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Spin-1 models in the ultrastrong-coupling regime of circuit QED
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We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider
a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting
quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection
rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac
pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1
interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong
coupling regime.
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I. INTRODUCTION

A major challenge in quantum physics is the development
of capabilities to study dynamical properties of quantum
many-body systems [1–6]. Among these problems we have
the study of interacting magnetic particles described by the
Ising or Heisenberg model, possibly including anisotropy,
which becomes intractable as the system size increases. In
particular, spin-1 systems have drawn increasing interest due to
the presence of diverse exotic phenomena such as the Haldane
phase [7–10] and quantum phase transitions [11–13]. Recent
proposals have explored platforms to engineer interactions of
effective spin-1 particles to study symmetry-protected topo-
logical phases [14–16]. Further, finite-size magnetic systems
could be of great relevance since their properties depend on the
system structure [17–21]. Nevertheless, the exact calculation
of dynamical properties of such systems is not possible using
classical tools [22], because the resources required for data
storage scale exponentially with the number of particles in
the system. Overcoming this problem requires a quantum
simulator (QS) [23] that, as conjectured by Feynman, needs
only a data storage and processing capability that increases
polynomially with the number of particles [24].

A highly scalable and tunable technology for QSs is the
superconducting circuit architecture [25–30]. This technol-
ogy allows for the study of light-matter interaction in the
ultrastrong (USC) [31–33] and deep-strong coupling (DSC)
regimes [34,35]. The USC regime offers features such as
anharmonic energy spectrum and parity symmetry, which
lead to interesting theoretical applications such as fast quan-
tum gates [36], as well as high-fidelity quantum state trans-
fer [37,38], among others [39–42].
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In this article, we propose to simulate a spin-1 chain of the
Heisenberg and Ising models using ultrastrongly coupled light-
matter systems, whose lowest three energy levels simulate
the spin-1 particles. We can implement two-body interactions
through coupling between resonators by means of grounded
superconducting quantum interference devices (SQUIDs) [43].
We use two different interleaved qubit-resonator systems to
simulate all nearest-neighbor interactions in a single gate, thus
producing the same simulation time for any number of spin-1
interacting particles.

II. THE MODEL

Let us consider a chain of N ultrastrongly coupled qubit-
resonator systems, referred to as quantum Rabi systems (QRS),
coupled by a grounded SQUID through their respective res-
onators [44,45]; see Fig. 1. We stress that this system may be
implemented in a circuit quantum electrodynamics platform
where each QRS is built of a superconducting resonator
coupled to a transmon qubit [46,47]. The transmons must be
located at the edges of the resonators for the outer QRSs of
the chain and at the center of each resonator for the remaining
QRSs as is shown in Fig. 1. This ensures a maximum coupling
between the transmon and the electric field distribution over
each resonator, which is imposed by zero voltage boundary
conditions at the SQUIDs. The Hamiltonian that describes this
system reads (see the Appendix)

H =
N∑

�=1

[
H

QRS
� + (

P
�,�+1
� + P

�−1,�
�

)
(a†

� + a�)2
]

−
N−1∑
�=1

[
2
√

P
�,�+1
� P

�,�+1
�+1 (a†

� + a�)(a†
�+1 + a�+1)

]

+
N∑

�=1

[(
Q

�,�+1
� �̄�,�+1(t) + Q

�,�−1
� �̄�,�−1(t)

)
(a†

� + a�)2
]
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FIG. 1. Top: chain of quantum Rabi systems, given by transmon-
qubit (green box) ultrastrongly coupled to transmission lines (gray
solid line). The QRSj and QRSj+1 are coupled through grounded
SQUIDj,j+1 (box with crosses). The chain is composed by interleaved
species of QRSs (A and B). Bottom: the spatial function χ (x) of the
voltage, that define a λ/4-resonator for the edges, and λ/2-resonators
for the bulk.

−
N−1∑
�=1

[
2
√

Q
�,�+1
� Q

�,�+1
�+1 �̄�,�+1(t)

× (a†
� + a�)(a†

�+1 + a�+1)
]
, (1)

where � refers to the �th site of the chain, the pair (�,� +
1) refers to the SQUID�,�+1 between the sites � and � +
1, �̄�,�+1(t) is the external time-dependent magnetic flux
threading the SQUID�,�+1, a�(a†

�) is the annihilation (creation)
operator of the lowest mode of the resonator, P �,�+1

� and Q
�,�+1
�

are time-independent constants given by

P
l,l+1
� = ϕoω

r
�

4IcZ
2
�C�

1

cos
(
�̄

l,l+1
o

) ,

Q
l,l+1
� = ϕoω

r
�

4IcZ
2
�C�

sin(�̄l,l+1
o )

cos2
(
�̄

l,l+1
o

) , (2)

with ϕo is flux quantum, Ic the critical current; ωr
�, C�, and Z�

are the fundamental frequency, capacitance, and impedance,
respectively, that characterize the �th site. �̄l,l+1

o is the off-
set component of the external magnetic flux threading the
SQUIDl,l+1. Additionally, we use two interleaved species of
QRS, to obtain controllable two-body interactions, as will be
shown in the next section. Finally, H QRS

� is the Hamiltonian of
the �th QRS described by the quantum Rabi model [48,49],

H
QRS
� = h̄ω

q

�

2
σ z

� + h̄ωr
�a

†
�a� + h̄g�σ

x
� (a†

� + a�), (3)

with σ k
� is the k-Pauli matrix associated with the qubit of the

QRS. In addition, ω
q

� is the qubit frequency and g� the qubit-
resonator coupling strength. The diagonalization of Eq. (3)
defines the eigenbasis {|j 〉�} as

H
QRS
� |j 〉� = λ�

j |j 〉�, (4)
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FIG. 2. Energy-level diagram for two adjacent QRSs. The blue
solid arrows match the ε�

1 − ε�
o transition, and the red dashed arrows

match the ε�
2 − ε�

1 transition. νn are the necessary frequencies to adjust
the resonance condition for different transitions.

where j = {0,1,2,...,∞}, and λ�
j is the eigenenergy of the j th

eigenstate |j 〉� of the �th QRS. The spectrum of the QRS
is anharmonic and exhibits parity symmetry defined by the
operator �� = eiπ(a†

�a�+σ+
� σ−

� ) [49–51]. These properties allow
us to engineer a spin-1 particle with the three lowest energy
levels of a QRS.

III. TWO-BODY INTERACTIONS

Let us focus on two adjacent QRSs for arbitrary sites �

and � + 1, these QRSs have different energy spectrums (see
Figs. 2 and 3). This means that the chain will be composed
by two interleaved species of QRSs (A and B) as is shown in
Fig. 1, such that each QRS has a different spectrum compared
with its nearest neighbors. To view the effect of this condition
in the quantum dynamics, it is instructive to see which terms
of Hamiltonian Eq. (1) will play a role in the implementation
of two-body interactions.

Before we continue our discussion, it is instructive to write
the field operator (a†

� + a�) in the basis {|j 〉�} defined by Eq. (4)
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FIG. 3. Energy diagram of Hamiltonian (7). Blue continuous line
indicate the states with parity +1 and red dashed lines states with
parity −1, the vertical dashed lines indicate the coupling strength for
the QRSA and for the QRSB used in our numerical calculations.
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as

a� + a
†
� =

∑
j,k>j=0

χ�
k,j |k〉�〈j | + H.c., (5)

where χ�
k,j = �〈k|(a� + a

†
�)|j 〉�. This operator can only relate

states with different parity, thus χ�
k,j = 0 when |k〉� and |j 〉�

have the same parity. Now, the first interaction operator that
we consider is the single-mode squeezing term (a†

� + a�)2, this
is a parity preserving operator over the subspace defined by
H

QRS
� [45]. This means that they can only produce transitions

between states of equal parity and energy shifts for a single
QRS according to

(a� + a
†
�)2 =

∑
j,k>j=0

[z�
kj |k〉�〈j | + H.c.] +

∑
j

z�
jj |j 〉�〈j |,

(6)

where z�
kj = �〈k|(a� + a

†
�)2|j 〉� = ∑∞

l=1 χ�
klχ

�
lj are matrix el-

ements in the eigenbasis {|j 〉�}. The last term of Eq. (6)
together with H

QRS
� will define the diagonal time-independent

Hamiltonian for the �th site as

H�
o =

∞∑
j=0

[
λ�

j + (
P

�,�−1
� + P

�−1,�
�

)
z�
jj

]|j 〉�〈j |

=
∞∑

j=0

ε�
j |j 〉�〈j |, (7)

Second, we consider the interacting terms (a†
� + a�)(a†

�+1 +
a�+1) in Eq. (1), they appear as time-independent (second line)
and time-dependent (fourth line) contributions that might lead
to the desired two-body interactions between different species.
These operators preserve the global parity of the system, but
change the local parity of the pair of QRS involved in the
interaction according to Eq. (5).

Since the QRS� has different energy spectrum compared
to QRS�+1, the time-independent interactions [second line of
Eq. (1)] are off-resonant and can be neglected by applying
a rotating wave approximation (RWA) with respect to Ho =∑

� H�
o for a specific choice of system parameters. Under

similar condition one could neglect single-body transitions
induced by matrix elements z�

jk , in Eq. (6). Finally in this way,
the last terms in Eq. (1) might implement two-body interactions
for a proper choice of resonant condition in the magnetic flux
�̄�,�+1, as we will demonstrate below.

The magnetic flux �̄�,�+1 can be written for all SQUIDs as
a linear superposition of harmonic signals

�̄�,�+1 =
∑

n

γn cos(νnt), (8)

where γn and νn are the amplitude and frequency of nth
component, respectively. To see how effective two-body in-
teractions are achieved by using this magnetic signal, we write
the Hamiltonian Eq. (1) in the interaction picture with respect
to Ho for adjacent sites � and � + 1,

H
�,�+1
I =

∑
j,k>j

[(
P

�,�+1
� + P

�−1,�
�

)
z�
kj e

i(ε�
k−ε�

j )t |k〉�〈j |]

− 2
√

P
�,�+1
� P

�,�+1
�+1

∑
j,k>j

∑
l,m>l

χ�
kjχ

�+1
ml

(
eiδml

kj t |k〉�〈j | + ei�ml
kj t |j 〉�〈k|)|m〉�+1〈l|

+
∑

n

⎡
⎣ ∑

j,k>j

γn

2
z�
kj

(
Q

�,�+1
� + Q

�−1,�
�

)(
ei(ε�

k−ε�
j −νn)t + ei(ε�

k−ε�
j +νn)t)|k〉�〈j | +

∑
j

γn

2
z�
jj

(
eiνnt + e−iνnt

)

×(
Q

�,�+1
� + Q

�−1,�
�

)|j 〉�〈j |
⎤
⎦ −

∑
j,k>j

∑
l,m>l

γn

√
Q�+1

� Q
�,�+1
�+1 χ�

kjχ
�+1
ml

((
ei(δml

kj −νn)t + ei(δml
kj +νn)t)|k〉�〈j |

+(
ei(�ml

kj −νn)t + ei(�ml
kj +νn)t)|j 〉�〈k|)|m〉�+1〈l| + H.c., (9)

where δml
kj = (ε�+1

m − ε�+1
l ) + (ε�

k − ε�
j ) and �ml

kj = |(ε�+1
m − ε�+1

l ) − (ε�
k − ε�

j )|. Since we use two different interleaved species
of QRSs (A and B), all δml

kj and �ml
kj do not depend on �. Now, to obtain an effective two-body interaction we need to adjust a

frequency νn to a specific transition, for example, if the magnetic flux Eq. (8) has a component with frequency νn = �10
10, the

term proportional to |1〉�〈0| ⊗ |0〉�〈1| + H.c. becomes resonant and will survive under the RWA with respect to Ho. In the same
way, the term |1〉�〈0| ⊗ |1〉�〈0| + H.c. becomes resonant if the frequency νn = δ10

10 . Then, for a proper choice of each harmonic
component in Eq. (8), one can activate different transitions in Eq. (9). An operator like

S�
+S�+1

− + S�
−S�+1

+ =
1∑

j=0

|j 〉�〈j + 1| ⊗ |j + 1〉�+1〈j | + H.c., (10)

can be engineered by setting �̄(t) to be composed of four signals with frequencies ν1 = �10
10, ν2 = �21

10, ν3 = �10
21, ν4 = �21

21, and
amplitudes γ1 = f/(χ�

10χ
�+1
10 ), γ2 = f/(χ�

10χ
�+1
21 ), γ3 = f/(χ�

21χ
�+1
10 ), γ4 = f/(χ�

21χ
�+1
21 ), γn>4 = 0, where f is a manipulable

parameter proportional to the amplitude of the magnetic flux threading the SQUID. For C�,�+1
xy = f

√
Q

�,�+1
� Q

�,�+1
�+1 � �ml

kj , we
can apply the RWA with respect to Ho to obtain the effective Hamiltonian

H
(�,�+1)
XY

(
C�,�+1

xy

) = C�,�+1
xy

(
S�

XS�+1
X + S�

Y S�+1
Y

)
= C�,�+1

xy [|1〉�〈0| ⊗ (|0〉�+1〈1| + |1〉�+1〈2|) + |2〉�〈1| ⊗ (|0〉�+1〈1| + |1〉�+1〈2|)] + H.c., (11)
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where

S�
X = 1√

2
(|1〉�〈0| + |2〉�〈1| + |0〉�〈1| + |1〉�〈2|),

S�
Y = 1√

2
(−i|1〉�〈0| − i|2〉�〈1| + i|0〉�〈1| + i|1〉�〈2|). (12)

Furthermore, since each SQUID is connecting one QRSA and a QRSB , we can set C�,�+1
xy = Cxy = f

√
QAQB for all �. Figure 2

shows the energy diagram of both QRSs and the frequencies νn needed to obtain Eq. (9). Since all magnetic fluxes �̄�,�+1 are
independent, they can be switched on at the same time, so the Hamiltonian Eq. (9) can be simulated for the entire chain given by

H̄XY =
N−1∑
�=1

H�,�+1
xy (Cxy) = Cxy

N−1∑
�=1

(
S�

XS�+1
X + S�

Y S�+1
Y

)
. (13)

To complete the simulation of the Heisenberg model for adjacent spin-1 particles we need to simulate the following term

S�
XS�+1

X = 1

2

1∑
j=0

[|j 〉�〈j + 1| ⊗ |j 〉�+1〈j + 1| + |j 〉�〈j + 1| ⊗ |j + 1〉�+1〈j |] + H.c., (14)

To achieve this, we consider an eight-component magnetic flux of the form

�̄�,�+1(t) =
4∑

n=1

γ̄n[cos(νnt) + cos(νn+4t)], (15)

where the first four frequencies are the same as in the previous case, ν5 = δ10
10 , ν6 = δ10

21 , ν7 = δ10
21 , ν8 = δ21

21, and γ̄n = γn/2, with
γn defined previously. Under similar conditions, we can perform the RWA and obtain the next effective Hamiltonian,

H
(�,�+1)
X (Cx) = CxS

�
XS�+1

X , (16)

where Cx = f
√

QAQB . We can obtain different constants Cxy or Cx by changing the value of f manipulating the amplitude γn

or γ̄n, respectively. We can also extend this result for the entire chain using the same magnetic flux Eq. (15) through all SQUIDs,
thus obtaining in the interaction picture

H̄X = Cx

N−1∑
�=1

S�
XS�+1

X . (17)

Therefore, a key ingredient in the protocol is to set the energy differences �ml
kj to enable the RWA. As we are interested in

simulating a spin-1 particle, we forbid the transition |0〉� → |2〉�, to do this we choose both values of gA and gB in the region
where |0〉� and |2〉� have the same parity, this happens for {gA,gB} > 0.5. Also, we require that gA and gB are far enough to
obtain appreciable energy differences for the system, obtaining optimal values of gA = 0.6 and gB = 0.9. Finally, any two-body
interaction between sites that are not nearest neighbor is only possible in a dispersive way, therefore, they are slower and can
be neglected. Figure 3 shows the energy spectrum of Eq. (7) as a function of qubit-resonator coupling g, vertical dashed lines
indicate the values for the QRSA (gA) and QRSB (gB).

Finally, local single-spin rotations can be generated by means of a classical driving η(t) acting upon each QRS� with

η�(t) = [
�

(1)
� cos

(
μ

(1)
� t + ϕ

(1)
�

) + �
(2)
� cos

(
μ

(2)
� t + ϕ

(2)
�

)]
(a†

� + a�), (18)

to see the effect of this driving, we write the interaction Hamiltonian when all signals in the SQUIDs are switched off (γn = 0),
obtaining for adjacent sites

H
�,�+1
D =

N∑
�=1

⎡
⎣ ∑

j,k>j

(
P

�,�+1
� + P

�−1,�
�

)
z�
kj e

i(ε�
k−ε�

j )t |k〉�〈j | − 2
√

P
�,�+1
� P

�,�+1
�+1

∑
j,k>j

∑
l,m>l

χ�
kjχ

�+1
ml

(
eiδml

kj t |k〉�〈j |

+ ei�ml
kj t |j 〉�〈k|)|m〉�+1〈l| +

2∑
l=1

�
(l)
�

2

∑
j,k>j

χ�
kj

(
ei[(ε�

k−ε�
j +μ

(l)
� )t+ϕ

(l)
� ] + ei[(ε�

k−ε�
j −μ

(l)
� )t−ϕ

(l)
� ])|k〉�〈j |

⎤
⎦ + H.c., (19)

choosing μ�
l = ε�

l − ε�
l−1, �

(l)
� = √

2r/χ�
l,l−1, ϕ

(l)
� = ϕ for all � and l; with r a manipulable parameter. If r is much smaller than

all frequencies in the driving, we can apply the RWA obtaining for one site

H
(�)
D (ϕ) ≈ r√

2
[e−iϕ(|1〉�〈0| + |2〉�〈1|) + eiϕ(|0〉�〈1| + |1〉�〈2|) = r

(
S�

X cos(ϕ) + S�
Y sin(ϕ)

)
, (20)
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then, for ϕ = π/2 and ϕ = 0 we have

H
(�)
D (π/2) = rS�

Y , H
(�)
D (0) = rS�

X, (21)

respectively, these interactions produce rotations with respect to the y axis R�
Y e−iS�

Y π/2 or x axis R�
Y e−iS�

Y π/2 over the �th QRS.
Since all η�(t) are independent, we can switch on all of them at the same. In particular, for the interacting time t = π/(2r), we
obtain

RX =
N∏

�=1

e−iS�
Xπ/2, RY =

N∏
�=1

e−iS�
Y π/2, (22)

which rotate all species simultaneously. This approach allows the generation of simultaneous one- and two-body gates between
adjacent spin-1 particles defined on each QRS system.

IV. SPIN-1 MODELS

Now we present the protocols for the digital quantum sim-
ulation of the Heisenberg model and for the analog simulation
of the Ising model. The anisotropic Heisenberg model of a spin
chain of N sites is given by

HH =
N−1∑
�=1

(
λxS

�
XS�+1

X + λyS
�
Y S�+1

Y + λzS
�
ZS�+1

Z

)
= H̄XY (Cxy) + H̄YZ(Cyz) + H̄ZX(Czx), (23)

where

H̄αβ(Cαβ) = Cαβ

N−1∑
�=1

(
S�

αS�+1
α + S�

βS�+1
β

)
, (24)

so that λx=Cxy+Czx , λy=Cxy+Cyz, and λz=Cyz+Czx , with
Cxy=f1

√
QAQB , Cyz=f2

√
QAQB , Czx=f3

√
QAQB , where

f1, f2 and f3 are different values for f of γ using in
Eq. (8).

The term H̄XY (Cxy) in Eq. (23) is the gate given by
Eq. (13), the terms H̄YZ(Cyz) and H̄ZX(Czx) can be simulated
as R

†
Y H̄XY (Cyz)RY and RXH̄XY (Czx)R†

X respectively, where we
use rotations given by Eq. (22). In this way, the time evolution
of the Heisenberg interaction in Eq. (23) up to time t can be
digitally simulated in no Trotter steps following the seven steps
protocol. Step 1: Perform the R

†
X rotation. Step 2: Evolve the

system under the Hamiltonian H̄XY (Czx) for a time t/no. Step
3: Perform the RX rotation. Step 4: Perform the RY rotation.
Step 5: Repeat step 2 but with Hamiltonian H̄XY (Cyz). Step

6: Perform the R
†
Y rotation. Step 7: Repeat step 2 but with

Hamiltonian H̄XY (Cxy). This can be summarized as

e−iHHt

≈ (e−iH̄XY (Cxy )t/noR
†
Y e−iH̄XY (Cyz)t/noRY RXe−iH̄XY (Czx )t/noR

†
X)no .

(25)

Figure 4(a) shows the gates diagram of this protocol for
adjacent sites (�,� + 1), and Fig. 4(b) for the entire chain.

XXZ Heisenberg model simulation involves two kind of
gates, the H̄XY given by Eq. (13) and the H̄X given by Eq. (17),
but switching on all magnetic fields at the same time. The
protocol works as follows. Step 1: Perform the RY rotation.
Step 2: Evolve the system under Hamiltonian H̄X(Cz) for a
time t/no. Step 3: Perform the R

†
Y rotation. Step 4: Repeat

step 2 but using Hamiltonian H̄XY (Cxy). If Cxy = Cz we obtain
the isotropic model.

Finally, since we can engineer H̄X(CX) in Eq. (17), the
analog quantum simulation of the Ising model is also feasible
via

HIsing =
N−1∑
�=1

JS�
XS�+1

X +
N∑

�=1

BS�
X = H̄X(J ) + SX(B), (26)

where the term SX(B) = ∑N
�=1 BS�

X can be implemented by a
classical driving given by Eq. (15).

V. NUMERICAL SIMULATIONS

Numerical simulations of spin-1 models are carried out for a
chain of N = 4 sites and in the interaction picture with respect
to Ho = ∑N

�=1 H�
o . We include dissipative effects through the

master equation [52–54]

ρ̇ = −i[H,ρ] +
∑

�

∑
j,k>j

�
(�)
kj [1 + n̄(ω�

kj ,T )]D[|j 〉�〈k|]ρ

+
∑

�

∑
j,k>j

�
(�)
kj [n̄(ω�

kj ,T )]D[|k〉�〈j |]ρ, (27)

FIG. 4. Diagram of the digital quantum simulation of the
anisotropic Heisenberg model, for (a) adjacent sites and (b) the entire
chain.
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FIG. 5. Fidelities as a function of time for the simulation of (a) the
anisotropic Heisenberg model and (b) the Ising model. In both figures
blue circles stand for a lattice size of N = 2, red crosses N = 3, and
yellow triangles N = 4 spin-1 particles.

whereD[Ô]ρ = 1
2 (2ÔρÔ† − ρÔ†Ô − Ô†Ôρ), n̄ is the mean

photon number of thermal baths at temperature T chosen
as T = 15[mK], and ω�

kj = ε�
k − ε�

j . The index � stands for
the �th QRS and the frequency-dependent rates have three
different component, �(�)

kj = �
(�)cav
kj + �

(�)dec
kj + �

(�)deph
kj , where

�
(�)cav
kj = (ω�

kjκc/ω
r
�)|�〈k|(a†

� + a�)|j 〉�|2 associated to cavity

losses, �
(�)dec
kj = (ω�

kjκx/ω
q

� )|�〈k|σx
� |j 〉�|2, associated to qubit

decay, and �
(�)deph
kj = (ω�

kjκz/ω
q

� )|�〈k|(σ z
� )|j 〉�|2 associated to

qubit dephasing. We use effective constant in Eq. (1) P
�,�+1
� =

Q
�,�+1
� = 3.655 [MHz] [45] for all � and for all simulations (see

Supplemental Material). Also, we use κc = 2π × 10 [kHz],
κx = 2π × 20 [kHz] and κz = 2π × 10 [kHz] [28,45]. Specif-
ically, we carried out the numerical calculations for the dig-
ital quantum simulation of the isotropic Heisenberg model
and the analog quantum simulation of the Ising model. In
both cases we use a chain of interleaved QRSs of the form
A − B − A − ..., where we fix the parameters of the QRSA

and QRSB as ωr
A = ωr

B = 2π × 10 [GHz], ω
q

A = ω
q

B = 2π ×
9 [GHz], gA = 2π × 6 [GHz] and gB = 2π × 9 [GHz]. Fi-
nally, we choose for all cases the SQUID parameter f = 2π ×
10 [GHz] [55], which allows to implement an effective cou-
pling between sites J = f

√
QAQB = 2π × 0.0366 [GHz].

We point out that the proposed values of the couplings gA and
gB are larger than what is nowadays achievable for transmon
qubits, while reaching these couplings may require novel
circuit designs.

The simulations are compared with the exact quantum
dynamics given by the anisotropic XXZ Heisenberg model,
λx = λy = J and λz = J/2 in Eq. (23) and the Ising model
in Eq. (26). For the latter we choose B = 2π × 0.01 [GHz].
Figure 5 shows the average fidelity F = Tr

√
ρ1/2σρ1/2 with

ρ being the state evolved from the exact Hamiltonian and
σ the state evolved from the simulated Hamiltonian for 100
random initial states, being Fig. 5(a) for the Heisenberg model
and Fig. 5(b) for the Ising model. In both figures blue circles
stand for a lattice size of N = 2, red crosses N = 3, and
yellow triangles N = 4 spin-1 particles. The simulations were
done with no = 10 Trotter steps and the elapsed time of
the total simulation are tH2 = tH3 = tH4 ≈ 0.486 [μs] for the
Heisenberg model, and tI2 = tI3 = tI4 = t = π/J ≈ 0.01 [μs]
for the Ising model for N = 2, 3, 4.

The fidelity decreases with the increase of number of
particles, which is a result of two main sources, that is,
the increase of digital errors in the Heisenberg model and
the increase of the multibody gate errors. Nonetheless, the
noticeable point of our protocols is that the simulation time
does not depend on the number of sites in the chain, such that
dissipative processes may have a smaller effect than in usual
simulation protocols.

Finally, it is pertinent to mention that though this calculation
does not consider multimode effects, the main scope of this ar-
ticle would not change, since neither parity nor anharmonicity
of the QRM spectrum will be affected if we include multiple
resonator modes. Also, the coupling between resonators would
not change because they interact via low-impedance grounded
SQUID, which imposes zero voltage boundary condition at the
edge of the resonators. Nevertheless, the multimode effects
will change the expression for the effective constants P

l,l+1
�

and Q
l,l+1
� in Hamiltonian Eq. (1), the energy-level structure

and, therefore, the resonance condition for the activation of
specific transitions. A detailed discussion of multimode effects
in circuit QED has been introduced by A. Parra-Rodriguez et.
al. in Ref. [56].

VI. CONCLUSION

We have proposed a protocol for the digital quantum simu-
lation of spin-1 Heisenberg and analog quantum simulation
of spin-1 Ising models based on a feasible experimental
implementation in circuit quantum electrodynamics within the
ultrastrong coupling regime. We show how a time-dependent
coupling between quantum Rabi systems allows us to activate
different two-body transitions without individual QRS manip-
ulation. Finally, we have shown that in our protocols we can
activate all one- and two-site interactions at the same time. In
this way, we obtain simulation times that are independent of
the number of particles in the spin chain, which provides a
great potential in scalability.
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APPENDIX: EFFECTIVE COUPLING

In this section we derive the Hamiltonian of a chain of
N transmission lines coupled through SQUIDs, as shown in
Fig. 3. We modeled each transmission line (TL) as a set
of inductors and capacitors as shown in Fig. 6 for adjacent
sites [44]. We use the Hamiltonian circuit description through
the spanning tree theory [57], denoting by φ

(j )
� the flux

associated with the j th active node of the �th transmission
line. An inductance per unit length l� and a capacitance per
unit length c� is associated to each resonator. The Lagrangian
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FIG. 6. Diagram of the circuit that models two adjacent transmission lines coupled through a grounded SQUID.

of the entire chain reads

L =
N∑

�=1

(
LTL

� + LI
�,�+1 + LS

�,�+1

)
, (A1)

with

LTL
� = 1

2

n∑
j=1

[
c��x

(
φ̇

(j )
�

)2 − 1

l��x

(
φ

(j+1)
� − φ

(j )
�

)2
]
,

LI
�,�+1 = − 1

2�x

[
1

l�

(
φ

(n)
� − φJ

�,�+1

)2

+ 1

l�+1

(
φ

(1)
�+1 − φJ

�,�+1

)2
]
,

LS
�,�+1 = CJ

�,�+1

2

(
φ̇J

�,�+1

)2 + 2EJ
�,�+1

× cos

(
�x

�,�+1

2ϕo

)
cos

(
φJ

�,�+1

2ϕo

)
, (A2)

where �x is the characteristic length of each LC circuit, EJ
�,�+1

and �x
�,�+1 are the Josephson energy and the external magnetic

flux threading the SQUID�,�+1, respectively, and we consider
symmetric SQUIDs along the chain. The first equation in
Eq. (A2) corresponds to the �th TL, the second equation is the
interaction between the SQUID and the adjacent TL, and the
third term corresponds to the SQUID�,�+1. The Euler-Lagrange
(E-L) equation for φ

(j )
� reads

c��xφ̈
(j )
� = 1

l��x

[(
φ

(j+1)
� − φ

(j )
�

)
−

(
φ

(j )
� − φ

(j−1)
�

)]
.

(A3)

The E-L equation for φJ
�,�+1 is written as

CJ
�,�+1φ̈

J
�,�+1

= 1

�x

[
1

l�+1

(
φ

(1)
�+1 − φJ

�,�+1

)
+ 1

l�

(
φ

(n)
� − φJ

�,�+1

)]

− EJ
�,�+1(�x

�,�+1)

ϕo

sin

(
φJ

�,�+1

2ϕo

)
, (A4)

where EJ
�,�+1(�x

�,�+1) = EJ
�,�+1 cos (

�x
�,�+1

2ϕo
). In the continuum

limit �x → 0, Eq. (A3) reads

∂2φ�

∂x2
= 1

ν2

∂2φ�

∂t2
, (A5)

with 1/ν2 = l�c�. In the same limit, Eq. (A4) reads

1

l�+1

(
∂

∂x
φ�+1

)∣∣∣∣
x=d�

− 1

l�

(
∂

∂x
φ�

)∣∣∣∣
x=d�

= EJ
�,�+1(�x

�,�+1)

ϕo

sin

(
φ(d�,t)

2ϕo

)
+ CJ

�,�+1φ̈(d�,t). (A6)

Equation (A3) is the wave equation, which can be solved
using separation of variables φ�(x,t) = χ�(x)τ�(t), thus, for the
spatial function we obtain

d2

dx2
χ� = −(κ̄�)2χ� ⇒ χ�(x) = A sin(κ̄�x) + B cos(κ̄�x),

(A7)
In the low-impedance limit of the SQUIDs, the boundary
conditions for each bulk resonator are χ (d�) = 0, for � =
{1,2,...,N − 1}. The boundary conditions for the edges of
the chain establish that no current is flowing which means
χ ′(0) = χ ′(dN ) = 0. Then, the spatial function reads

χ�(x) = An
� sin[κ̄n

� (x − d�−1)], (A8)

where κ̄n
� = nπ

d�−d�−1
, for � = {2,3,...,N − 1}, κ̄n

1 = π
d1

(n +
1/2), and κ̄n

N = π(n+1/2)
dN −dN−1

. These conditions define a λ/4-
resonator for the edges of the chain and λ/2-resonators for
the rest of the chain.

Assuming that for each SQUID the Josephson energy is
much larger than the charging energy, that is the phase regime,
we can approximate sin(φ(d�,t)/(2ϕo)) ≈ φ(d�,t)/(2ϕo),
cos(φ(d�,t)/(2ϕo)) ≈ 1 − φ(d�,t)2/(8ϕ2

o ). Also, if the plasma
frequencies of SQUIDs are the largest scales compared with
low-lying frequencies in the system, we can neglect the last
term of Eq. (A6) since we can consider the system dynamics
slower [58]. These approximations lead to

EJ
�,�+1(�x

�,�+1)

2ϕ2
o

φ(d�,t)

= 1

l�+1

(
∂

∂x
φ�+1

)∣∣∣∣
x=d�

− 1

l�

(
∂

∂x
φ�

)∣∣∣∣
x=d�

. (A9)
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To calculate the Hamiltonian, we integrate the spatial modes
of the Lagrangian Eq. (A1) in the continuum limit, obtaining
for the �th transmission line∫

LTL
� dx =

(
C�

2
τ̇ n2
� − κn2

�

2L�

τn2
�

)
, κn

� = κ̄n
� (d� − d�−1).

(A10)

The Lagrangian for the SQUIDs, the last term of Eq. (A1), in
the harmonic approximation reads

LS
�,�+1 = −EJ

�,�+1(�x
�,�+1)

φ(d�,t)2

4ϕ2
o

, (A11)

and using the condition of Eq. (A9) for φ(0,t), we obtain

LS
�,�+1 = − ϕ2

o

EJ
�,�+1(�x

�,�+1)

(
κn

�+1

L�+1
τn
�+1 − κn

�

L�

τn
�

)2

, (A12)

then, the total Lagrangian for the lowest modes of each
resonator reads

Lsys =
∫

Ldx =
N∑

�=1

(
C�

2
τ̇ 2
� − κ2

�

2L�

τ 2
�

)

− ϕ2
o

EJ
�,�+1(�x

�,�+1)

(
κ�+1

L�+1
τ�+1 − κ�

L�

τ�

)2

. (A13)

Now, using the canonical conjugate variable p� = ∂L/∂τ̇� =
C�τ̇�, we can write the Hamiltonian as

H =
N∑

�=1

p�τ̇� − Lsys =
N∑

�=1

(
p2

�

2C�

+ κ2
�

2L�

τ 2
�

)

+
N−1∑
�=1

ϕ2
o

EJ
�,�+1(�x

�,�+1)

(
κ�

L�

τ� − κ�+1

L�+1
τ�+1

)2

,

(A14)

defining ω� = κ�/
√

C�L�, we obtain

H =
N∑

�=1

(
p2

�

2C�

+ C�

2
ω2

�τ
2
�

)

+ ϕ2
o

EJ
�,�+1(�x

�,�+1)

(
ω�

Z�

τ� − ω�+1

Z�+1
τ�+1

)2

, (A15)

where Z� = √
L�/C�. Using the standard quantization proce-

dure,

p� = i

√
h̄C�ω�

2
(a†

� − a�), τ� =
√

h̄

2C�ω�

(a†
� + a�), (A16)

the Hamiltonian reads

Ĥ =
N∑

�=1

h̄ω�a
†
�a� +

N−1∑
�=1

h̄ϕ2
o

2EJ
�,�+1(�x

�,�+1)

[
1

Z�

√
ω�

C�

(a†
� + a�)

− 1

Z�+1

√
ω�+1

C�+1
(a†

�+1 + a�+1)

]2

. (A17)

Now, we assume that all SQUIDs are equal, then EJ
�,�+1 = EJ .

We consider the external flux �x
�,�+1 to be composed by a DC

signal and a small AC signal as �x
�,�+1 = �o

�,�+1 + ��,�+1(t).
Since |��,�+1(t)| � �o

�,�+1, we can expand 1/EJ (�x
�,�+1) as

1

EJ (�x
�,�+1)

= 1

EJ cos
(�o

�,�+1+��,�+1(t)
2ϕo

)
≈ 1

ĒJ

(
1 + sin(�̄o

�,�+1)

cos(�̄o
�,�+1)

�̄�,�+1(t)

)
, (A18)

where ĒJ = EJ cos(�̄o
�,�+1), �̄o

�,�+1 = �o
�,�+1

2ϕo
, and �̄�,�+1(t) =

�(t)�,�+1

2ϕo
. We can rewrite the Hamiltonian Eq. (A17) as

Ĥ =
N∑

�=1

[
h̄ω�a

†
�a� + h̄

(
P

�,�+1
� + P

�−1,�
�

)
(a†

� + a�)2
]

−
N−1∑
�=1

[
2
√

P
�,�+1
� P

�,�+1
�+1 (a†

� + a�)(a†
�+1 + a�+1)

]

+
N∑

�=1

[(
Q

�,�+1
� �̄�,�+1(t) + Q

�,�−1
� �̄�,�−1(t)

)
(a†

� + a�)2
]

−
N−1∑
�=1

[
2
√

Q
�,�+1
� Q

�,�+1
�+1 �̄�,�+1(t)(a†

�+a�)(a†
�+1 + a�+1)

]
,

(A19)

where

P
l,l+1
� = ϕoω�

4IcZ
2
�C�

1

cos(�̄l,l+1
o )

,

Q
l,l+1
� = ϕoω�

4IcZ
2
�C�

sin(�̄l,l+1
o )

cos2(�̄l,l+1
o )

, (A20)

with Ic = EJ /(2ϕo) the critical current. For the simulation
in the main text we use for sites �, the flux quantum ϕo =
3.2911 [fWb], the critical current Ic = 1 [mA], the transmis-
sion line impedance Z� = Z = 100 [�] and capacitance C� =
C = 200 [fF], and same time independent offset component
of the external magnetic flux �̄l,l+1

o = �̄o = π/4 for all
SQUIDS; giving us effective constants P

l,l+1
� = P = Q

l,l+1
� =

Q = 3.655 [MHz].
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Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano,
S. Filipp, and A. Wallraff, Phys. Rev. X 5, 021027 (2015).

[31] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. García-Ripoll, D. Zueco, T. Hümmer, E. Solano,
A. Marx, and R. Gross, Nat. Phys. 6, 772 (2010).

[32] P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E.
Solano, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett.
105, 237001 (2010).

[33] P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, J. L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu,
Nat. Phys. 13, 39 (2017).

[34] J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E.
Solano, Phys. Rev. Lett. 105, 263603 (2010).

[35] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Nat. Phys. 13, 44 (2017).

[36] G. Romero, D. Ballester, Y. M. Wang, V. Scarani, and E. Solano,
Phys. Rev. Lett. 108, 120501 (2012).

[37] T. H. Kyaw, S. Allende, L.-C. Kwek, and G. Romero, Quant.
Sci. Technol. 2, 025007 (2017).

[38] F. A. Cárdenas-López, F. Albarrán-Arriagada, G. A. Barrios,
J. C. Retamal, and G. Romero, Sci. Rep. 7, 4157 (2017).

[39] S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010).
[40] R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S.

Savasta, Phys. Rev. Lett. 110, 243601 (2013).
[41] G. Benenti, A. D’Arrigo, S. Siccardi, and G. Strini, Phys. Rev.

A 90, 052313 (2014).
[42] F. Albarrán-Arriagada, G. A. Barrios, F. A. Cárdenas-López, G.

Romero, and J. C. Retamal, J. Phys. A 50, 184001 (2017).
[43] J. Clarke and A. I. Braginski, The SQUID Handbook: Applica-

tions of SQUIDs and SQUID Systems (John Wiley & Sons, New
York, 2006).

[44] S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johansson, P.
Delsing, and E. Solano, Phys. Rev. Lett. 113, 093602 (2014).

[45] Y. Wang, J. Zhang, C. Wu, J. Q. You, and G. Romero, Phys. Rev.
A 94, 012328 (2016).

[46] C. K. Andersen and A. Blais, New J. Phys. 19, 023022 (2017).
[47] S. J. Bosman, M. F. Gely, V. Singh, D. Bothner, A. Castellanos-

Gomez, and G. A. Steele, Phys. Rev. B 95, 224515 (2017).
[48] I. I. Rabi, Phys. Rev. 51, 652 (1937).
[49] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[50] V. V. Albert, Phys. Rev. Lett. 108, 180401 (2012).
[51] F. A. Wolf, M. Kollar, and D. Braak, Phys. Rev. A 85, 053817

(2012).
[52] F. Beaudoin, J. M. Gambetta, and A. Blais, Phys. Rev. A 84,

043832 (2011).
[53] L. Garziano, R. Stassi, V. Macrì, A. F. Kockum, S. Savasta, and

F. Nori, Phys. Rev. A 92, 063830 (2015).
[54] C. Wu, C. Guo, Y. Wang, G. Wang, X.-L. Feng, and J.-L. Chen,

Phys. Rev. A 95, 013845 (2017).
[55] A. Mezzacapo, L. Lamata, S. Filipp, and E. Solano, Phys. Rev.

Lett. 113, 050501 (2014).
[56] A. Parra-Rodriguez, E. Rico, E. Solano, and I. Egusquiza,

arXiv:1711.08817 (2017).
[57] M. H. Devoret et al., Les Houches, Session LXIII Chapter 7

(1995).
[58] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys.

Rev. Lett. 103, 147003 (2009).

022306-9

https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1007/BF02097239
https://doi.org/10.1007/BF02097239
https://doi.org/10.1007/BF02097239
https://doi.org/10.1007/BF02097239
https://doi.org/10.1103/PhysRevB.55.8295
https://doi.org/10.1103/PhysRevB.55.8295
https://doi.org/10.1103/PhysRevB.55.8295
https://doi.org/10.1103/PhysRevB.55.8295
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.7.4267
https://doi.org/10.1103/PhysRevB.7.4267
https://doi.org/10.1103/PhysRevB.7.4267
https://doi.org/10.1103/PhysRevB.7.4267
https://doi.org/10.1103/PhysRevLett.77.5142
https://doi.org/10.1103/PhysRevLett.77.5142
https://doi.org/10.1103/PhysRevLett.77.5142
https://doi.org/10.1103/PhysRevLett.77.5142
https://doi.org/10.1103/PhysRevLett.85.1714
https://doi.org/10.1103/PhysRevLett.85.1714
https://doi.org/10.1103/PhysRevLett.85.1714
https://doi.org/10.1103/PhysRevLett.85.1714
https://doi.org/10.1103/PhysRevLett.112.040503
https://doi.org/10.1103/PhysRevLett.112.040503
https://doi.org/10.1103/PhysRevLett.112.040503
https://doi.org/10.1103/PhysRevLett.112.040503
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1103/PhysRevLett.119.183603
https://doi.org/10.1103/PhysRevLett.119.183603
https://doi.org/10.1103/PhysRevLett.119.183603
https://doi.org/10.1103/PhysRevLett.119.183603
https://doi.org/10.1103/PhysRevLett.101.107204
https://doi.org/10.1103/PhysRevLett.101.107204
https://doi.org/10.1103/PhysRevLett.101.107204
https://doi.org/10.1103/PhysRevLett.101.107204
https://doi.org/10.1038/ncomms8061
https://doi.org/10.1038/ncomms8061
https://doi.org/10.1038/ncomms8061
https://doi.org/10.1038/ncomms8061
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1103/PhysRevLett.114.177203
https://doi.org/10.1016/j.physa.2017.04.179
https://doi.org/10.1016/j.physa.2017.04.179
https://doi.org/10.1016/j.physa.2017.04.179
https://doi.org/10.1016/j.physa.2017.04.179
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/srep43768
https://doi.org/10.1038/srep43768
https://doi.org/10.1038/srep43768
https://doi.org/10.1038/srep43768
https://doi.org/10.1103/PhysRevLett.112.200501
https://doi.org/10.1103/PhysRevLett.112.200501
https://doi.org/10.1103/PhysRevLett.112.200501
https://doi.org/10.1103/PhysRevLett.112.200501
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1088/2058-9565/aa701c
https://doi.org/10.1088/2058-9565/aa701c
https://doi.org/10.1088/2058-9565/aa701c
https://doi.org/10.1088/2058-9565/aa701c
https://doi.org/10.1038/s41598-017-04467-1
https://doi.org/10.1038/s41598-017-04467-1
https://doi.org/10.1038/s41598-017-04467-1
https://doi.org/10.1038/s41598-017-04467-1
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevA.90.052313
https://doi.org/10.1103/PhysRevA.90.052313
https://doi.org/10.1103/PhysRevA.90.052313
https://doi.org/10.1103/PhysRevA.90.052313
https://doi.org/10.1088/1751-8121/aa66a0
https://doi.org/10.1088/1751-8121/aa66a0
https://doi.org/10.1088/1751-8121/aa66a0
https://doi.org/10.1088/1751-8121/aa66a0
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevLett.113.093602
https://doi.org/10.1103/PhysRevA.94.012328
https://doi.org/10.1103/PhysRevA.94.012328
https://doi.org/10.1103/PhysRevA.94.012328
https://doi.org/10.1103/PhysRevA.94.012328
https://doi.org/10.1088/1367-2630/aa5941
https://doi.org/10.1088/1367-2630/aa5941
https://doi.org/10.1088/1367-2630/aa5941
https://doi.org/10.1088/1367-2630/aa5941
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRevB.95.224515
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.108.180401
https://doi.org/10.1103/PhysRevLett.108.180401
https://doi.org/10.1103/PhysRevLett.108.180401
https://doi.org/10.1103/PhysRevLett.108.180401
https://doi.org/10.1103/PhysRevA.85.053817
https://doi.org/10.1103/PhysRevA.85.053817
https://doi.org/10.1103/PhysRevA.85.053817
https://doi.org/10.1103/PhysRevA.85.053817
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.95.013845
https://doi.org/10.1103/PhysRevA.95.013845
https://doi.org/10.1103/PhysRevA.95.013845
https://doi.org/10.1103/PhysRevA.95.013845
https://doi.org/10.1103/PhysRevLett.113.050501
https://doi.org/10.1103/PhysRevLett.113.050501
https://doi.org/10.1103/PhysRevLett.113.050501
https://doi.org/10.1103/PhysRevLett.113.050501
http://arxiv.org/abs/arXiv:1711.08817
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevLett.103.147003



