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We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three
coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and
here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and
continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing
of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security
proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is
in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare
the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in
terms of secret key rates and loss.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2], in principle, pro-
vides the most secure form of quantum safe cybersecurity, i.e.,
protection against a quantum computing attack. As opposed to
post quantum cryptography [3], which is based on computa-
tionally secure mathematics, QKD exploits the laws of quan-
tum physics to achieve, at least in theory, unbreakable codes.
Since QKD was first suggested in 1984, many advances have
taken place, from theoretical to proof-of-principle experiments
to field tests and even the forming of companies.

Even though this seems like the end of the story, there are
still many advances being made in all of these areas. To this
point, in this paper, we look at creating a best-of-both-worlds
approach to QKD by combining the beneficial practical aspects
of the two main implementations of QKD: those using discrete
variables (DVs) [1] and those using continuous variables (CVs)
[4,5]. To be more specific, we would like to use the simpler
encoding and decoding methods from DV QKD but at the
same time leverage the simpler and more affordable room-
temperature hardware components of CV QKD.

Recently, the ultimate (optimal) limit for a lossy bosonic
channel was discovered and is given by the Pirandola-
Laurenza-Ottaviani-Banchi (PLOB) bound [6]. An interpre-
tation of this result is that no QKD protocol can go beyond
this bound without a quantum repeater. In terms of key rate
as a function of channel loss (cf. for instance Fig. 6 of [6]),
this corresponds to a CV QKD Gaussian protocol with reverse
reconciliation using a quantum memory at Alice’s side and het-
erodyne at Bob’s side [7]. In terms of implementations, below
this optimal bound lies the single-photon BB84 protocol [8].
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Both of these two protocols are in terms of the ideal case,
i.e., perfect sources and perfect detectors. However, when one
considers the realistic version of these two (in the case of DV
QKD this corresponds to the decoy state scheme [9,10]), both
become remarkably similar in terms of key rates as a function
of loss, except for a slight advantage in key rates for CVs in
the low-loss regime and a slight distance advantage in DVs
for the high-loss regime. In this realistic scenario, both the DV
and the CV QKD schemes sit below the PLOB bound. Ideally,
we would like to either (1) find a (realistic) protocol above these
two protocols or (2) have a protocol similar to these protocols
in terms of key rates but one that leverages the practical benefits
of both schemes.

With that in mind, we consider a protocol first introduced
in 2009 by Zhao et al. [11] that uses binary-phase-shift keying
(BPSK) of coherent states, |α〉 and | − α〉, along with homo-
dyne detection. Unfortunately, as one can see, the performance
of this protocol is below that of the realistic BB84 with decoy
states and the realistic Gaussian modulation CV scheme. In
this paper, we consider a ternary-phase-shift keying (TPSK)
of coherent states |α〉i , where i = 0,1,2, with homodyne
detection. Here, each of the three coherent states are phase
shifted in phase space by 120◦ (cf. Fig. 1). One may ask the
following question: What is the motivation of going from two
coherent states to three coherent states? Or, perhaps, why not
go to more coherent states straightaway? In terms of the second
question, this is easily answered by considering the paper by
Zhao et al. [11] and our results here. The extension to three
states is challenging enough, while the extension to more than
three states is a very hard problem if one wants a strong security
proof like the one we have given here. In terms of the first
question, there are two possible ways to answer this. One way
is that we know that at some stage as one increases the number
of coherent states there must be a point where it becomes a
close approximation to the full Gaussian distribution. So, there
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FIG. 1. Phase-space configurations of the ternary coherent state
QKD protocol. Note that each subsequent coherent state is 120◦ from
the other one. Alice’s role is to continually and randomly choose
from these three options and then send them to Bob who performs
homodyne detection on the incoming states by randomly alternating
between theQ andP quadratures. As is standard, the quantum channel
is assumed to be monitored by the eavesdropper, Eve.

may be a point where one may not need the entire (continuum)
Gaussian distribution. Another way is to consider the affect
that decoy state BB84 QKD has on ideal single-photon BB84
and draw inspiration from there. Specifically, by increasing
the number of pulses from the ideal case of one to say three
pulses gives a boost to both the key rate and distance [9,10].
So perhaps we can consider increasing the number of discrete
coherent states from two to three (and potentially higher) as a
decoy-state-like extension of the BPSK-modulated CV QKD
protocol.

In this paper, we introduce and rigorously prove the asymp-
totic security of a ternary QKD protocol based on three
coherent states and homodyne detection. For completeness, we
mention that other discrete encodings for CVs have also been
considered [12–15]. In the papers by Leverrier and Grangier
[12–14], they considered two different coherent state encod-
ings (i.e., two and four), but in order to analyze the security they
“padded out” the states with decoylike states that effectively
resembled a Gaussian distribution from Eve’s point of view.
This is instigated in order to leverage previous Gaussian en-
coding security proofs. Finally, in [15] a multiletter phase-shift
keying scheme was introduced, where anN number of coherent
states can be used. However, the security proof only considered
a lossy bosonic channel (i.e., no excess noise). In contrast, we
consider a bosonic channel with arbitrary noise. Our results
here allow for the significant reduction, compared to Gaussian
modulation protocols, in classical postprocessing, random-
number generation, and classical-communication overheads.
Furthermore, by keeping the benefits of CV hardware, our
approach has the practical benefits of doing away with single-
photon detectors that characterize DV QKD systems. Such
detectors are only able to reach their promise of low noise
and high efficiency only with the addition of cumbersome
cryogenics.

A. Outline

This paper is structured as follows. We begin by giving more
background on the relationship between discrete and Gaussian
encodings. This is followed by a description of the steps of our
ternary coherent state protocol. Our main result is presented
next and consists of a simulation of a TPSK modulated lossy
bosonic channel. We end with our conclusion.

B. Notation

In what follows, f ′ denotes df

dz
and similarly for higher

derivatives. Sometimes we explicitly mention a function’s vari-

able [typically f = f (z)]. The symbol
df= stands for “defined.”

The von Neumann entropy of a density matrix �A is H (A)� ≡
H (�A)

df= − Tr[�A log �A] [16,17] and it becomes Shannon
entropy for classical probability distributions (denoted by X,Y

in this paper). The base of the logarithms is irrelevant but will
be set to two throughout the paper. We will intensively study the
properties of H (X) where X = �x = (x1,x2,1 − x1 − x2) and
so a special name will be reserved for it, the ternary Shannon
entropy:

h3(�x)
df= −x1 log x1 − x2 log x2

− (1 − x1 − x2) log [1 − x1 − x2]. (1)

The classical-quantum conditional entropy (entropy con-
ditioned on a classical variable) reads as H (A|Y ) =∑

y p(y)H (�y

A). For a classical variable A = X the entropy
becomes the standard Shannon conditional entropy H (X|Y ) =
−∑

y p(y)
∑

x p(x|y) log p(x|y). Other entropic quantities
used in the paper include the classical mutual information I (X :

Y )
df= H (X) + H (Y ) − H (XY ) = H (Y ) − H (Y |X). We will

also use the quantum version of the mutual information where
one of the registers is quantum and express it as I (Y : E) =
H (E|X) + I (X : E) − H (E|Y ).

When we say a function f is increasing we mean nonde-
creasing [f (x) � f (y) whenever x � y]. Similarly, a decreas-
ing function means a nonincreasing function.

C. Conventions

We will use the convention of [11] for the quadrature oper-
ators. They are given by Q = 1/

√
2(a + a†), P = 1/

√
2(a −

a†), and so 〈(�Q)2〉α = 〈(�P )2〉α = 1/2 (h̄ = 1) and 〈Q〉α =
1/

√
2(α + ᾱ) where α = r exp [iσ ]. In our case, we have

(αx)x=0,1,2 and σ0 = 0, σ1 = 2π/3, and σ2 = 4π/3 and ri = r

is a free parameter chosen by the legitimate participants to
maximize the secret key rate.

A lossy bosonic channel is a Gaussian channel parametrized
by two quantities. One of them is the transmittance 0 � η � 1
and the other one the number of thermal photons representing
the Gaussian excess noise. For the sake of comparison, we use
the definition of excess noise from [11]:

δ = 〈(�Q)2〉	B

〈(�Q)2〉|0〉
− 1 (2)

given by Bob’s measurement of 	B . For the simulation scenario
we also assume 〈(�Q)2〉	B

= 〈(�P )2〉	B
. A quantity called

a “mixedness parameter” εx � 0 is upper bounded by Bob’s
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second moments according to (65) of [11] and it is the main
estimate of the state in Eve’s possession. In our simulation
scenario, we may set1 ε ≡ εx .

II. DISCRETE VERSUS GAUSSIAN ENCODING

The most studied QKD schemes are discrete-variable (DV)
QKD [1,2] and continuous-variable (CV) QKD [4] based on
a Gaussian encoding. The DV QKD security analysis is very
mature but the secret key rates are limited given the discrete
nature of the encoding. Higher-dimensional DV QKD scheme
has been analyzed [18] but yet to have graduated from the
experimental point of view. Gaussian CV QKD offers much
generous secret key rates together with a relatively simple
experimental realization in terms of the state preparation and
detection. But, it has also its disadvantages. For instance, the
classical postprocessing such as error correction is compu-
tationally demanding and currently not very efficient. The
aspiration of CV QKD based on a distribution of discrete signal
states holds a promise of combining the best of both worlds.

Unlike a Gaussian encoding where the best adversary’s
strategy is known, the same is not true if the number of
signal states is discrete. In fact, to the authors’ knowledge,
there exists only one paper dealing with the security of
such a scheme without assuming nearly anything about the
adversary’s powers [11]. The security proof (and thus the
corresponding secret key rate lower bound) is derived by
assuming a collective attack and in the asymptotic scenario
of an infinite code length. The collective attacks are not the
most general eavesdropping scheme. However, it is widely
believed that similarly to DV QKD or Gaussian CV QKD,
a more general attack strategy does not bring any advantage.
For the second point, an asymptotic analysis is not a realistic
assumption but it is historically the first step after which a
finite-key length analysis typically follows. The number of
signal (coherent) states prepared by a sender in [11] is two and
the receiver is allowed to measure only the first and second
moments of whatever gets through the (unknown) quantum
channel. Through a tour-de-force calculation, the authors
essentially construct a statistical model of the adversary’s
quantum states compatible with the legitimate recipient’s
measurement and maximize the amount of information the
adversary can in principle get, following a two-way public
discussion. In this way, a secret key rate lower bound is
derived.

The analysis is achieved by splitting the secret key rate for
a reverse reconciliation protocol into three entropic quantities
and upper and lower bounding them from the quantities
available from the recipient’s measurement. In this paper,
we follow the same strategy but instead of two signals the
communicating parties exchange three coherent signals. This
may seem like a small iteration but the opposite is true.
We get not only substantially better secret key rate lower
bounds but also show the limitation of the approach. The
latter point is worth elaborating on. The proof presented in
[11] crucially relies on the monotonicity and concavity of the

1The variables α,δ,ε,γ used in this section should not be confused
with those from the Appendix.

binary Shannon entropy as a function of the absolute value
of the overlap of two pure states (not necessarily the signal
states). For two signal states, these properties are trivial and
they are not proved in [[11], Eqs. (A36) and (34)]. The situation
dramatically changes for three signal states. Essentially, the
result of this paper is the proof that these two crucial properties
hold for the ternary Shannon entropy (1). Only then can the
rest of the previous analysis be applied verbatim and that
is precisely what we have done. Once these two properties
are proven, the rest of the proof follows exactly as in [11],
only with a few minor modifications which we will write
explicitly.

There is a caveat, however. For two signal states, the binary
Shannon entropy depends only on the absolute values of the
overlap of the signal states. For three states, the ternary entropy
depends on three possible overlaps and a certain phase. This
would not be a problem if we needed to study the entropy
of the density matrix for the signal states only. After all,
the participants are those who decide what symmetry (and a
probability distribution) the signal states obey and that could
greatly simplify the analysis. The problem is that at one point
of the previous analysis [11], the purified adversary’s state
(estimated from Bob’s measurement) need not obey any such
property and the state must be considered arbitrary. As it is
discussed in the first remark of the Appendix, Sec. A 1, in
the presence of more than one overlap, the studied function
does not even satisfy the (suitably generalized) notion of
monotonicity. This is not only surprising, but it also affects
the applicability of the approach of [11] that we follow here:
unlike the case of two signal states, the proof strategy has
its limits. Another consequence of our generalization is that
unless a generic argument for monotonicity and concavity of
the suitable generalized entropy function can be found (taking
into account what we have just stated), it is most likely that
a completely different approach is needed in order to study
discrete CV QKD protocols and their rates for more than three
signal states.

III. DESCRIPTION OF TERNARY COHERENT
STATE PROTOCOL

Here, we outline our ternary (three coherent state) QKD
protocol. It goes as follows:

(1) Alice prepares one of three possible coherent states |αi〉
with probability pi = 1/3, where i = 0,1,2. In Fig. 1, we have
a schematic of the phase space depicting how the three coherent
states are placed, i.e., sequentially separated by 120◦. She then
sends the randomly selected coherent state to the receiver,
Bob, over an insecure quantum channel. It is assumed that this
channel could be monitored by Eve. Alice repeats this step
many times. Alice’s choice for the ith signal (coherent state
pulse) is recorded in the variable xi . Specifically, the labeling
goes as |α0〉 is xi = 0, |α1〉 is xi = 1, and |α2〉 is xi = 2.

(2) Bob, upon receiving a sequence of quantum states,
randomly performs homodyne detection thereby randomly
measuring the quadratures Q(φ) for φ = (π/2,−π/6,−5π/6)
of each of the coherent states. A similar setup was used in
[19] but tested on a specific eavesdropping strategy. Bob’s
measurement results are recorded in the variable yi . Note that
Q(π/2) ≡ P in Fig. 1.
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(3) After the transmission, the parties publicly announce
the measurement quadratures. One of the quadratures, say
Q(−5pi/6), the measurement data are published which are
used to determine the extent of the adversary’s maliciousness.
These data are subsequently discarded.

(4) The remaining data (which we denote as {�x,�y}) will be
used for the final key generation. For the purpose of reverse
reconciliation, Bob sends compute functions u(�y) and w(�y)
and sends u(�y) over a public channel to Alice and keeps w(�y)
which is a discrete protokey (partially correlated with Alice’s
discrete variable {�x}).

(5) Classical postprocessing procedures of error correction
and privacy amplification are applied by Alice and Bob in order
to extract the final shared secret key. This final secret bit string
is then used as a one-time pad in order to perfectly secure
messages.

IV. A SECRET KEY RATE LOWER BOUND

In this section, we derive the lower secret key rate for
the ternary protocol with respect to a lossy bosonic channel.
Mathematically, the main results needed for this lower bound
(and which are rigorously proven in the Appendix) involve
proving that monoticity and concavity both hold for the ternary
Shannon entropy (1). We begin by defining the lower bound of
the secret key rate K followed by calculating the individual
components of this bound which include Alice and Bob’s
mutual information and Eve’s mutual information.

The secret key rate K is lower bounded as

K > I (X : Y ) − max
	ABE

I (Y : E). (3)

Equation (3) has its origin in [20] where the one-way private
quantum channel capacity was established. The lower bound
also differs from [20] in several aspects. (i) The channel is
a priori not known and is only partially estimated by the
measurements of the legitimate participants. The ambiguity
in its identification is an advantage for Eve: the optimization
leads to the penalty on the amount of shared secret correlations
as if Eve used the best eavesdropping channel compatible
with the measurements. This translates into the best channel
purification 	ABE held by Eve among all admissible ones in
Eq. (3) (see also Ref. [21]). (ii) Our key distribution protocol
uses reverse reconciliation where the classical communica-
tion (exploited by Eve) is transmitted from Bob to Alice.
This results in the appearance of the second term in (3) as
opposed to [20,21] dealing with direct reconciliation. (iii)
Finally, given the reality of the explicit quantum private code
described in Sec. III, the right-hand side of (3) is a one-shot
formula, a natural lower bound to a multiletter secret key
rate formula. A closely related expression for a secret key
rate was derived in [22] while focusing solely on the security
of QKD.

A. A secret key rate lower bound for
a lossy bosonic channel

The job here is to maximize the mutual information I (Y :
E) in order to find a lower bound on the secret key rate K .
In an actual experiment, the classical probability distribution
must be measured to be subsequently inserted to the relevant

entropic quantities in (3). Following [11], we may simulate an
actual link by a lossy bosonic channel. This is a realistic model
for the atmospheric CV QKD with homodyne measurement.
Note that the complementary channel is another lossy bosonic
channel and it captures the effect of the environment or an
adversary Eve. As is common for QKD, Eve is assumed to
control the channel and take an advantage of the generated
noise to hide her illicit behavior.

As we will see in the Appendix, Sec. A 1, unlike the BPSK
case studied in [11], the entropic properties of the investigated
density matrix depend not only on the mutual overlaps of
the three signal states, but also on the overall phase [see the
expressions for d in Eq. (A4) or (A5b)]. In the simulation
scenario for a lossy bosonic channel the phase can be computed
as we will show now.

We will first consider the zero excess noise case δ =
〈(�Q)2〉α
〈(�Q)2〉|0〉

− 1 = 0 (a pure-loss bosonic channel). The estimated
quantities become simpler as the recipient’s detected states are
pure coherent states and similarly for Eve. The parameter ε

given by (65) in [11] is bounded from above by U ≡ Ux = 0
from (65). Hence, ε = 0 and (66) together with (C17) and
(C18) of [11] imply

|〈β̃i |β̃j 〉| = cu = cl = κ.

The right-hand side is given by κ ≡ κij = |〈√ηαi |√ηαj 〉|.
Inserting cu,cl into (70) and (71) in [11] we get

dl = du = |〈αi |αj 〉|
κ

df= |γij | ≡ |γ | = e− 3
2 (1−η)r2

. (4)

This quantity is the estimated overlap of the states going to the
environment. As expected from the properties of a pure-loss
bosonic channel, it is the same quantity as κ with η substituted
by 1 − η.

We can geometrically interpret the product of inner products
in (A4) [or its special case (A5b)] if ψi are coherent states.
Then, the product

z01z12z20 = 〈α0|α1〉〈α1|α2〉〈α2|α0〉
= e− 1

2 (c2
01+c2

12+c2
20)e−i2(A01+A12+A20) (5)

is written in terms of the sides cij and area A012
df= A01 +

A12 + A20 of the triangle formed by the corresponding three
points in phase space. This is the interpretation provided by
Lemma 1.

We illustrate it on the symmetric case c01 = c20 = c12 ≡ c

of an equilateral triangle for δ = 0, whose side squared is equal
to c2 = 3r2(1 − η) found in (4). From the new triangle side
we deduce, with the help of elementary geometry (essentially
Heron’s formula), the corresponding area:

A012 = 1
4

[
4c2

01c
2
12 − (

c2
01 + c2

12 − c2
20

)2]1/2
, (6)

and consequently the phase ϑ = 2A012 = r2 3
√

3
2 (1 − η).

How do we apply it to the δ > 0 case? Here, the situation is
slightly different. The effect of a lossy bosonic channel is not
only shrinking of the phase-space triangle, but also increasing
the states’ variances; environment (Eve) and Bob do not receive
a mixture of three pure states but rather of three mixed Gaussian
states. Following the general procedure outlined in [11], where
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only the first and second moments are measured, the overlaps of
Eve’s state figuring in our simulation scenario are bounded by
(70) and (71) in [11]. In that case, neither |γ | nor κ are overlaps
of the corresponding pure coherent states. More precisely,
since Bob measures only the first two moments, the authors
of [11] introduced fiducial coherent states |βi〉 on Bob’s side
compatible with the measurement of the first moment. Then,
κ = |〈βi |βj 〉| and as before κ ≡ κij = |〈√ηαi |√ηαj 〉| for the
case of a lossy bosonic channel.2 This provides the same
interpretation for |γ | (Eve’s parameters estimated from Bob’s
measurement) and the phase is then determined according to
Lemma 1.

The main object of study is a lower bound on the secret key
rate [Eq. (3)]. Here, we break down the lower bound for the
simulated lossy bosonic channel. The central role is played by
the ternary Shannon entropy (1), where xk = tk + 1/3 and tk
is given by (A9).

B. Eve’s and Alice’s mutual information I(X : E)

Closely following [[11], Sec. IV B], to get a secret key
lower bound, the first quantity to estimate is I (X : E) <

I (X : QE) = h3(�x(Z)) for xk restricted to pk = 1/3 and
〈�i

EQ|�j

EQ〉 = Zij = Z exp[iτ̃ij ], Z > 0. As explained in the
Remark following Eq. (A5b), the restriction to |Zij | = Z is
a necessary step for the proof strategy following [11] to go
through. Then, from (A9), we get the explicit form of xk:

x1 = 1

3

(
1 + 2Z cos

ϑ

3

)
, (7a)

x2,3 = 1

3

[
1 − Z

(
cos

ϑ

3
∓

√
3 sin

ϑ

3

)]
. (7b)

Denoting f ≡ fij = F (	i
E,	

j

E) to be the fidelity of 	
i(j )
E =

TrQ[�i(j )
EQ] we get

h3(�x(Z,ϑ)) � h3(�x(f,ϑ))

� h3(�x((1 − ε̃0)1/2(1 − ε̃1)1/2|γ |,ϑ)), (8)

where 0 � ε̃i � ε. The second inequality follows from the
proof of monotonicity, Theorem 10, as a special case pk = 1/3.

When restricted to the simulation scenario of a lossy bosonic
channel, the parameter ϑ is a phase whose value we determine
with the help of Lemma 1. Before doing so, recall that for
δ = 0 the lossy bosonic channel merely “shrinks” the triangle
representing the mixture of three coherent states in phase space
and the shrinking factor is 1 − η for Eve’s system [see (4)].
Consequently, 	i

E are pure and Eq. (4) can be interpreted as
the modulus of their overlap.

2An insight provided by S. Guha.

C. Eve’s entropy conditioned on Alice’s
variable X, H(E|X)

The next expression used for the secret key estimation is
the conditional entropy H (E|X). It is upper bounded by [11]

1

3

∑
x

(1 + Vx) log [1 + Vx] − Vx log Vx,

where Vx = [〈(�Q)2〉	B
〈(�P )2〉	B

]1/2 − 1/2. In the case of a
lossy bosonic channel we find Vx = δ/2.

D. Eve’s entropy conditioned on Bob’s measurement
outcome Y, H(E|Y )

The third expression needed to be evaluated from the secret
key lower bound is H (E|Y ) in (62) from [11]. In order to do so,
we have to generalize the conditional probability distribution
related to the action of a lossy bosonic channel. We cannot
simply take the derived expressions in [11] since for three and
more signal states the states cannot all be aligned with a real
line in phase space. Instead, we introduce

p(y|x) = 1

π (1 + δ)
exp

[
− |y − √

ηαx |2
δ + 1

]

= 1

π (1 + δ)

× exp

[
− |y|2 + ηr2 − 2|y|r√η cos [φ − σx]

δ + 1

]
,

where y = |y| exp [iφ] and αx = r exp [iσx]. For three signal
states we take the values of σ0,1,2 introduced in Sec. III. To
simulate the channel, we further use p(x|y) = 1

3p(y|x)/p(y)
together with

p(y) =
∑

x=0,1,2

p(y|x)p(x)

= 1

3

1

π (1 + δ)

∑
x=0,1,2

exp

[
− |y − √

ηαx |2
δ + 1

]
.

Hence, for example,

p(0|y) = exp
[ − |y−√

ηα0|2
δ+1

]
∑

x=0,1,2
exp

[ − |y−√
ηαx |2

δ+1

] .

A straightforward generalization of the derivation of Eqs. (56)
and (57) in [11] allows us to lower bound H (E|Y ).

E. Alice’s and Bob’s mutual information I(X : Y )

The final component is the classical mutual informa-
tion I (X : Y ) = H (X) − H (X|Y ) calculated with the help of
p(x|y) and p(y) defined above.

F. Final secret key rate lower bound for a lossy bosonic channel

Now, we have all the ingredients we need to find the actual
secret key rate lower bound. It is expression (72) given in [11],
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adapted to the TPSK encoding. It can be written as

K > log 3 −
∫ ∞

0
d|y||y|

∫ 2π

0
dφ p(y)

∑
x=0,1,2

p(x|y) log [p(x|y)]

︸ ︷︷ ︸
I (X:Y )

− [(1 + δ/2) log [1 + δ/2] − δ/2 log [δ/2]
]︸ ︷︷ ︸

H (E|X)

− max
0�ε̃�ε

[
h3(�x((1 − ε̃)|γ |,ϑ))︸ ︷︷ ︸

H (X:E)

−
∫ ∞

0
d|y||y|

∫ 2π

0
dφ p(y)h3(�x(|γ |,ϑ,p(0|y),p(1|y)))

+
∑
x=0,1

[(
ε̃

3

1 + |γ |
1 − |γ |

)1/2( ∫ ∞

0
d|y||y|

∫ 2π

0
dφ p(y)

h2
3(�x(|γ |,ϑ,p(0|y),p(1|y)))

p(x|y)

)1/2
]

+ ε̃

1 − |γ |h3(�x(|γ |,ϑ,1/3,1/3)).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

− H (E|Y ) (9)

For ease of sight we identified the origin of the summands
by the expressions in the braces. The main technical result
of this paper, the proofs of monotonicity and concavity of
the ternary Shannon entropy, participate in the derivation of
H (E|Y ). The reasoning is nearly a verbatim copy of Sec. IV C
and the Appendices A and C of [11] implying the conditional
entropy to be a lower bound on the secret key rate K .

In Fig. 2 we present the main result of our analysis (applied
to a simulated lossy bosonic channel). We plot the secret
key lower bound (9) for several values of the excess noise
parameter. Compared to [11], we find better lower bounds as
expected from the use of three signals states but also much
better threshold values where the rate is zero. It therefore
supports the idea that to approach the high rates given by
a continuous Gaussian encoding, one would need only a
reasonably small number of signal states. This cannot, strictly
speaking, be correct for the vicinity of η = 1. It is known that
the ultimate upper bound for the two-way secret key rate at the
presence of zero excess noise is equal to K = − log [1 − η]

FIG. 2. Secret key rates as functions of loss 1 − η for several
values of the channel excess noise δ = (0,0.0004,0.001,0.005,0.01)
(the pink dots). The black curve is the ultimate achievable bound
without an energy constraint for δ = 0. The orange curve is an
achievable bound for δ = 0 taking into account the input energy
constraint [6]. All curves are functions of the channel loss.

[6], a quantity diverging for η → 1. Clearly, for any finite
number of discrete signal states d, the maximal secret key rate
for η = 1 is log d like in our case d = 3. Reference [6] also
provided an achievable bound (actually a lower bound based
on [7]) by taking into account the input energy constraint. This
is depicted in Fig. 2 as the orange dotted curve for δ = 0. The
“stairs” on this curve are the consequence of a different optimal
energy (input state overlap leading to a different input energy
constraint) shown in Fig. 3.

An important fact to realize is that even though we have only
proved monotonicity and concavity of h3 for 0 � ϑ � π/2 ⇔
ε � 0 [for ε given by (A8e)], it does not affect the secret key
rate lower bound. The optimal input energy falls inside the
region ε � 0. The situation is also depicted in Fig. 3.

V. DIFFERENCES IN AN ACTUAL QKD EXPERIMENT

The real-world scenario introduces further complications.
The channel may not be lossy bosonic (it may not even
be described by a stationary process for the duration of the
experiment but we will avoid this type of complications).

FIG. 3. The red dots depict the optimizing overlaps r for δ = 0.
The black curve is a boundary ε = 0 of (A8e) (ϑ = π/2) given
by r2 3

√
3

2 η = π/2 [see below Eq. (6)] below which the proofs of
monotonicity and concavity exist (ε � 0).
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For a stationary channel and in the asymptotic scenario, the
participants collect enough statistics to reconstruct the channel
to estimate the conditional probability distributions p(y|x) and
p(y) arbitrarily well. The same applies to the BPSK analysis
from [11] but as we already alluded to, there are more degrees
of freedom in the ternary case. There are in total three overlaps
in the form of three real parameters for a general triple of
coherent pure states and in addition there is a phase. In the
simulation scenario of a lossy bosonic channel, the overlaps
if chosen symmetrically by Alice (our assumption) and the
phase can be subsequently calculated as done in the previous
section.3 But, in an actual experiment we can only assume the
symmetry of density matrices directly prepared by Alice. The
states where Eve can in principle intervene has no a priori
symmetry which translates into their entropy to be dependent
on three plus one free parameters. As it turns out (see the
discussion in the Appendix, Sec. A 1), the key property of
monotonicity of the ternary Shannon entropy does not hold
in general and the strategy to lower bound the secret key rate
from [11] must be abandoned.

How do we overcome this problem here? If the parameters
measured by Bob indicate that the incoming states are not
symmetrically distributed, the participants assume the closest
symmetric distribution that gives Eve the biggest advantage.
One could be tempted to take the smallest of the three overlaps
and create a symmetric distribution based on it. However, as the
example in [[23], p. 10] shows, the entropy of such a density
matrix does not necessarily become smaller, thus indicating
more distinguishable quantum states. So, a better strategy to
introduce a single overlap is called for and it will necessarily
reduce the secret key rate. But, only this is the situation for
which we can follow the proof in [11] once the monotonicity
and concavity of the ternary Shannon entropy is proven. The
worst-case scenario happens if Bob detects only two states, that
is, if the channel is so disruptive that it managed to merge two
signal states to one quantum state. In that case, the secret key
rate would be zero and it would probably be better to switch
to BPSK.

How do we recover the other free parameter, namely, the
angle? Similarly to the lossy bosonic case, a triple of fiducial
coherent states (|βi〉)i=0,1,2 with the same absolute value of
the overlap is introduced. We assume that the triple properly
bounds the entropies as described in the previous paragraph,
so that the advantage is given to Eve resulting in the key
rate reduction. Then, we followed the procedure of phase
calculation described below Eq. (6) following Lemma 1. This
is the right phase for the fiducial triple of pure coherent states.

3Note that similarly to [11] we not only calculate the entropy of
the input density matrix, but also of other, say intermediate, density
matrices in order to lower bound the secret key rate. Even there the
three real parameters coincide [they cannot be interpreted as overlaps,
though, see below Eq. (6)] and the phase can be calculated for a lossy
bosonic channel.

VI. CONCLUSION

In conclusion, we introduced and rigorously proved the
asymptotic security of a ternary QKD protocol based on three
coherent states and homodyne detection. The motivation for
introducing such a protocol is to extract a best-of-both-world’s
approach to QKD in terms of the encoding and decoding of
discrete variable schemes along with the practical hardware of
continuous variable schemes. There is, however, the downside
that the security proof is very challenging compared to the
results for Gaussian modulated continuous-variable QKD pro-
tocols. We overcame this challenge by mathematically proving
that two crucial properties, monotonicity and concavity, hold
for the ternary Shannon entropy. This allowed us to evaluate
a lower bound to the secret key rate in the collective attack
scenario.

Other interesting avenues of research could include con-
sidering a four-state extension (if possible, or perhaps using a
different method), determining what number of signal states
are enough to tend close to the full Gaussian distribution
and also a thorough finite-key analysis. This is a lively area
of research for many classes of bosonic channels where the
lossy bosonic channel is an important subclass [6,24]. A
measurement-device-independent (MDI)-QKD [25–27] ver-
sion of our scheme presented here would also be interesting as
a way of ruling out side channel attacks.
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APPENDIX: FULL DETAILS OF MAIN RESULT

1. Properties of ternary density matrix

In this Appendix, we give the calculations needed to prove
the main results. To begin with, let

� = p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2| (A1)

be a rank-three density operator where p0 + p1 + p2 = 1. The
state � takes on a different meaning depending on where it
is used. It can be an input density matrix a sender prepares
in a laboratory in which case pk = 1/3 and ψk are the signal
(coherent) states with a chosen symmetry. Or, it can be Eve’s
conditioned state based on Bob’s measurement. In that case,
pk are arbitrary conditional probabilities pk(x|y) and ψk are
pure states with no obvious symmetry properties [11].

Following the Cayley-Hamilton theorem, one finds the
coefficients of the characteristic polynomial

det [� − x id] = f (x) = ax3 + bx2 + cx + d = 0, (A2)

022310-7
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where

a = 1, (A3a)

b = − Tr[� ] = −1, (A3b)

c = 1
2 [(Tr[� ])2 − Tr[� 2]] = 1

2 (1 − Tr[� 2]), (A3c)

d = − 1
6 [(Tr[� ])3 − 3 Tr[� ] Tr[� 2] + 2 Tr[� 3]]

= − 1
6 (1 − 3 Tr[� 2] + 2 Tr[� 3]). (A3d)

The last two coefficients become

c = 1
2

(
1 − p2

0 − p2
1 − p2

2 − 2p0p1|z01|2 − 2p1p2|z12|2 − 2p0p2|z02|2
)
, (A4a)

d = 1
6

{ − 1 + 3
(
p2

0 + p2
1 + p2

2 + 2p0p1|z01|2 + 2p0p2|z02|2 + 2p1p2|z12|2
)

− 2
[
p3

0 + p3
1 + p3

2 + 3
(
p2

0p1 + p0p
2
1

)|z01|2 + 3
(
p2

0p2 + p0p
2
2

)|z02|2 + 3
(
p2

1p2 + p1p
2
2

)|z12|2

+ 3p0p1p2(z01z12z20 + c.c.)
]}

. (A4b)

Note that � in all its roles in the security proof is always a sum of rank-one operators. Hence, the trace quantities in Eqs. (A3)
are easy to find. An additional check was performed by calculating the quartic term

1

24
[(Tr[� ])4 − 6(Tr[� ])2 Tr[� 2] + 3(Tr[� 2])2 + 8 Tr[� ] Tr[� 3] − 6 Tr[� 4]]

and was found to be zero as it should be.
We set the overlaps to be 〈ψi |ψj 〉 = zij = |z| exp[iτij ] and get

c = 1
2

[
1 − p2

0 − p2
1 − p2

2 − |z|2(2p0p1 + 2p1p2 + 2p0p2)
]
, (A5a)

d = 1
6

{ − 1 + 3
[
p2

0 + p2
1 + p2

2 + 2|z|2(p0p1 + p0p2 + p1p2)
]

−2
[
p3

0 + p3
1 + p3

2 + 3
(
p2

0p1 + p0p
2
1

)|z|2 + 3
(
p2

0p2 + p0p
2
2

)|z|2 + 3
(
p2

1p2 + p1p
2
2

)|z|2
+6|z|3p0p1p2 cos ϑ

]}
, (A5b)

where ϑ = τ01 + τ12 + τ20. The absolute value |z| and the angle 0 � ϑ � π are not independent and we will revisit the relation
below Eq. (A9) (see also Lemma 1).

Remark. It may seem that by setting |zij | = |z|, ∀ i,j we limit ourselves to a special case of � . This is indeed true. Quite
surprisingly, however, it is the most general case for which one of the studied properties (monotonicity) actually holds. It turns
out that the multivariable function studied in this paper, the ternary Shannon entropy [Eq. (1)], is not monotone decreasing
unless |zij | = |z|, ∀ i,j in which case it reduces to the standard single-variable problem. What does it mean for a multivariable
function to be monotone increasing or decreasing? This question is closely related to the existence of sets that cannot be totally
ordered (totality means that either x � y or y � x holds). An example is Rn for n > 1 which is only a partially ordered set.
To this end, one defines the componentwise order [28] of two n-tuples (x1, . . . ,xn) � (y1, . . . ,yn) iff xi � yi, ∀ i. A monotone
increasing or decreasing function f : Rn �→ Rm then satisfies f (x1, . . . ,xn) � f (x1, . . . ,xn) and f (x1, . . . ,xn) � f (x1, . . . ,xn),
respectively. The lack of this property (namely not decreasing) means that the strategy outlined in [11] we follow here is simply not
applicable.

Coefficients (A5) are used to get the eigenvalues of � . Following [29] (or Wikipedia for a quick summary) we form

�0 = b2 − 3ac = 1 − 3c, (A6a)

�1 = 2b3 − 9abc + 27a2d = −2 + 9c + 27d (A6b)

and define

p = −�0

3
= α + βz2, (A7a)

q = �1

27
= γ + δz2 + εz3. (A7b)
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They are the coefficients of a reduced cubic t3 + pt + q the general cubic polynomial f (x) can be converted to. The coefficients
of p,q from Eqs. (A7) are given by

α = 1
6

(
1 − 3p2

0 − 3p2
1 − 3p2

2

)
� 0, (A8a)

β = −(p0p1 + p0p2 + p1p2) � 0, (A8b)

γ = 1
27

( − 2 + 9p2
0 − 9p3

0 + 9p2
1 − 9p3

1 + 9p2
2 − 9p3

2

)
= 1

27 (3p1 − 1)(3p2 − 1)(3p1 + 3p2 − 2) ≶ 0, (A8c)

δ = 1
27

[
18(p0p1 + p0p2 + p1p2) − 27

(
p2

0p1 + p0p
2
1 + p2

0p2 + p2
1p2 + p0p

2
2 + p1p

2
2

)]
� 0, (A8d)

ε = −2p0p1p2 cos ϑ ≶ 0, (A8e)

where we also summarized some basic properties based on 0 � pi � 1,
∑

i pi = 1. Then, the three roots (the eigenvalues of � )
are xk = tk − b/(3a) = tk + 1/3 where

tk = 2

√
−p

3
cos

[
1

3
arccos

[
3

2

q

p

√
− 3

p

]
− 2kπ

3

]
. (A9)

It is known [29] that

t0 + t1 + t2 = 0, (A10)

t0 � t1 � t2 (A11)

hold. Hence, x0 + x1 + x2 = 1 as we expect from Tr[� ] = 1
but x2 � 0 is not satisfied for all |z| and ϑ . For example, if
ψ1 = eiϕ1ψ0, ψ2 = eiϕ2ψ0, then |z| = 1 and ϑ = τ01 + τ12 +
τ20 = 0. In general, it turns out that x2 � 0 is equivalent to
q � 1

27 + p

3 which provides a bound on ϑ given |z|. Indeed,
for |z| = 1 the only possibility is ϑ = 0.

Something much stronger can be said about the phases if ψi

are actual coherent states (either the signal states or the fiducial
states we mentioned in the main text).

Lemma 1: The phase Arg[〈αi|αj〉] of an inner product of
two coherent states |αi〉 and |αj 〉 is a function of |〈αi |αj 〉|.

Proof. Using elementary trigonometry, we write

〈αi |αj 〉 = e− 1
2 (r2

i +r2
j −2ri rj cos [σj −σi ])e−i2ri rj sin [σj −σi ]

= e− 1
2 c2

ij e−i2Aij , (A12)

where cij is a side of triangle opposite to the angle τji = σj −
σi between the sides ri and rj and Aij is the triangle area (it
is oriented since Aij = −Aji). But knowing ri,rj ,cij , we can
easily calculate the area of the triangle and hence the phase
Arg [〈αi|αj〉] = −2Aij = 2Aji . Hence, the phase is much more
constrained if ψi are coherent states. �

This trivial statement (we could also use the relation
between sin and cos to get the phase) has interesting con-
sequences we exploited in Eq. (5).

2. Monotonicity of the ternary Shannon entropy

The following result will be a useful tool in the course of
our analysis.

Theorem 2 (Descartes’ rule of signs [30,31]): Let p(x) =∑s
m=0 an−mxn−m be a real polynomial of order n where s �

n and an−m �= 0. Then, the number of positive real zeros

(including multiplicities) is equal to V − 2k where k � 0 and
V is the number of sign variations of an−m starting from an.

Lemma 3: Let ε � 0. Then, q(z) in (A7a) is monotone
decreasing and concave in z ∈ (0,1) for all pk . It has a single
positive root z# ∈ (0,1) iff γ > 0 in which case q(z) � 0 for
z ∈ (0,z#).

Proof. The monotonicity of q follows from

q ′ = 2δz + 3εz2,

since δ,ε � 0. Because of Theorem 2 (or just by inspection),
there is no positive root of q(z) for γ < 0 again following from
δ,ε � 0. There is one positive root for γ > 0 and it has to lie
in the interval (0,1] since q(0) = γ > 0 and

q(1) = γ + δ + ε � γ + δ = − 2

27
+ 2p0p1p2 � 0

valid for all pk . �
Remark. Even more straightforward is to show p < 0

in z ∈ (0,1) [follows from Eqs. (A7a), (A8a), and (A8b)
by considering (p0 + p1 + p2)2 = 1]. The equality p = 0 is
achieved for z = 0 and p0 = p1 = p2 = 1/3, but in order to
have future expressions well defined, we will consider the
open interval z ∈ (0,1) throughout this work. Similarly, we
find p′ � 0.

It is useful to know the generic behavior of the central piece
of the cubic solutions (A9). That is uncovered in the following
lemma.

Lemma 4: Let ε � 0 and

g(z) = 3

2

q

p

√
− 3

p
. (A13)

Then, |g(z)| � 1, g(z) ∝ −q(z), and g′ ≶ 0 for z ∈ (0,1).
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FIG. 4. Properties of some trigonometric functions.

Proof. The bound |g(z)| � 1 follows from the cubic equa-
tion discriminant

q2

4
+ p3

27
� 0, (A14)

where the inequality is always true for the case of three real
roots of a cubic equation [29]. This, on the other hand, must
be true since � is a density matrix. Equation (A13) can be
both positive and negative with its sign always opposite to that

of q(z). This is because 1
p

√
− 3

p
< 0 for z ∈ (0,1) following

from Lemma 3. A related useful fact is that for γ < 0 we get
g(z) > 0 for z ∈ (0,1). Finally, by writing

g′ = 3
√

3

4

2pq ′ − 3p′q
p2

√−p
(A15)

and noticing that the denominator is non-negative,
we only need to study the behavior of ν1(z) =
2pq ′ − 3p′q. First, we find a zero root due to ν1(z) =
−2z(−2αδ + 3βγ − 3zαε + z2βδ). The quadratic equation
−2αδ + 3βγ − 3zαε + z2βδ = 0 yields two other real roots
and, in general, they both may lie in the interval (0,1). Only
when γ � 0, one of the roots is negative. �

Lemma 5: Let τ (z,n) = √−p cos h
n

and n ∈ Z>1 such that
p,p′ < 0, 0 � h � π in z ∈ (0,1) and h′ > 0 in J ⊂ (0,1).
Then, dτ (z,n)

dz
> dτ (z,2)

dz
in J.

Proof. We find

dτ (z,n)

dz
= 2ph′ sin h

n
− np′ cos h

n

2n
√−p

. (A16)

The denominator is positive for z ∈ (0,1) but there are two
competing expressions in the numerator. The first summand
is negative, the second one is non-negative, and so the overall
sign may be hard to infer. The inequality follows by observing
that the non-negative summand in the numerator of (A16)
remains constant as n increases while the negative one is
divided by n and so its overall contribution diminishes. Finally,
sin h

n
and cos h

n
do not change their sign with a growing

n � 2 and, conveniently, sin h
n

> sin h
n+1 holds together with

cos h
n

< cos h
n+1 for n � 2 as illustrated in Fig. 4. �

Proposition 6: The function t0 is monotone increasing in
z ∈ (0,1) for ε � 0.

Proof. From (A9) we get

t ′0 = 2

3

√−p(z)g′(z) sin
[

1
3 arccos [g(z)]

]√
1 − g(z)2

− p′(z) cos
[

1
3 arccos [g(z)]

]
√−p(z)

. (A17)

Both denominators are non-negative (check zero). Since
|g(z)| � 1 and ran [arccos] = [0,π ], both trigonometric func-
tions are non-negative. So, the second summand (without the
minus) is always negative due top′ � 0. The overall expression
is thus positive whenever g′ � 0. But, from Lemma 4 we know
that g′ < 0 can occur as well so let us assume that for the rest

of the proof. For h
df= arccos g we first observe

h′ = − g′√
1 − g2

(A18)

and so h′ > 0. We now summon Lemma 5 and for it to be
useful we show dτ (z,2)

dz
� 0. The case n = 2 is special since

we can use the half-angle formula cos h
2 =

√
1+cos h

2 (valid for

−π � h � π ) to be inserted into τ (z,2) = √−p cos h
2 and we

get

dτ (z,2)

dz
= ph′ sin h − p′(1 + cos h)

2
√−2p(1 + cos h)

= −pg′ − p′(1 + g)

2
√−2p(1 + g)

= − [p(1 + g)]′

2
√−2p(1 + g)

� 0.

(A19)

The inequality [p(1 + g)]′ � 0 follows from p(1 + g) being
monotone decreasing since both p and pg ≈ q

√−3/p are
monotone decreasing (from Lemma 3 we know that for ε � 0
the function q ≶ 0 is monotone decreasing and

√−3/p as
well and because min

pk,z
[
√−3/p] = 3 then

√−3/p merely

“stretches” q). A sum of decreasing functions is decreasing
which concludes the proof since according to Lemma 5 we
have

t ′0

√
3

2
≡ dτ (z,3)

dz
>

dτ (z,2)

dz
� 0.

�
Proposition 7: The function t2 is monotone decreasing in

z ∈ (0,1) for ε � 0.
Proof. Considering tk in (A9) as functions of p and q, it

is known [29] that t2(p,q) = −t0(p, − q). The mapping q �→
−q changes the sign of g [and so of g′ as well, see (A13) and
(A15)]. The proof of Proposition 6 then goes through in the
same way as for t0(p, − q) since the trigonometric functions
in (A17) remain non-negative for −g and the proof “covers”
both cases g′ � 0 and g′ < 0. Hence, t ′0(p, − q) > 0 and we
conclude that t ′2 < 0. �

Corollary 8: The function t0 + t1 is monotone increasing
in z ∈ (0,1) for ε � 0.

Proof. From Eq. (A10) we find t0 + t1 = −t2 and because t2
is monotone decreasing, its negative is monotone increasing.�

Remark. Notice that we do not claim anything about the
monotonicity of t1 and indeed it in general does not hold.
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Definition 1 ([32]): A function is called Schur concave iff
it is concave and symmetric.

Definition 2: Let �u be an �-tuple for a nonincreasingly
ordered sequence u0 � · · · � u�−1 denoted as u

↓
k where uk �

0. We say that �u is majorized by �v (written as �u ≺ �v) iff

m−1∑
k=0

u
↓
k �

m−1∑
k=0

v
↓
k , (A20)

�−1∑
k=0

uk =
�−1∑
k=0

vk (A21)

is satisfied for 0 � m � � − 1.
Theorem 9 ([32], Karamata [33]): If a function f (u) is

concave, then f (�u)
df= ∑

k f (uk) is Schur concave and

�u ≺ �v ⇒ f (�u) � f (�v). (A22)

Remark. The function f (u) = −u log u is concave in

u ∈ (0,1) and therefore the Shannon entropy S(�u)
df=

−∑K
k=0 uk log uk is a Schur-concave function. For K = 2, we

obtain the ternary Shannon entropy h3(�u) [Eq. (1)].
Theorem 10: The von Neumann entropy H (� ) of density

matrix (A1) is a monotone-decreasing function of the overlap
z as introduced in (A5), for all pk and for all 0 � ϑ � π/2
corresponding to ε � 0 in (A8e).

Proof. The eigenvalues of � are x0 � x1 � x2 and satisfy∑
k xk = 1. From the discussion below Eq. (A10) we know

when x2 � 0 holds and so (xk)k=0,1,2 is a probability distribu-
tion. We will identify �u = �x(z1) and �v = �x(z2) where 0 < z1 �
z2 < 1. Then, Proposition 6 and Corollary 8 imply (A20). Since∑2

k=0 uk = ∑2
k=0 vk = 1 holds [so (A21) is satisfied], we may

write �u ≺ �v. Following Theorem 9, we obtain h3(�u) � h3(�v)
and H (� ) ≡ h3 concludes the proof. �

3. Concavity of the ternary Shannon entropy

We now turn our attention to the concavity proof. We start
by a proving the convexity of t0 in (A9) in z. To that end, we set
τ (z,n) = √−p cos h

n
as in Lemma 5 and study the properties

of its second derivative

d2τ (z,n)

dz2
= 1

4(−p)3/2
cos

[
h

n

]−4p2h′2 + n2(2pp′′ − p′2)

n2

+ sin

[
h

n

]−4p(ph′)′

n
. (A23)

To show d2τ (z,3)
dz2 � 0, we have to separately investigate several

different cases. We will need a couple of auxiliary results.
The proof of concavity will be presented for ε � 0. The

next lemma is the only exception where ε is arbitrary.
Lemma 11: We find

−4p2h′2 + n2(2pp′′ − p′2)

n2
� 0

for p in (A7a), h = arccos g for g given by (A13) and n = 3.
Proof. Using (A13) in (A18) the inequality becomes

27(3qp′ − 2pq ′)2 − 9(4p3 + 27q2)(2pp′′ − p′2)

= (α + βz2)ν4(z) � 0, (A24)

where

ν4(z) = β(4α3 + 27γ 2) + z2(8α2β2 + 12αδ2 + 18βγ δ)

+ 36z3αδε + z4[α(4β3 + 27ε2) + 3βδ2]. (A25)

Since α + βz2 ≡ p � 0, we have to show that ν4(z) is non-
negative for z ∈ (0,1). Theorem 2 reveals a lot of information
about ν4 through its coefficients. Depending on the sign of ε,
we find from (A8)

Monomial degree Sign for ε < 0 Sign for ε > 0

4 + +
3 − +
2 ± ±
0 + +

No matter what the signs of 8α2β2 + 12αδ2 + 18βγ δ and ε

are, there are always two sign changes. Hence, ν4(z) has two
or no positive roots (for ε = 0 the second row from the top
is missing but still there can be two or no positive roots). Let
us first assume ε = −2p0p1p2 (its minimal value given by
ϑ = 0). In this case, we observe

ν4(1) = 4α3β + 8α2β2 + α[4β3 + 3(2δ + 3ε)2]

+ 3β(3γ + δ)2 = 0.

Since ν ′
4(1) = 0 as well and ν ′′

4 (1) = 4[4α2β2 +
3α(4β3 + 2δ2 + 18δε + 27ε2) + 9βδ(γ + δ)] � 0, the point
z = 1 is a proper local minimum. The expression ν ′

4 is a
cubic polynomial. Hence, it has three roots: one of them is
always zero and the greatest one always equals one (the one
we found previously). The third root can be both positive
or negative and whatever its position is, we want to make
sure that ν4 � 0 in the interval (0,1). Recall that according to
Theorem 2 there must be another positive root of ν4. At first
sight, it seems impossible because if the third root of ν ′

4 is
negative, then the segment of ν4 in (0,1) must be decreasing
[ν4(0) = β(4α3 + 27γ 2) � 0]. Even if the third root of ν ′

4
lies in (0,1) it can be either a positive local maximum or a
stationary point. This is because we showed that z = 1 is a
local minimum, ν ′

4 has only three roots, and again because of
ν4(0) � 0. So, where is the remaining positive root? The only
possibility is that z = 1 is a double root. Indeed, by calculating
the discriminant [29] of ν4, we find it to be equal to zero. This
means that at least two roots coincide. Hence, ν4 � 0 holds
for ε = −2p0p1p2.

For 0 < ϑ � π/2, the coefficients of the monomials of
orders 3 and 4 in (A25) clearly increase and hence no new
root can appear in the interval (0,1). For π/2 < ϑ � π , the
monomial order 4 coefficient decreases but ε2 ∝ cos2 ϑ is a
symmetric function and we have seen that ν4(z) had no positive
root even when ε < 0. But now ε > 0 and so again there is no
positive root, which concludes the proof. �

Remark. The claim holds for any n � 3 but we do not make
use of it.

Lemma 12: The function (pg′)′(z) has a single positive root
z∗ whenever γ (z) � 0 and (pg′)′(z) � 0 for z ∈ (0,z∗).
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Proof. We calculate

(pg′)′ = 3
√

3

8

q(9p′2 − 6pp′′) + 4p(−2p′q ′ + pq ′′)√−pp2
.

(A26)

The position of the positive roots is unaffected by the numerical
prefactors or by the denominator. Hence, we rewrite only
the numerator ν2(z) = q(9p′2 − 6pp′′) + 4p(−2p′q ′ + pq ′′)
in terms of Eqs. (A7a) and (A7b):

ν2(z) = −12αβεz3 + (24β2γ − 28αβδ)z2

+ 24α2εz + 8α2δ − 12αβγ. (A27)

Given α,β,δ,ε � 0 and γ > 0 there is only one sign change
if 8α2δ − 12αβγ � 0. This is indeed satisfied for γ > 0. The
observation

lim
z→+∞ [(pg′)′] = +∞

concludes the proof. �
Remark. In fact, we can refine the previous lemma by

calculating

lim
z→0

[(pg′)′] = −3

2

√
3

(
− 1

α

)3/2

(2αδ − 3βγ ) � 0

and expressing ν2(z) with the help of (A8) and
∑

i pi = 1 as

ν2(1) = 8

9

[
p4

0 + 2p3
0(−1 + p1) + (−1 + p1)2p2

1

+p0p1
(−1 − p1 + 2p2

1

) + p2
0

(
1 − p1 + 3p2

1

)]
� 0.

(A28)

Therefore, z∗ ∈ (0,1). The minimum on the right-hand side is
achieved for p0 = p1 = p2 = 1/3.

Lemma 13: The function (ph′)′(z) has a single positive root
for z ∈ (0,1) whenever γ � 0 and for all ε � 0.

Proof. We write

(ph′)′ = −gpg′ + (1 − g2)(pg′)′

(1 − g2)3/2
(A29)

and after inserting Eqs. (A15), (A13), and

g′′(z) = 3
√

3[4p(pq ′′ − 3p′q ′) + 3q(5p′2 − 2pp′′)]
8(−p)−3/2p5

,

(A30)

we get an expression whose numerator reads as

ν5 = −81q3p′′ + 54q2(p′q ′ + pq ′′)

+ q(−12p3p′′ + 18p2p′2 − 54pq ′2)

+ 8p4q ′′ − 16p3p′q ′ (A31)

and whose denominator is negative in (0,1). By inserting
Eqs. (A7) we get a daunting polynomial of degree seven:

ν5 = z7(−24αβ3ε − 162αε3 − 54βδ2ε)

+ z6(−56αβ3δ − 378αδε2 + 48β4γ

+ 324βγ ε2 − 54βδ3)

+ z5(324βγ δε − 324αδ2ε)

+ z4(−96α2β2δ + 72αβ3γ + 162αγ ε2 − 108αδ3

− 54βγ δ2)

+ z3(72α3βε + 216αγ δε + 162βγ 2ε)

+ z2(−24α3βδ − 162βγ 2δ)

+ z(48α4ε + 324αγ 2ε)

+ 16α4δ − 24α3βγ + 108αγ 2δ − 162βγ 3. (A32)

Let us first assume ε = −2p0p1p2 which is the minimal value
given by ϑ = 0. Then, there is an inflection point at z = 1:
ν ′

5(1) = ν ′′
5 (1) = 0. This indicates a triple root (corroborated

by the zero discriminant indicating multiple roots) and so

ν5 = f4(z − 1)3, (A33)

where f4 = ∑4
i=0 aiz

i . By comparing the coefficients with
(A32), we deduce the coefficient ai and get

f4 = − 6z4ε(4αβ3 + 27αε2 + 9βδ2)

+ 2z3[−4αβ3(7δ + 9ε) − 27αε2(7δ + 9ε)

+ 24β4γ − 27β(−6γ ε2 + δ3 + 3δ2ε)]

− 6z2(4α3 + 27γ 2)[α(4δ + 6ε) − β(6γ + δ)]

− 6z(4α3 + 27γ 2)[2α(δ + ε) − 3βγ ]

− 2(4α3 + 27γ 2)(2αδ − 3βγ ). (A34)

With the help of the following table

Monomial degree Sign

4 −
3 ?
2 +
1 +
0 +

Theorem 2 reveals that there is only one positive root. Note that
the degree three coefficient of (A34) seems too complicated to
analytically deduce its sign but our ignorance does not affect
the number of sign variations. Now, we show that for any
ε � 0 the single root shifts and the inflection disappears. We
inspect the coefficients of (A32) where ε appears. Considering
γ � 0, the ones accompanying the monomials z, z3, and z5

satisfy

48α4ε + 324αγ 2ε � 0, (A35a)

72α3βε + 216αγ δε + 162βγ 2ε � 0, (A35b)

324βγ δε − 324αδ2ε � 0. (A35c)

Hence, an increase of ε from its minimal values to any ε � 0
will not add a new root in (0,1). Similarly for the z7 coefficient
ε(−24αβ3 − 162αε2 − 54βδ2) which, due to

−24αβ3 − 162αε2 − 54βδ2 � 0 (A36)

(valid only for the minimal ε), is an increasing function of ε �
0. This is because α � 0 and so (A36) is a decreasing function
of ε � 0 [(A36) can become negative]. Even if (A36) does not
change the sign, the z7 coefficient will always be greater than
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the one with the minimal ε because the overall multiplication
by ε � 0 swaps the sign (and so the order). Finally, the z4 and z6

coefficients contain negative factors accompanying ε2 (recall
α,β,δ � 0 and γ � 0 by assumption). Hence, as ε2 decreases,
it effectively increases the coefficients of z4 and z6. We can
conclude that no new root for z ∈ (0,1) appears for ε � 0. �

Proposition 14: The following relations hold:

Proof. (i) The sought-after implication can be reformulated
in the language of Lemmas 3 and 12 as z# � z∗ since q � 0 in
(0,z#) and (pg′)′ � 0 in (0,z∗). We proceed by setting q = 0
and, conveniently, the numerator of (A26) simplifies to

ν2(z)
∣∣
q=0 ∝ −2p′q ′ + pq ′′

= 6βεz3 + 6βδz2 − 6αεz − 2αδ. (A37)

We ignored the factor 4p as it does not affect the position
of the roots for q = 0. In principle, we just need to compare
the position of the roots for the polynomials q and ν2(z)|q=0.
However, they are both cubic polynomials and the roots’
form is too complicated to determine their relation. It follows
from Lemma 3, Lemma 12, and the previous remark that
the polynomials intersect at a single point in the interval
(z#,z∗) ⊂ (0,1) and, in addition, the position of the intersection
point above or below the x axis informs us about the relation of
the two roots. It would not be very helpful to set q = ν2(z)|q=0

and solve for z, though. It again leads to a cubic equation and
we face a similar problem as before. The trick we will use is
the following transformation:

q(z) �→ q̃(z) = −6βq = −6βγ − 6βδz2 − 6βεz3. (A38)

The new function q̃(z) has the same properties as q(z) uncov-
ered in Lemma 4 (the minus sign reverses the negative sign
of β). By setting q̃ = ν2(z)|q=0, we obtain another cubic
equation

μ̃(z) = 2μ(z)

= 2
(
6βεz3 + 6βδz2 − 3αεz − αδ + 3βγ

) = 0.

(A39)

Its (single) root in (0,1) reveals where q̃ and ν2(z)|q=0 intersect,
but that also means that by comparing the roots’ position of
μ (or μ̃) with ν2(z)|q=0 in the interval (0,1) we learn whether
q̃ and ν2(z)|q=0 intersected above or below the x axis. So,
by setting μ(z) = ν2(z)|q=0 we crucially get a linear equation
whose solution reads as

z� = −αδ − 3βγ

3αε
. (A40)

By inserting it back to ν2(z)|q=0, we get

ν2(z�)|q=0

= 2β[α3(27γ ε2 + 2δ3) + 9α2βγ δ2 − 27β3γ 3]

9α3ε2
.

(A41)

It remains to show ν2(z�)|q=0 � 0 in order to prove
z# � z∗. Since α,β � 0, it suffices to show that ν3(z) =
α3(27γ ε2 + 2δ3) + 9α2βγ δ2 − 27β3γ 3 � 0. Using (A8) and∑

i pi = 1, we find ν3(z)
df= 1

27f1f2 where

f1 = [
p0 + 2p3

0 + 3p2
0(−1 + p1) − 3p0p

2
1

+p1
(−1 + 3p1 − 2p2

1

)]2
, (A42a)

f2 = 4p6
0 + 12p5

0(−1 + p1) + p4
0

(
13 − 27p1 + 24p2

1

)
+p3

0

( − 6 + 20p1 − 42p2
1 + 28p3

1

)
+p2

0

(
1 − 5p1 + 24p2

1 − 42p3
1 + 24p4

1

)
+p2

1

(
1 − 3p1 + 2p2

1

)2

+p0p
2
1

( − 5 + 20p1 − 27p2
1 + 12p3

1

)
. (A42b)

Since f1 � 0, we have to show f2 � 0. We reduced the
problem to a task analytically solvable by Mathematica.
Indeed, we find max [f2] = 0 subject to γ � 0 and 0 � z� � 1.
The first inequality is a necessary condition for the initial
assumption q � 0 in z ∈ (0,z#) via Lemma 3. Achieving the
maximum implies ν3 = 0 which in turn implies ν2(z�)|q=0 = 0
[from (A41)] and so μ(z�) = 0 [see above (A40)]. This finally
leads to ν2(z�)|q=0 = q̃(z�) = 0 = q(z�) and so z#

� = z∗
� which

concludes the proof.
(ii) Assuming γ � 0 as a necessary condition to the current

case of interest q � 0 (g � 0) for z ∈ (0,z#) (see Lemmas 3
and 4) we find ν5(0) = 2(4α3 + 27γ 2)(2αδ − 3βγ ) � 0 [the
different sign in the bottom of the table following Eq. (A46) is
due to f4 being multiplied by (z − 1)3] and so (ph′)′(0) � 0.
This is because (ph′)′ ∝ −ν5. We also notice that (ph′)′ � 0
for g = 0. This follows from Eq. (A29) implying that in this
case (ph′)′ = −(pg′)′. But, from item (i) of the current lemma
we know that (pg′)′ � 0 for g � 0. Inevitably, the only positive
root of (ph′)′ occurs for g � 0, that is, as long as g � 0 we get
(ph′)′ � 0 as we wanted to show. �

Remark. Note that (ph′)′(0) � 0 does not contradict g′(0) =
0 we found in Lemma 4. This could be hastily concluded
by looking at Eq. (A18). But, it is true only if g′ = 0 and√

1 − g2 �= 0. In many cases it is found, however, that for
z = 0, one gets g′ =

√
1 − g2 = 0 and limz→0+ h′ �= 0.

Lemma 15: Let h = arccos g and (ph′)′ � 0. Then,

cos

[
h

2

]−4p2h′2 + 32(2pp′′ − p′2)

4 × 32(−p)3/2
+ sin

[
h

2

]−p(ph′)′

3(−p)3/2
� 0

(A43)

whenever g � 0 and for all ε � 0.
Remark. The expression resembles part of Eq. (A23).

However, notice n = 2 in the trigonometric functions and
n = 3 elsewhere.

Proof. Given τ (z,n) = √−p cos arccos g

n
, a straightforward

calculation reveals

d2τ (z,n)

dz2
= cos

[
arccos g

n

]
4p2g′2 + n2(−1 + g2)(2pp′′−p′2)

4n2(1 − g2)
√−pp

+ sin

[
arccos g

n

]−pgg′2 + (−1 + g2)(pg′)′

n
√

1 − g2(1 − g2)
√−p

.

(A44)
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We set n = 2 in the trigonometric functions and n = 3 else-
where at which point (A44) becomes the studied expression
[Eq. (A43)] by virtue of (A18). We multiply both summands

by p
√−p(1 − g2) � 0 and use cos x

2 =
√

1+cos x
2 (−π � x �

π ) and sin x
2 =

√
1−cos x

2 (0 � x � 2π ). We got the reverse
inequality to prove

κ = 4

9
p2g′2(1 − 2g) + (−1 + g2)

×
[

(1 + g)(2pp′′ − p′2) + 4

3
p(pg′)′

]
� 0. (A45)

For this purpose, we use Eq. (A13) and deduce

κ = 1

p2

(
−ν4 + f3

1

2

√
3

−p

)
, (A46)

where ν4 is given by (A25) and

f3(q) = −27q2q ′′ + q(−6pp′2 + 18q ′2)

− 4p2(pq ′′ − 2p′q ′). (A47)

Since in Lemma 11 we proved ν4 > 0, we only have to show
f3 � 0 for κ � 0 to hold. The inequality f3 � 0 does not
hold in general, however. That is not a problem as long as
we show that it holds for (ph′)′ � 0. First, we assume γ � 0.
By contrapositive of Proposition 14 (ii) we know

(ph′)′ � 0 ⇒ g � 0 ⇔ q � 0. (A48)

Hence, we need to show q � 0 ⇒ f3 � 0. For q = 0, the
function f3 becomes −4p2(pq ′′ − 2p′q ′) which is propor-
tional to ν2(z�)|q=0 [see (A37)]. Its relation to q was studied
in Proposition 14 and we found ν2(z�)|q=0 = q(z�) = 0 for z�

given by (A40). Therefore, f3(0) = 0. Then, as demanded in
(A48), for any q < 0 we get f3(q) < 0 since Eq. (A47) is
an increasing function of q. This follows from q ′′ = 6εz �
0 (valid for ε � 0) and −6pp′2 + 18q ′2 � 0 by looking at
Eqs. (A7) and (A8). For γ < 0 we know from Lemma 4
that g > 0 (q < 0) always holds independently on the sign
of (ph′)′. Therefore, f3 < 0 and the proof goes as outlined
above. �

Proposition 16: The function t0 is convex in z ∈ (0,1).
Proof. The function t0 is proportional to τ (z,3) =√−p cos arccos g

3 and so we will focus on proving d2τ (z,3)
dz2 � 0

given by (A23) for n = 3. In Lemma 11 we presented a
proof of non-negativity of a fraction multiplying cos arccos g

3 .
Both cos arccos g

3 � 0 and sin arccos g

3 � 0 for |g(z)| � 1 and so
d2τ (z,3)

dz2 � 0 holds whenever (ph′)′ � 0. For the rest of the
proof, assume (ph′)′ < 0. We will construct a lower bound on
d2τ (z,3)

dz2 and show it to be non-negative. To this end, we summon
the inequalities sin h

n
> sin h

n+1 and cos h
n

< cos h
n+1 (valid for

n � 2 and visible in Fig. 4 for n = 2,3) and substitute sin h
3 and

cos h
3 by sin h

2 and cos h
2 , respectively. This is a lower bound

on d2τ (z,3)
dz2 and the quantity was proved to be non-negative in

Lemma 15. This concludes the proof. �
Remark. The fact that g �< 0 for (ph′)′ � 0 is crucial. First

of all, it is not clear how to prove the validity of d2τ (z,3)
dz2 � 0

given by (A23) for (ph′)′ � 0. But, even the only manageable

lower bound (A43) is in some cases not good enough (i.e.,
non-negative) for g < 0 and (ph′)′ � 0.

Corollary 17: The function t2 is concave in z ∈ (0,1).
Proof. Similarly to Proposition 7, we will make use of

t2(p,q) = −t0(p, − q). The mapping q �→ −q changes the
sign of g,g′ and h′ [see Eqs. (A13), (A15), and (A18)].
Looking at Eq. (A23), we notice that for n � 2 the sign of
the trigonometric functions remains unaffected (see Fig. 4 for
n = 2,3). Similarly for the expression from Lemma 11 coming
from (A23). The sign change of q also swaps the sign of (ph′)′
in (A23). This is because (ph′)′ = p′h′ + ph′′ together with

h′′ = −gg′2 + (1 − g2)g′′

(1 − g2)3/2

taking into account that g′′ changes the sign upon q �→
−q. But, both cases [(ph′)′ � 0 and (ph′)′ < 0] have been
separately investigated in Proposition 16. So, we conclude
t ′′0 (p, − q) � 0 and so t ′′2 (p,q) � 0. �

Lemma 18: Let (ui)2
i=0 be a probability distribution func-

tion and h3 the ternary Shannon entropy defined in (1). Then,
h3 is concave in (0,1) × (0,1) ⊂ R2 and for a fixed u2 ∈ (0,1)
the function h3 is monotone increasing (decreasing) for u1 <

(1 − u2)/2 (u1 > (1 − u2)/2).
Proof. The Hessian matrix

H(h3(�u)) =
[
− 1

1−u1−u2
− 1

u1
− 1

1−u1−u2

− 1
1−u1−u2

− 1
1−u1−u2

− 1
u2

]
(A49)

is negative definite since Tr H < 0 and det H = 1/(u0u1) +
1/(u0u2) + 1/(u1u2) > 0. The concavity of h3 follows from
the positivity of the characteristic polynomial throughout the
interval (u0,u1) ∈ (0,1) × (0,1). We now fix the value of u2

and the equation ∂h3/∂u1 = 0 is satisfied for u1 = (1 − u2)/2.
Thanks to the previously proved concavity, it is a local
maximum for every u2 ∈ (0,1) and thus (1 − u2)/2 defines
a one-parameter family of local maxima for h3. �

Remark. Due to the symmetry between u2 and u1 in (1), we
may fix u1 and get a family of local maxima given by −2u2 +
1. The global maximum of h3 at (u2,u1) = (1/3,1/3) lies in
the intersection of (1 − u2)/2 and −2u2 + 1. The situation is
illustrated in Fig. 5.

Theorem 19: The von Neumann entropy H (� ) of density
matrix (A1) is a concave function of the overlap z as introduced
in (A5), for all pk and for all 0 � ϑ � π/2 corresponding to
ε � 0 in (A8e).

Proof. The von Neumann entropyH (� ) is given byh3(�x(z))
in (1) where xk = tk + 1/3 come from Eq. (A9). Taking into
account

∑2
i=0 xi = 1 we get �x : R �→ R2 and the investigated

expression d2h3
dz2 will be written using the following notation:

We define

x′ =
[
x ′

1
x ′

2

]
, (A50a)

x′′ =
[
x ′′

1
x ′′

2

]
, (A50b)

and

h′
3 =

[
∂h3
∂x1
∂h3
∂x2

]
. (A51)
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FIG. 5. The ternary Shannon entropy Eq. (1) is shown. The blue
line depicts u1 = (1 − u2)/2 while the green one is the plot of u1 =
−2u2 + 1.

Using the chain rule, the second derivative can be succinctly
expressed as

d2h3

dz2
= (x′)�H(h3(�x)) x′ + (h′

3)�x′′, (A52)

where � denotes transposition and the dot (matrix) product is
implied. Hessian equation (A49) is negative definite according
to Lemma 18 and so the first summand is negative for any x′.
In order for the second summand to be nonpositive as well,
one possibility is when either the functions x1 and x2 are
concave and the two components of h3 nondecreasing or x1,x2

convex and h3 entrywise nonincreasing. We proved x ′′
2 � 0

in Corollary 17 but said nothing about the concavity of x1.
As a matter of fact, it is incomparably more difficult to prove
x ′′

1 � 0 in spite of the overwhelming numerical evidence. The
same numerics suggests that there is a whole class of input
probabilities pk for which x ′′

1 = 0. So, no “simple” bounds
like those leading to Proposition 16 exist. But, there is a third
possibility of how to make the second summand in (A52)
negative and it is the combination of the two previous cases.

We know that x ′′
0 � 0 from Proposition 16 and x ′′

2 � 0 from
Corollary 17. The second summand (A52) will be negative if
we take x0 instead of x1 in Eqs. (A50) and (A51) and show
∂h3
∂x0

� 0 and ∂h3
∂x2

� 0. Note that the Hessian remains negative
definite:

H(h3(�x)) =
[
− 1

1−x0−x2
− 1

x0
− 1

1−x0−x2

− 1
1−x0−x2

− 1
1−x0−x2

− 1
x2

]
. (A53)

Hence, in spite of the components of x′ to have different signs
(see Propositions 6 and 7), the summand is negative. Also note
that we are proving the properties of the same ternary entropy
(1) since it is equivalent to

h3(�x(z)) = −x0 log x0 − x2 log x2

− (1 − x0 − x2) log [1 − x0 − x2]. (A54)

Lemma 18 informs us that ∂h3
∂x2

� 0 and x ′′
2 � 0 together

with ∂h3
∂x0

� 0 and x ′′
0 � 0 is satisfied in the domain’s subset

delimited by the blue line [x0 � (1 − x2)/2] and the green line
[x0 � −2x2 + 1] depicted in Fig. 5 if instead of u2,u1 we have
x2,x0 (resulting in the same figure). But, it turns out that this
is precisely the range of �x represented by x0,x2. To this end,
consider the basic property of the cubic roots [29] t0 � t1 � t2
that becomesx0 � x1 � x2 � 0 for the eigenvalues of� . First,
using x0 � x1 we write

x0 � x0 + x1

2

= x0 + x1 + x2 − x2

2

= 1 − x2

2
, (A55)

where in the second row we used the normalization condition∑
i xi = 1. The last equality leads to one of the desired bounds.

For the second bound we start with x1 � x2 to write

x0 � x0 − x2 + x1

= −2x2 + x0 + x1 + x2

= −2x2 + 1, (A56)

where the last line provides the other inequality we were
looking for. Hence, (h′

3)�x′′ � 0 resulting in d2h3
dz2 � 0. �
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