for example with the
relative entropy, which lends hope for our analysis of d2Sα/dt2

[41,42]. One can otherwise avoid divergences by considering
causally separated subregions, but this comes at the cost of
losing purity for the combined system [43]. Moreover, for
gauge field theories, the Hilbert space does not factorize across
spatial boundaries, invalidating our assumptions [44,45]. Still,
the growth of entanglement in quantum field theory states is a
major area of research in many-body, condensed-matter, and

high-energy physics [46–49], and it would be interesting to
develop an entanglement timescale in these regimes.
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