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For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of
signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve
better performance and practical security. In this paper, an approach is developed by integrating a support vector
regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR
model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second,
such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the
optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity
evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our
experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow
the QKD system to achieve optimal performance and practical security, (2) it does not require any additional
resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of
the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the
practical QKD system.
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I. INTRODUCTION

The quantum key distribution enables the sender, called
Alice, and the receiver, called Bob, to exchange a cryptographic
key (i.e., a secret key), in the presence of an eavesdropper,
called Eve [1,2]. Its security is guaranteed by quantum me-
chanics laws, e.g., Heisenberg’s uncertainty principle and the
quantum no-cloning theorem. Significant progress has led to
the availability of secure quantum communication in real-
world conditions. Currently, two implementation methods,
i.e., the discrete-variable quantum key distribution and the
continuous-variable quantum key distribution (CVQKD), are
often referenced. Here we focus on the CVQKD scheme
which usually encodes the information on the position and
momentum quadratures of quantum states [3–8]. It is worth
noting that our proposed approach also fits the discrete-variable
quantum key distribution.

In the past decades, CVQKD schemes have made great
achievements both theoretical [5–8] and experimental [9–14].
One of the most notable achievements is that the Gaussian mod-
ulated coherent state (GMCS) scheme [3–5] has been proven
theoretically to be secure against collective and coherent
attacks [15–19]. In addition, the practical security associated
with imperfections of the GMCS CVQKD system has also been
investigated [20–32]. Recently, to improve the performance
and security of the system, many schemes have proposed
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[33–35]. Moreover, field tests based on the GMCS scheme in
telecommunication optical networks have been successfully
implemented by several groups [36–38].

It has been shown that the instability of physical parameters
of signals, e.g., the intensity, phase, and polarization of the
laser signals, has significant influence on the performance and
practical security of the involved GMCS CVQKD system,
which is needed to run continually and stably for a long time
[20–22]. Many factors may cause the instability, such as the
fluctuation of signal transmitting in the channel, the variation of
environment temperatures, the fiber birefringence effects, and
the disturbances of eavesdropping. To maintain the stability of
the practical CVQKD system, a real-time monitoring module
is often deployed in the involved system to control the physical
parameters of signals, e.g., the laser intensity. In such scenarios,
the additional module depends on the precision of the mea-
surement devices. In addition, the involved CVQKD system
needs to be monitored in real time, which may significantly
increase the complexity of the system. Especially, the deployed
monitoring module may induce practical security loopholes
due to its imperfections [39].

In this paper, we propose an approach that makes use of
support vector regression (SVR) [40,41], which is one of the
most popular machine learning tools and itself can handle small
disturbances of the environment. In our proposed approach, a
SVR model is first learned to predict the time-along evolutions
of the physical parameters of the signals, and such predictive
time-along evolutions are then employed as the feedback to
control the involved system and optimize its performance and
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practical security. Considering the importance of stabilizing
the local oscillator (LO) light in the CVQKD system [20–26],
we have exemplified our proposed approach by predicting the
time-along intensity evolutions of the laser light and the LO
pulse. Our experimental results have demonstrated that our
SVR model can provide good predictions of the time-along
evolutions of the intensity and optimize the performance and
practical security of the CVQKD system. In addition, tuning
the intensity of each LO pulse to a desired value, all known
attacks that are based on the LO pulse may be defeated and the
practical security of the CVQKD system can be guaranteed
effectively.

The paper is organized as follows. In Sec. II, a general
prediction algorithm is presented for estimating physical pa-
rameters of the signal in the involved CVQKD system. To
exemplify our proposed algorithm, the algorithm is used to
estimate the time-along intensity evolutions of the laser light
and LO pulse, and such predicted values are further employed
to optimize the stability of the LO pulse in Sec. III. Then, we
analyze the performance and practical security of the involved
CVQKD system with the feedback module in Sec. IV. Finally,
we conclude this paper in Sec. V.

II. LEARNING FOR AUTOMATIC PARAMETER
PREDICTION IN THE CVQKD SYSTEM

To automatically predict the instantaneous values for the
physical parameters of the signal in the CVQKD system, we
need to learn a SVR model to find a function f that returns the
best fit of a given signal serials Ft |Lt=1 for a given time period
t ∈ [1,L], where Ft is the instantaneous value for the physical
parameters of the signal at the time t . The SVR model can be
represented as F (t) = w0 + ∑

t wFt [42–44]. To find the best
fit, we minimize the sum of squared errors as

min

{
L∑

t=1

[Ft − F (t)]2

}
.

After the SVR model is learned by achieving the best fitting
with the given signal serials Ft |Lt=1 in the given time period
t ∈ [1,L], it can further be used to predict the instantaneous
values for the physical parameters of the signal accurately in
a certain time period (time window) in the future until such
SVR model fails. When such a SVR model fails, we can collect
more recent signals to update the SVR model, so that it can
achieve accurate predictions of the instantaneous values for the
physical parameters of the signals in another time window. In
other words, when the CVQKD system starts running in the
practical environment, we first collect the signal serials used to
train the SVR model, then the SVR model is trained for every
other time window. Thus such a SVR model can be used to
estimate the instantaneous values for the physical parameters of
the signal, and such predicted values can be further employed
to optimize the stability of the involved CVQKD system.

The mapping functionF (t) = w0 + ∑
t wFt could be linear

or even nonlinear [45,46]. As illustrated in Fig. 1, the instanta-
neous values for the physical parameters of the signal, which
are predicted by our SVR model are used as the feedback
instead of using the values of the physical parameters that
are captured directly from the involved CVQKD system. In

t
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t-2 t-1t-d t+1 t+2

Historical data Future prediction

F(t-d) F(t-2) F(t-1) F(t+1) F(t+2)

Alice

Bob
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Input Output
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FIG. 1. Basic idea of SVR to solve the physical parameters
prediction problem. Assume the current time is t . The red solid line
represents the procedure for obtaining the data for machine learning,
and the blue dotted line represents the procedure for the feedback.

general, three categories of data for the instantaneous values
of the physical parameters of the signal are related to the
SVR model: (1) historical data in a previous time period
t ∈ [1,L] that have been used to learn the SVR model, (2)
current data for the time t that are captured or generated by
the involved CVQKD system, and (3) predictive data that
are predicted by the SVR model [47]. Thus the underlying
machine learning algorithm trains the SVR model by using the
historical data {F (t − 1), F (t − 2), . . . ,F (t − d)}, and such
SVR model is further used to predict the future values of
{F (t + 1), F (t + 2), . . . ,F (t + d)}. Actually, the main idea
of the parameter prediction is based on the fact that devices
possess the deterministic and partially fluctuated properties.
The predictive results can be obtained by reconstructing
the deterministic part and predicting the probable fluctuated
behaviors.

Consider a set of training data (signal serials) Ft |Lt=1 in the
given time period t ∈ [1,L], when the mapping is nonlinear,
the SVR estimating function takes the form

F (t) = [w · �(t)] + b, (1)

where � is a function used to project the training data onto a
higher dimensional space, w is the weight vector, and b ∈ Rn

is the bias. Our goal is to find the function that has the optimal
parameters w and b, and at the same time is as fat as possible in
the feature space. We denote the fatness as a tube and the tube
width is denoted as 2ε. Then the optimal regression function
is determined by

min
1

2
‖w‖2 + C

∑
i

(ξi + ξ ∗
i ), C > 0, (2)

subject to

Fi − [w · �(t)] − b � ε + ξi,

[w · �(t)] + b − Fi � ε + ξ ∗
i , (3)

ξi,ξ
∗
i � 0, i = 1, . . . ,l, ε > 0.

Here, C is a regularization parameter, which represents the
trade-off between the regularization and the tube violation, ξi

and ξ ∗
i are the upper and lower constraints on the outputs, and
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FIG. 2. Experimental setup for obtaining the training data. AM, amplitude modulator; PM, phase modulator; BS, beam splitter; PBS,
polarization beam splitter; ATT, adjustable attenuator; CWDM, coarse wavelength division multiplexer.

w can be written as

w =
∑

i

(αi − α∗
i )�(ti). (4)

By substituting Eq. (4) into Eq. (1), the equation can be
rewritten as

F (t) =
∑

i

(αi − α∗
i )[�(ti) · �(t)] + b

=
∑

i

(αi − α∗
i )k(ti ,t) + b, (5)

where αi is the Lagrange multiplier, and k is a kernel function
which enables the dot product to be performed in the feature
space. Now there are the following three basic kernels: the
linear kernel, polynomial kernel, and radial basis function
(RBF) kernel. Each kernel has its own advantages and dis-
advantages. In general, the RBF kernel is a reasonable first
choice [40,47,48]. This kernel can handle the case when the
relation is nonlinear. The second reason is the number of
hyperparameters which influence the performance of model
selection. The polynomial kernel has more hyperparameters
than the RBF kernel and it is difficult to calculate the results
when the degree of polynomial is high. Finally, the RBF
kernel has fewer numerical difficulties. Thus we choose the
commonly outstanding RBF as the kernel function for the
physical parameter regression of the CVQKD system,

k(ti ,t) = exp{−γ |t − ti |2}, (6)

where γ represents the scale parameter of the RBF kernel
and the selection of it determines the performance of the
model. In order to evaluate the algorithm accuracy and perform
a correct estimation of the future physical parameters, we
routinely collect some historical data as the test data. Based
on the test data, we calculate the mean-squared error (MSE)
as performance indices of the algorithm

MSE = 1

a

a∑
i=1

(Y ∗
i − Yi)

2, (7)

where a is the amount of the test data, Y ∗
i is a vector of a

predictions when using the SVR model, and Yi is the vector of
observed values of the test data.

III. INTEGRATING MACHINE LEARNING FOR SIGNAL
OPTIMIZATION IN THE CVQKD SYSTEM

By learning from historic data, our proposed SVR model
can be used for physical parameter prediction and signal
optimization in the GMCS CVQKD system. In this section, we
exemplify such a general approach with the intensity evolutions
of the laser light and LO pulse. In the parameter prediction and
signal optimization procedure, the package LIBSVM, which
is currently one of the most widely used SVM libraries, is
employed.

A. Historic data preparation

To learn the SVR model for physical parameter prediction,
we first need to obtain the training data of the intensity
evolutions of the laser light and the LO pulse. The training data
are collected from the CVQKD system developed in Shanghai
Jiao Tong University [14]. This system is based on the GMCS
scheme and can stably work. Figure 2 presents the schematic
setup of the system, which includes the data acquisition module
in the blue boxes and the data are usually updated every 2 s. In
detail, at Alice’s side, a 1550-nm wavelength continuous-wave
laser generates a narrow linewidth light, which is transformed
into a pulse by using the amplitude modulators. This pulse is
then split into a weak signal path and a strong local oscillator
path with a beam splitter. In the signal path, the key information
is encoded in the quadratures of amplitude and phase of
the coherent optical pulses according to a centered Gaussian
distribution. Moreover, the signal pulse is delayed with respect
to the LO pulse by inserting a delay line, and the Faraday
mirror imposes a 90◦ rotation on the signal pulse’s original
polarization state. By using the polarization-multiplexing and
time-multiplexing techniques, the quantum signal together
with the LO signal are sent to Bob through a fiber link. Si-
multaneously, a coarse wavelength division multiplexer is used
to integrate the quantum signals for classical communication,
which includes a 1310-nm wavelength clock synchronization
signal. At Bob’s side, the LO and signal are demultiplexed and
measured in a shot-noise-limited homodyne detector.

We now describe how to collect the training data for the
SVR model to predict the intensity evolutions of the laser light
and LO pulse. As shown in Fig. 2, the laser pulse is split with
a BS and a small part is collected as the training data for the
machine learning. We collect data from the first 5 days as the
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training set and use the data from the last 2 days as the testing
set. Simultaneously, a BS placed at the LO path aims to obtain
the training data of the SVR model for predicting the intensity
evolution of the LO pulse. In the experiment, we collect data
from the first 2 days as the training set and use the data from the
last day as the testing set. After these operations we own two
signal serials in the given time periods, which will be employed
as training data for learning the SVR models for the intensity
evolutions of the laser light and the LO pulse, respectively.

We emphasize here that our main aim is to predict the
intensity evolution of the LO pulse so that one may optimize
the CVQKD signal. For better learning the SVR model and
guaranteeing the practical security of the involved CVQKD
system, the intensity distribution of the laser light is considered
as a reference. Generally, if the intensity distribution of the LO
pulse does not match the the intensity distribution of the laser
signal, the learned SVR model for the intensity evolution of
the LO pulse maybe fails. In this situation, one needs to collect
more recent LO signal data to achieve a more fitting SVR
model.

B. Using SVR model to predict intensity evolutions
of laser light and LO pulse

After the SVR model is learned, it can be used to predict
the physical parameter at the current time t , i.e., the intensity
I (t + d) at the future time t + d with the knowledge of the
historic values I (t − d),I (t − d + 1), . . . ,I (t) for the time
t − d,t − d + 1, . . . ,t , respectively. As discussed previously,
we perform the SVR experiments with the collected training
data, to obtain the predictive estimation model. Experimen-
tally, after the optimization procedure of the kernel function,
we finally chose the RBF as the kernel function to reach the
optimal intensity prediction, by making use of the well-known
LIBSVM library with C = 1000 and γ = 0.1. The result also
indicates that the RBF kernel can be the first choice once again.

First, we have trained the predictive model of the laser signal
intensity in the CVQKD system. To demonstrate clearly the
effects of the predictive model, the RBF model for the intensity
prediction of laser with any 5000 training data, is shown in
Fig. 3. Obviously, the regression curve matches the intensity
distribution of the laser very well. Meanwhile, according to
Eq. (7), we calculate the MSE for the laser intensity prediction
as MSE1 = 1.1425 × 10−7 with all the collected training data.
This indicates that we have obtained an optimal RBF model for
the intensity prediction of laser light. Then, in a similar way,
we learned the predictive intensity model of the LO pulse. In
Fig. 4, we represent the RBF model for the intensity evolution
prediction of the LO pulse with any 500 training data. In
addition, the MSE for the LO intensity prediction is obtained
as MSE2 = 4.2162 × 10−7 with all the collected training data,
which means that the obtained predictive model can work well.

C. Learning to optimize the intensity parameters

Feedback controls can be employed to guarantee the sta-
ble operation of the involved CVQKD system, so that the
fluctuations of optical pulse signals in the CVQKD system
can be degraded. Here, we concentrate on the stability of the
intensity evolution of the LO pulse in the CVQKD system. In

FIG. 3. RBF model for the intensity prediction of laser with
several training data points.

the previous sections, we integrated the SVR model for the
intensity prediction. Here we leverage the learned SVR model
to stabilize the LO intensity to a required constant value with
the predicted intensity values as feedback, which will decrease
the system overhead meanwhile. Figure 5 demonstrates the
schematic setup of the feedback module. The process can
be divided into two steps as follows. First, Bob obtains the
predictive intensity of LO via the SVR model for the LO
pulse, and then he amplifies or attenuates the LO intensity
based on the predictive values. To simplify the implementation,
for example, here we use an adjustable attenuator (ATT) to
stabilize the LO to a required constant value.

To demonstrate the effects of the feedback in improving
the stability of the CVQKD system, we plot the LO intensity
of the system in Fig. 6. From top to the bottom, the curves
represent the LO intensity without the feedback procedure, the

FIG. 4. RBF model for the intensity prediction of LO pulse with
several training data points.

022316-4



INTEGRATING MACHINE LEARNING TO ACHIEVE AN … PHYSICAL REVIEW A 97, 022316 (2018)

PIN2SVR
data

1%

BS
LO ATT LO

Predictive 
data

Feedback

FIG. 5. Experimental setup of the feedback control module.

experimental results of the LO intensity with feedback, and
the theoretical initial value of the LO intensity, respectively.
Clearly, there is a little difference between the theoretical and
experimental values. This results from the accuracy of the SVR
algorithm, the precision of the attenuator used for the feedback,
and the relative intensity noise (RIN) of the laser, which will
be discussed in detail in the next section.

IV. INTEGRATING SVR MODEL TO ACHIEVE
PERFORMANCE OPTIMIZATION AND

PRACTICAL SECURITY

A. Performance optimization of CVQKD

To demonstrate the performance of the feedback module
in improving the performance of the CVQKD system, we
need to analyze the secret key rate of the involved system.
In a CVQKD system, after the quantum transmission, Alice
and Bob share two correlated vectors x = {x1,x2, . . . ,xN } and
y = {y1,y2, . . . ,yN }, where N is the total number of received
pulses. The involved quantum channel of the system is a normal
linear model with the following relation between Alice and
Bob, i.e.,

y = tx + z, (8)

FIG. 6. LO intensity of the CVQKD system with and without the
feedback controls.The LO intensity without the feedback shows the
predictive values. That with the feedback shows the measuring values.

where t = √
ηT ∈ Rn, which relates to the transmittance of the

quantum channel in the following sections, and z is the noise
term following a centered normal distribution with variance
σ 2 = N0 + ηT ε + Vel. The involved N0 is the variance of
the shot noise, which is proportional to the intensity of the
local oscillator. The parameter η denotes the efficiency of the
homodyne detector, T is the transmittance of the quantum
channel, ε is the excess noise, andVel is the detector’s electronic
noise.

In the evaluation of the secret key rate of the CVQKD
system, all parameters should be expressed in shot noise units.
Obviously, it is important to exactly evaluate the N0 due to
the fluctuations of LO. A common method is to scale Bob’s
measurements with the instantaneous intensity value of each
pulse of LO. However, it makes Bob’s measuring complicated.
In the above scheme, we propose an alternative countermeasure
to stabilize the LO intensity to a desired constant value
via machine learning. However, due to the accuracy of the
algorithm, the precision of the device used for the feedback
and the relative intensity noise of the laser, fluctuations of LO
pulses may still exist. If Alice and Bob are aware of pulse
fluctuations, they use the instantaneous values to estimate the
parameters, namely,

I ′
LO = χILO, (9)

where ILO is the LO intensity, which is connected with the
shot noise of system, the parameter χ represents the remaining
fluctuation of the LO pulses and the prime symbol indicates
the fluctuation parameters in the forthcoming part. In detail,
we denote the precision of the machine learning algorithm in
shot noise units and define the accuracy of the device used for
the feedback as χε. Therefore,

χ = χRIN + χε + N0 − MSE

N0
, (10)

where χRIN is the relative intensity noise of the laser, which
is usually 10−16 Hz and thus can be neglected in general.
Expressed in the instantaneous shot noise units, the parameters
used in the evaluation of the secret key rate become

V ′
A = VA, ε′ = 1

χ2
ε + 1

ηT

(
1

χ2
− 1

)
,

V ′
el = Vel, T ′ = T , N ′

LO = χ2NLO. (11)

Given these parameters, Alice and Bob can calculate the
information they shared, as well as the maximal bound on
the information available to the eavesdropper. According to
Refs. [30,49], the secret key rate K with n received pulses
used for the key establishment is expressed as

K = n

N
[βIAB − S

εPE
BE − �(n)], (12)

where n = N − m, and β ∈ (0,1) is the efficiency of reverse
reconciliation. SεPE

BE represents the maximal value of the Holevo
information with finite-size effect, i.e., Alice and Bob select
m values from the total number of the received pulses N to
perform the parameter estimation procedure, where εPE is the
probability that the true values of the parameters are not inside
the confidence region. SεPE

BE can be determined by the following
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covariance matrix between Alice and Bob:


AB=
⎡
⎣ (VA + 1) · 12

√
Tmin

(
V 2

A + 2VA

) · σz√
Tmin

(
V 2

A + 2VA

) · σz [Tmin(VA + εmax) + 1] · 12

⎤
⎦,

(13)

where the matrices 12 = [1 0
0 1], and σz = [1 0

0 −1]. Tmin and
εmax represent the lower bound of T and the upper bound of ε,
respectively. They are defined as

Tmin = (tmin)2,

εmax = σ 2
max − 1

T
. (14)

Moreover, when m is large enough, we could compute tmin and
σ 2

max as

tmin ≈
√

T − zεPE/2

√
1 + T ε

mVA

,

σmax ≈ 1 + T ε + zεPE/2
(1 + T ε)

√
2√

m
, (15)

where zεPE/2 follows

1 − 1

2
erf

(
zεPE/2√

2

)
= 1

2
εPE, (16)

and erf(.) is the error function defined as

erf(x) = 2π−1/2
∫ x

0
e−t2

dt. (17)

Therefore, S
εPE
BE is calculated as follows

S
εPE
BE =

2∑
i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (18)

where G(x) = (x + 1) log2(x + 1) − x log2 x. λi are symplec-
tic eigenvalues derived from the covariance matrices and can
be expressed as

λ2
1,2 = 1

2
(A ±

√
A2 − 4B),

λ2
3,4 = 1

2
(C ±

√
C2 − 4D), (19)

λ5 = 1,

where

A = (VA + 1)2 − 2Tmin
(
V 2

A + 2VA

) + [Tmin(VA + εmax) + 1]2,

B = [(Tminεmax + 1)(VA + 1) − TminVA]2,

C = A(1− η + Vel)/η + (VA + 1)
√

B + Tmin(VA + εmax) + 1

ηTmin(VA + εmax) + 1 + vel
,

D =
√

B[VA + 1 + √
B(1 − η + Vel)/η]

ηTmin(VA + εmax) + 1 + vel
. (20)

In Eq. (12), IAB represents the Shannon mutual information
between Alice and Bob, which can be derived from Bob’s
measured variance VB and the conditional variance VB|A as

IAB = 1

2
log2

VB

VB|A
= 1

2
log2

V + χtot

1 + χtot
. (21)

χ=

 χ=

χ=

χ=

FIG. 7. Secret key rate vs transmission distance for reverse
reconciliation scheme. From top to bottom, curves represent the
secret key rates in the perfect situation with perfect feedback devices
(solid line, χ = 1), the practical situation with perfect feedback
devices supported by the learned SVR model (dotted line, χ = 0.997),
the practical situation with practical feedback devices supported
by the learned SVR model (green solid line, χ = 0.990), and in
the practical situation with previous countermeasure (red dashed
line, χ = 0.957), respectively. The fiber loss is 0.2 dB/km and the
other parameters for the simulation are frep = 25 MHz, VA = 20,

η = 0.6, β = 0.939, ε = 0.01, and Vel = 0.05, respectively.

Here, the total noise referred to the channel input can be ex-
pressed as χtot = χline + χh/T , in which χline = 1/T −1+ ε,
and χh = [(1 − η) + Vel]/η, which represents a homodyne
detection-added noise referred to Bob’s input. In addition,�(n)
is a linear function of n in Eq. (12), which is related to the
security of the privacy amplification [49].

Based on Eqs. (19) and (20), one may evaluate the secret
key bit rate with finite-size effect against collective attacks. For
a practical CVQKD system, the secret key bit rate is given by

R = frepK, (22)

where frep is the frequency of the CVQKD system. Let m

be the typical value m = N/2 = 109, and the secret key rate
K can be regarded as a function K = K(VA,T ,ε,Vel,N0).
If the system fluctuates with time, these parameters
will be changed to V ′

A,T ′,ε′,V ′
el,N

′
0 respectively, namely,

K ′ = K(V ′
A,T ′,ε′,V ′

el,N
′
0).

To demonstrate the optimization performance of our pro-
posed approach based on the SVR model for stabilizing
the CVQKD system, we compare the secret key rates un-
der different circumstances. Without loss of generality, we
consider the situation of the employed devices for feedback
being perfect, i.e., χε = 0. In this case, Eq. (10) becomes
χ = 1 − MSE/N0. In our proposed approach based on the
SVR model, MSE = 4.2162 × 10−7, thus we have χ = 0.997.
The relationship between the secret key rate of the system
and the transmission distance under the SVR model is shown
in Fig. 7. For comparison, we also plot the secret key rates
under the perfect situation, i.e., χ = 1, and the situation with
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imperfect feedback devices with our proposed approach based
on the SVR model, e.g., χ = 0.990. Obviously, two curves for
the secret key rates almost coincide at the condition of perfect
feedback devices. Even if the feedback devices are not perfect,
the output secret key rate is very close to the perfect situation.
This means that our proposed approach can stabilize well the
CVQKD system and the secret key rate can be optimized.

However, without our proposed approach based on the SVR
model, the deviations for the secret key rate are obvious. To
demonstrate this result, we consider the previous countermea-
sure for controlling the fluctuations of LO pulse, i.e., Bob
measures the shot noise in real time. In this case, we have
χ = 0.957 which is obtained based on the experiment results
from the employed CVQKD system in Fig. 2. The secret key
rate against collective attacks is also plotted in Fig. 7. Clearly,
both the truly secret key rate Alice and Bob actually shared and
the secure distance decrease. Accordingly, in our approach,
since Bob can tune the LO intensity to a required constant
value, the SNR of the homodyne detector can be changed
to a desired value at the same time, which will improve the
tolerance of the channel excess noise in a practical CVQKD
system [50].

B. Practical security of CVQKD system against LO attacks

In a practical GMCS CVQKD system, shot noise can be
evaluated based on the measured LO pulse intensity, which
is generally assumed to be constant. Unfortunately, the LO
pulse intensity always fluctuates during the key distribution
process. This will inevitably give Eve advantages in exploiting
the fluctuations. In detail, Eve can simulate the fluctuations of
the LO pulse intensity to hide many kinds of attacks, then the
excess noise introduced by her will be reduced arbitrarily by
reducing the intensity of the LO pulse. Consequently, Alice
and Bob would underestimate Eve’s information. Actually,
Refs. [20–23] have pointed out that the instability of the
LO pulse intensity will leave loopholes for Eve and could
jeopardize severely the practical security of the involved
CVQKD system.

To resist the practical attacks induced by the instability
of LO pulse intensity, the previous countermeasures often
monitor the LO intensity and meanwhile Bob’s measurements
should be scaled with the instantaneous intensity value of each
LO pulse. Such ways have drawbacks as discussed in the Sec. I.
In this paper, we propose an alternative countermeasure, which

may degrade the fluctuation and stabilize the LO intensity
via machine learning algorithms. The proposed scheme is
as follows. Bob obtains the predictive values of the LO
pulse intensity via machine learning, and then he amplifies
or attenuates the LO intensity to a desired value according to
the predictive values obtained through the learned SVR model.
As described in the above sections, we can reach very accurate
predictions of the LO pulse intensity and then optimize the
performance of the involved CVQKD system. Consequently,
almost any practical attacks due to the LO pulse instability can
be resisted. This result has been confirmed by the experiment
described in Sec. IV. Therefore, our proposed approach based
on a SVR model may provide a perfect solution in this scenario.

V. CONCLUSIONS

In this work, considering that the instability has signif-
icant influences on the performance and practical security
of CVQKD system, we proposed an approach to optimize
the involved system. Implementing this approach requires
neither additional quantum resources nor extra experimental
hardware. Instead we rely on software-based machine learning
techniques, which extract optimal performance from infor-
mation that would have already been collected during the
implementations of CVQKD system. The proposed approach
is exemplified by making use of the intensity evolutions of
laser light and local oscillator pulses in the CVQKD system.
Our experimental results show that the proposed approach
performs well and the secret key rate of the CVQKD system
can be optimized by tuning the intensity of the LO pulse with
feedback which is obtained via machine learning. Especially,
all known practical attacks associated with the LO instability
will be defeated and the practical security of the system can be
perfectly guaranteed.
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