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Continuous-variable quantum Gaussian process regression and quantum singular value
decomposition of nonsparse low-rank matrices
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With the significant advancement in quantum computation during the past couple of decades, the exploration
of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process
regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm
for Gaussian process regression using continuous-variable quantum systems that can be realized with technology
based on photonic quantum computers under certain assumptions regarding distribution of data and availability of
efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic
speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing
the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value
decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process
regression algorithm.

DOI: 10.1103/PhysRevA.97.022315

I. INTRODUCTION

One of the current technological needs in the area of
computer science is finding an efficient and faster way of
manipulating large data sets, and extracting worthwhile in-
ferences. In the last decade, machine-learning techniques have
been used to perform many tasks involving big data. In 1959,
Samuel defined machine learning as the “field of study that
gives computers the ability to learn without being explicitly
programed” [1]. Machine learning has not only helped us better
understand the human genome, but has also made self-driving
cars, practical speech recognition, effective web search, etc.,
possible [2,3].

One of the two machine-learning methods involves su-
pervised learning (with the other task being unsupervised
learning) [4]. It is the problem of learning input-output map-
pings from an empirical (training) data set. Depending on the
nature of the output, the problem of supervised learning can
be categorized under two types: regression and classification.
Regression deals with the process involving continuous output,
whereas classification deals with the process involving discrete
(categorical) output.

Under supervised learning, one is given a data set D
containing n observations of input-output (xi ,yi), where xi ∈
Rd , yi ∈ R, ∀ i ∈ {0,1, . . . ,N − 1}. This is a training data
set involving a process called regression as one deals with
continuous output. Given this training data set, the machine is
trained to predict new inputs which are not listed inD. The goal
of supervised learning is to induce a function from observations
on the training data set.

Gaussian processes form powerful models for regression
problems. They have found a wide range of applications:
robotics, data mining, geophysics, climate modeling, etc.
(see [4], and references therein). Any Gaussian distribution
is fully characterized by its mean and covariance function.

The problem of learning in a Gaussian process is precisely
the problem of finding suitable properties of the covariance
function. In general, when only classical systems and strategies
are in use, the implementation of a Gaussian process regression
model with n training points typically requires O(n3) basic
operations [4].

The application of principles in quantum mechanics has led
to the realization of technologies in information processing
and computation that can never be achieved within the realm
of classical mechanics, such as teleportation and quantum
key distribution [5–7]. Significantly, quantum computers are
expected to have advantages over classical computers [5].
In theoretical computer science, quantum algorithms have
been developed showing a significant advantage over their
classical counterparts in terms of, in the best case scenario,
an exponential speedup [8]. Importantly, quantum algorithms
can also have a significant impact on machine learning,
and this has led to the emergence of quantum machine
learning [9].

The Harrow-Hassidim-Lloyd (HHL) algorithm, introduced
in [10], gives a quantum algorithm for solving systems of linear
equations. Specifically, let the system of linear equations be
Ax = b, where A is a matrix, and b a vector, and the goal is
to find the vector x. In [10], the case was considered in which
one needs to know the expectation value of some operator
associated with x, e.g., x†Mx for a given matrix M , instead of
the solution x itself. AssumingA is a sparseN × N matrix with
condition number (ratio of largest and smallest eigenvalue)
κ , classical algorithms can find x and estimate x†Mx in
O(N

√
κ) time. However, in [10] the authors presented a

quantum algorithm that ran in poly(log N,κ,1/ε) time, with
ε precision in the output state (N.B., if one, in certain cases,
avoids phase estimation the precision can be poly[log(1/ε)]
[11]). They showed that when the sparseness parameter of
the matrix does not scale faster than polylogarithmically in
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N , an exponential speedup is possible with the quantum
linear systems algorithm. Recently, this quantum algorithm
was applied to Gaussian process regression [12]. One of the
contexts in which sparsely constructed Gaussian processes find
applications is the problem involving inference in large data
sets [13]. However, all applications so far have been limited to
qubit or discrete-variable (DV) quantum systems.

Continuous-variable (CV) quantum systems are charac-
terized by having an infinite-dimensional Hilbert space, and
measurements involving observables with continuous eigen-
spectra [14]. A CV generalization of any DV quantum-system-
assisted algorithm is essential in the context of developing
algorithms for quantum computers involving CV systems,
e.g., optical quantum computing [14]. The usefulness of CV
quantum machine learning [15] goes beyond the processing
of classical data sets that involve a discrete number of data.
The output by the universal CV quantum computation is a
CV state that evolves under a designed Hamiltonian [16]. The
DV machine-learning subroutines are inefficient (incapable)
at processing full CV states by themselves. This deficit of DV
quantum-systems-assisted machine-learning subroutines can
be curbed using predominantly CV quantum systems along
with qubits when needed [16].

In this paper, we apply the techniques developed in [15]
to generalize the DV quantum-assisted Gaussian process re-
gression [12] to CV systems. For our task, we also describe
an encoding method of a covariance matrix that gives a tech-
nique for a CV quantum-assisted singular value decomposition
method of nonsparse low-rank matrices [17]. Furthermore, we
consider the practical case of finite squeezing analysis for our
algorithm.

Our discussion is organized as follows. We first introduce
our notation and basic definitions in Sec. II. In Sec. III,
we introduce a CV method of quantum singular value de-
composition of nonsparse low-rank matrices. In Sec. IV,
we illustrate a CV quantum-system-assisted algorithm for a
Gaussian process regression model by efficiently computing
its mean in Sec. IV A and covariance function in Sec. IV B. We
base the algorithm on a scheme to encode the covariance matrix
in an oracular setting for an efficient computation of the mean
and covariance functions using CV quantum systems. Finally,
in Sec. V, we give concluding remarks.

II. CLASSICAL GAUSSIAN PROCESS REGRESSION

In this review section, we introduce our notation and basic
definitions that are needed for the discussion of Gaussian
process regression. Let N (x|m,σ 2) denote the Gaussian (nor-
mal) distribution of the variable x with mean m = E[x] and
variance V[x] = E[(x − m)2] = σ 2. Consider a training set
D = {xi ,yi}N−1

i=0 of N d-dimensional inputs (input vectors) xi

and scalar outputs (or target values) yi (i ∈ {0,1, . . . ,N − 1}).
The outputs yi are accumulated together to form entries of an
output N -dimensional vector y. Furthermore, we assume that
the outputs are noisy, i.e.,

yi = f (xi) + ε, (1)

where f (xi) is the latent function [4] and ε ∼ N (0,σ 2) denotes
independent and identically distributed Gaussian noise.

A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribution.
A Gaussian process is completely specified by its mean and
covariance function (kernel) [4], which for a real process f (x)
is defined by

k(x,x′) = E[(f (x) − m(x))(f (x′) − m(x′))], (2)

where m(x) = E[f (x)] denotes the mean function of f (x).
Let us denote the real process as

f (x) ∼ GP(m(x),k(x,x′)). (3)

Given a new input (test point) x∗, our goal is to predict the
distribution of

f∗ = f (x∗). (4)

One can consider an array of test points; however, for simplicity
we consider only a single test point. The procedure described
for a single test point can be simply generalized to multiple
test point instances.

To this end, we note that the joint distribution of the observed
target values and the function value at the test location are,
respectively,[

y

f∗

]
∼ N (0,K), K =

[
K k∗
kT

∗ k∗∗

]
, (5)

where K is the N × N matrix with entries

Kij = k(xi ,xj ) + σ 2δij , (6)

and the entries of the vector k∗ ≡ [k∗i] are the covariance func-
tions k(xi ,x∗), and k∗∗ = k(x∗,x∗). Without loss of generality,
we set the mean of the distribution to zero.

Using

K−1 =
[
K−1 + k̃−1

∗∗ k̃∗ k̃
T

∗ −k̃−1
∗∗ k̃∗

−k̃−1
∗∗ k̃

T

∗ k̃−1
∗∗

]
, (7)

where

k̃∗ = K−1k∗, k̃∗∗ = k∗∗ − k∗ · k̃∗, (8)

we deduce the conditional probability to be

P (f∗| y) ∼ N ( y · k̃∗,k̃∗∗). (9)

The task at hand boils down to the efficient computation of the
mean y · k̃∗ and variance k̃∗∗.

III. QUANTUM SINGULAR VALUE DECOMPOSITION
METHOD OF NONSPARSE LOW-RANK MATRICES

In this section, we introduce a CV version of the quantum-
assisted singular value decomposition method of nonsparse
low-rank matrices which was first introduced for qubits in
Ref. [17]. These results will form a subroutine in the next sec-
tion for the quantum Gaussian process regression algorithm.

We begin by assuming for simplicity that N = 2n and the
matrix K can be encoded as

K̂ =
[
K

I

]
(10)

in an ensemble of n + 1 qubits and accessed via oracle calls.
For the oracle calls, we make use of the method for nonsparse
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matrices in an oracular setting which requires only one-sparse
simulation techniques [17].

To record and access the matrix K̂ , we first create the one-
sparse Hermitian matrix [17]

H =
2N−1∑
x,y=0

〈x|K̂|y〉|x〉〈y| ⊗ |y〉〈x| (11)

whose entries are real numbers. This enlarges the Hilbert space
quadratically, but because the matrix H has a single nonvan-
ishing element in each row, its dynamics can be efficiently
approximated. Indeed, we approximate each nonvanishing
element of H by 2ζ [ 〈x|K̂|y〉

2ζ
], where [l] denotes the integer part

of l. The resulting approximate matrix

H̃ = 2
2N−1∑
x,y=0

[
〈x|K̂|y〉

2ζ

]
|x〉〈y| ⊗ |y〉〈x| (12)

has entries which are even integers, and H ≈ ζ H̃ , i.e., ‖H −
ζ H̃‖ � ζ [18]. It can be easily decomposed into a sum of
matrices each of which has eigenvalues ±1,

H̃ =
jmax∑
j=1

Hj, (13)

encoding efficiently a good approximation to all the infor-
mation in the matrix K̂ . The sum in (13) contains at most
O(‖H̃‖) ∼ O(λmax/ζ ) terms, where λmax is the largest eigen-
value of K . If λmax is independent of the number of qubits,
then the complexity of our quantum calculation is independent
of N . This is not always the case [19], and depends on data
distribution. We will discuss the complexity of the algorithm
for a given error and the restrictions on the matrix K imposed
by requiring exponential speedup further in Sec. IV.

We form the oracle calls to access H ,

Q = i

jmax∑
j=1

|j 〉〈j | ⊗ e−ι(π/2)Hj . (14)

Notice that Q is Hermitian as well as unitary, therefore Q2 = I.
Next we consider how to prepare states containing encod-

ings of | y〉 and |k∗〉. We normally encode a N -dimensional unit
vector v by forming the n-qubit state |v〉 = ∑

i vi |i〉. However,
the vectors we are interested in are not unit vectors, and we are
also interested in the signs of inner products, not just their ab-
solute values. To encode this additional information, e.g., for y,
we shall use n + 1 qubits and form the unit vector correspond-
ing to the 2N -dimensional vector [yi/c(y),

√
1 − y2

i /c
2(y)],

where c(y) > yi , for all i ∈ {0,1, . . . ,N − 1}, and encode it
on the (n + 1)-qubit state

| y〉 = 1√
N

N−1∑
i=0

⎛⎝ yi

c(y)
|i〉 +

√
1 − y2

i

c2(y)
|N + i〉

⎞⎠. (15)

One way to prepare such a state is to form a unitary (sequence
of rotations) Uy such that Uy |0 · · · 0〉 = | y〉. This can be done
efficiently, as long as the components of y are relatively
uniform [19]. In a similar way, we can encode k∗ in the

(n + 1)-qubit state

|k∗〉 = 1√
N

N−1∑
i=0

⎛⎝ k∗i

c(k∗)
|i〉 +

√
1 − k2

∗i

c2(k∗)
|N + i〉

⎞⎠. (16)

IV. QUANTUM GAUSSIAN PROCESS REGRESSION

In this section, we illustrate our quantum algorithm using
quantum CV systems to implement the task of efficiently
computing the mean y · k̃∗ and variance k̃∗∗ for a Gaussian
process regression model. We do so by including our previous
results of the quantum singular value decomposition as a
subroutine.

A. Efficient computation of mean

Given the N -dimensional vectors y and k∗
defined above, we form the 4N -dimensional vector
[yi/c(y),

√
1 − y2

i /c
2(y),k∗i/c(k∗),

√
1 − k2

∗i/c
2(k∗)], and

encode it in the (n + 2)-qubit state | y,k∗〉, as outlined above.
This can be done efficiently with a string of unitary operations,
provided the components are relatively uniform [19], or they
have been encoded and stored in a qRAM [20,21] by a third
party.

Evidently, our input state can be written in terms of the
states (15) and (16) defined above as

| y,k∗〉 ≡ 1√
2

(| y〉|0〉 + |k∗〉|1〉). (17)

To this state we append two CV resource modes in the squeezed
state

|�R(ξ )〉 = 1√
πξ

∫
dqRdq̃Re−(1/2ξ 2)[q2

R+q̃2
R ]|qR〉|q̃R〉, (18)

written in terms of the q quadratures, qR and q̃R , respectively,
of the resource modes. It is advantageous to make the squeezing
parameter ξ as small as technologically feasible, thus forming
the state

|χ [ y,k∗,�R(ξ )]〉 ≡ | y,k∗〉|�R(ξ )〉. (19)

Next we apply the unitary

U = eιγ (K̂/4N)N̂pRp̃R , (20)

where N̂ = I−Z
2 is a projection acting on the last qubit of our

state (17), pR and p̃R are p quadrature operators acting on the
resource modes, and γ is a parameter that can be adjusted
at will. To implement it, instead of applying an evolution
involving K̂ , we use the quadratically enlarged matrix H

[Eq. (12)] which contains the same information, but leads to
simpler dynamics. We will then use the resulting unitary as a
generalized exponential swap to apply the desired matrix K̂ .

To implement the approximation to H and H̃ [Eqs. (12)
and (13)], we need a “fractional” query, QδpRp̃RN̂ , where δ is
an arbitrary real number. Notice that

QδpRp̃RN̂ = 1
2 (I + Q) ⊗ eι(πδ/2)pRp̃RN̂

+ 1
2 (I − Q) ⊗ e−ι(πδ/2)pRp̃RN̂ , (21)

acting on, say, |ψ〉|φ〉. We append an ancilla qubit in the state
|+〉A, and then perform a control Q on |ψ〉 with the ancilla as
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control. We obtain
1√
2

(|ψ〉|φ〉|0〉A + Q|ψ〉|φ〉|1〉A). (22)

Then we rotate the ancilla so that |0〉A → |+〉A, |1〉A → |−〉A,
which yields

1
2 [(I + Q)|ψ〉|φ〉|0〉A + (I − Q)|ψ〉|φ〉|1〉A]. (23)

Next we apply the unitary eι(πδ/2)pRp̃RN̂ZA , whereZA is the Pauli
matrix Z acting on the ancilla. It can be implemented with a
non-Gaussian gate [15,22], if |0〉,|1〉 represent logical qubits
realized by a pair of qumodes |01〉 = b̂†|00〉,|10〉 = â†|00〉, so
that ZA = b̂†b̂ − â†â. We obtain

I + Q

2
eι(πδ/2)pRp̃RN̂ |ψ〉|φ〉|0〉A

+I − Q

2
e−ι(πδ/2)pRp̃RN̂ |ψ〉|φ〉|1〉A. (24)

Finally, we perform a projective measurement on the an-
cilla projecting it onto |+〉A, resulting in the desired state
QδpRp̃RN̂ |ψ〉|φ〉. This projection is successful 50% of the time,
as is easily verified.

We can now implement

e−ιγHpRp̃RN̂ ≈ e−ιγ εH̃pRp̃RN̂ ≈
⎛⎝∏

j

e−ι(γ ε/M)Hj pRp̃RN̂

⎞⎠M

(25)

using QδpRp̃RN̂ , where δ = 2γ ε

πM
. Let |ψ〉 = |1〉|χ〉, initially. Let

P be any permutation matrix, so that by repeatedly acting with
P on |1〉, we span all states |j 〉, j = 1, . . . ,jmax. Then

(QδpRp̃RN̂ P ⊗ I)jmax |ψ〉 = I ⊗
∏
j

e−ι(γ /εM)Hj pRp̃RN̂ |ψ〉.

(26)
Having constructed the unitary (26), we may implement the
unitary (25) by repeating the above process M times. We will
use this construction to implement the unitary (20) following
[17]. Let ρ = |χ〉〈χ | [Eq. (19)] be the state on which (20) will
act. We introduce the symmetric state

|s〉 = 1

2
√

N

2N−1∑
x=0

|x〉. (27)

We then act on the state |s〉〈s| ⊗ ρ with the unitary (26), and
trace over the degrees of freedom of the register in which |s〉
resides. We obtain

tr[e−ι(γ /M)HpRp̃RN̂ |s〉〈s| ⊗ ρ eι(γ /M)HpRp̃RN̂ ] ≈ UMρ U†
M,

(28)

where UM = e−ι(γ /4MN )K̂N̂pRp̃R . Thus, the above procedure
yielded an evolution involving the desired matrix K̂ from
the quadratically enlarged, but dynamically simpler, matrix H

containing all the entries of K̂ [Eq. (12)].
The error in (28) is εM � γ 2

M2ξ 4 ‖K̂‖2, where ‖K̂‖ is the

magnitude of the largest matrix element of K̂ , and we used
|λ| � 4N‖K̂‖, where λ is any eigenvalue of K̂ .

By repeating this process M times, we arrive at the desired
result (20) [since U ≈ (UM )M ]. The cumulative error is ε =
MεM � γ 2

Mξ 4 ‖K̂‖2. For a large number of steps, only large

enough eigenvalues contribute, specifically, γ |λ|/N � ξ 2. Let
us choose a small enough squeezing parameter ξ (restricted by
current technology) and a large enough adjustable parameter
γ , so that the error introduced by restricting to relatively large
eigenvalues is ε, i.e.,

γ ∼ ξ 2

ε
. (29)

It should be noted that the smallest eigenvalue of K̂ can also be
controlled to a certain extent by increasing the variance noise
σ 2I, so that ‖K̂‖ � σ 2, which may relax the constraint (29)
on γ .

It follows that the number of oracle calls required for the
algorithm is M � γ 2

εξ 4 ‖K̂‖2 ∼ ‖K̂‖2/ε3. If K is a low-rank
matrix which is dense with relatively small matrix elements,
then ‖K̂‖ ∼ O(poly logN ) [17]. Moreover, if we are interested
in errors 1/ε ∼ O(poly logN ), then also the number of oracle
calls M ∼ O(poly logN ).

The above considerations constrain the parameters ξ and γ

to be in a range that facilitates an accurate calculation of the
mean. Indeed, we obtain

U |χ〉 = 1√
2

(| y〉|0〉 + eιγ (K̂/4N )pRp̃R |k∗〉|1〉)|�R(ξ )〉. (30)

Next, we measure the q quadrature, qR and q̃R , respectively, of
the resource modes. If the outcome is (qR,q̃R) with |qR|,|q̃R| �
ξ , then the state is projected onto �ξU |χ〉, where

�ξ =
∫ ξ

−ξ

dqR

∫ ξ

−ξ

dq̃R|qR,q̃R〉〈qR,q̃R|. (31)

As shown below, this results in a state which is independent of
the resource measurement outcomes to a good approximation.
Therefore, the probability that the resource measurement
successfully implements �ξ is(

1√
πξ

∫ ξ

−ξ

dqe−q2/ξ 2

)2

= erf2(1), (32)

or numerically 71%.
After a straightforward calculation, we obtain

〈qR,q̃R|eιγ (K̂/4N )N̂pRp̃R |�R(ξ )〉

∝ e−[ξ 2(q2
R+q̃2

R )+2ιγ qRq̃R (K̂/4N )N̂/2(ξ 4+γ 2(K̂2/16N2)N̂2)]√
ξ 4 + γ 2 K̂2

16N2 N̂2
. (33)

where the remaining operators K̂ and N̂ act on the Hilbert
space of the state of our system (17), with N̂ acting on its last
qubit and K̂ on the rest of the qubits. Choosing ξ to be small
enough and γ to be large enough, as outlined above, we may
approximate

〈qR,q̃R|eιγ K̂pRp̃R |�R(ξ )〉
〈qR,q̃R|�R(ξ )〉 ≈ ξ 2

γ

(
K̂

4N

)−1

. (34)

The resource modes decouple, and the remaining projected
state |χ̂( y,k∗,s)〉 is approximately

|χ̂〉 ≈ | y〉|0〉 + ξ 2

γ
K̂−1|k∗〉|1〉. (35)
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Next, we measure Z on the first qubit of the n + 1 qubit system
and X on the appended (last) qubit. The expectation value of
I+Z

2 ⊗ X for the state |χ̂〉 is

〈χ̂ |I + Z

2
⊗ X|χ̂ t〉 = 2ξ 2

Nc(y)c(k∗)γ
yT K−1k∗

= 2ξ 2 y · k̃∗
Nc(y)c(k∗)γ

, (36)

from which we easily deduce the mean y · k̃∗:

y · k̃∗ = Nγ

2ξ 2
c(y)c(k∗)〈χ̂ |I + Z

2
⊗ X|χ̂〉. (37)

B. Efficient computation of variance

To calculate the variance, we need to be able to efficiently
compute k∗ · k̃∗ = kT K−1k∗ (8) as k∗∗ is given. The calcula-
tion of k∗ · k̃∗ follows the same lines of the calculation of the
mean with y replaced by k∗ in (17) and (19). Because of this
replacement, we need to consider the (n + 1)-qubit state |k∗〉
corresponding to a 2N -dimensional vector.

To this system, we append a qubit in the state 1√
2
(|0〉 + |1〉)

as well as two resource modes in the squeezed state (18), thus
forming the state

|χ (k∗,k∗,�(ξ ))〉 = 1√
2
|k∗〉(|0〉 + |1〉)|�R(ξ )〉. (38)

Following the same steps as that for the calculation of the mean,
we obtain

〈χ̂ |I + Z

2
⊗ X|χ̂〉 = 2ξ 2

Nγc2(k∗)
kT

∗ K−1k∗

= 2ξ 2k∗ · k̃∗
Nγc2(k∗)

, (39)

from which we easily deduce the variance k̃∗∗:

k̃∗∗ = k∗∗ − Nγ

2ξ 2
c2(k∗)〈χ̂ |I + Z

2
⊗ X|χ̂〉. (40)

Given that both y and k∗ are sparse, and K is well conditioned,
we have an efficient way of computing both the mean and

variance function of Gaussian process regression. In this
situation, because we are making use of a quantum linear
systems algorithm, we achieve an exponential speedup over
its classical counterpart.

V. CONCLUSION

We presented a continuous-variable quantum-system-
assisted Gaussian process regression algorithm that offers the
potential of an exponential speedup over classical techniques.
It generalized the result given in [12] where the authors had
initially considered the application of quantum systems of
linear equations algorithm [10] to Gaussian process regression
using discrete-variable quantum systems. The application of
such HHL algorithm constrains the matrix K (6) related to
Gaussian processes to be well conditioned. K needs to be
robustly invertible [19], which restricts the condition number
κ to remain low even as N increases. We can make K robust by
increasing the variance noise (σ 2I) so that λmin remains above
a certain threshold (λmin � σ 2). This dilution trick would work
only if the statistical properties of the concerned model are not
significantly altered.

In Ref. [17], the authors provided a method for nonsparse
matrices in an oracular setting which required only one-sparse
simulation techniques. We made use of this method to encode
K for the computation of the mean and covariance function of a
Gaussian process regression model. Our presented method pro-
vides a continuous-variable quantum-assisted singular value
decomposition of nonsparse low-rank matrices. This hints at
applications of our technique to subroutines beyond quantum
systems of linear equations algorithms.
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