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Quantum approximate optimization algorithm for MaxCut: A fermionic view
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Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm
(QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028;
arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical
Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for
which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized
classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse
of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting
strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For
the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher
p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the
“ring of disagrees,” or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high
level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum
control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the
performance of the QAOA for any p. It also greatly simplifies the numerical search for the optimal values of
the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search
effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter
values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense
of having no local optima.
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I. INTRODUCTION

Recently, Farhi et al. [1] proposed a class of quantum
algorithms, the quantum approximate optimization algorithm
(QAOA), to tackle challenging approximate optimization
problems on a gate model quantum computer. In the QAOA, the
problem Hamiltonian, which encodes the cost function of the
optimization problem, and a mixing Hamiltonian are applied
alternately. A handful of recent papers suggest the power of
such circuits [2–5]. Once the problem and mixing Hamilto-
nians have been chosen, the parameters of the algorithm are
the times for which each Hamiltonian is applied at each stage.
With an optimized time sequence for each piece, the optimal
output of the problem Hamiltonian is approximated.

The success of the QAOA relies on being able to find a
good time sequence. A level-p algorithm has 2p parameters,
the times (angles) for which the problem Hamiltonian and
the mixing Hamiltonian are applied at each iteration. For the
QAOA of a fixed level, straightforward sampling of search
space has been proposed [1], but it is practical only for small
p; as the level increases the parameter optimization becomes
inefficient due to the curse of dimensionality. Elegant analytical
tools designed for specific problem class can provide parameter
values for p � 1 that give a near-optimal performance, e.g.,
search an unstructured database [5], but for a general problem,
practical search strategies are needed. Here we analytically

and numerically study the parameter setting problem, with a
focus on the MaxCut problem. We demonstrate how analyzing
parameter symmetries and the landscape of the expectation
value over the space of the parameter values can aid in finding
optimal parameter values.

In Ref. [1], Farhi et al. investigated MaxCut for specific
(bounded-degree) graphs and provided numerical results for
a special case, termed ring of disagrees, which is a one-
dimensional chains of spins of spin-1/2 with nearest-neighbor
antiferromagnetic couplings. We first extend the results of
MaxCut to derive analytical expressions which can be solved
to obtain the optimal parameters for the level-1 QAOA for
MaxCut on arbitrary graphs. Direct analysis through operator
reduction quickly becomes cumbersome as the level p of the
algorithm increases. We focus on the ring of disagrees where
we are able to advance the analysis to arbitrary levels.

Using a fermionic representation, we show that the evolu-
tion of the system under the QAOA translates into quantum op-
timal control of an ensemble of independent spins, significantly
simplifying the analysis. In this representation, the analytical
expression for the expectation value as a trigonometric polyno-
mial of the parameters can be efficiently derived for arbitrary
level p. Furthermore, the reduction to independent spins
simplifies the numerical search greatly because evaluation
involves only ∼2p matrix multiplications of 2 × 2 matrices
and is linear in problem size, the number of spins in the original
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problem n. Further, by exploring symmetries, we identify a
lower-dimensional submanifold whose critical points are also
critical points in the full manifold. We numerically confirm for
small p that all optimal parameters lie in this submanifold. The
search effort can be accordingly reduced and it also explains an
observed symmetry in the optimal parameter values. Finally, a
numerical investigation of the parameter landscape shows that
it is a simple one in the sense of having only global optima.

In Sec. II we give a recap of the QAOA and a literature
review. In Sec. III we introduce the QAOA for MaxCut and
present an analytical expression for the level-1 QAOA. From
Sec. IV on, we focus on the antiferromagnetic chain (ring
of disagrees). Section IV A reviews the formulation of the
QAOA for this problem. In Sec. IV B, we transform to a
fermionic representation and reduce the problem to the control
of noninteracting spins. Section IV C provides analysis of the
size dependence of the approximation ratio. We analyze the
symmetry in the system in Sec. IV D and identify criticality-
constrained manifolds where the global optima of the param-
eters exist. In Sec. IV E, the QAOAs of level 1 and level 2 are
illustrated. In Sec. IV F, we discuss the landscape topography
of the search space of the parameter values and its relation to
known theory in quantum control. Section V summarizes the
main results and conclusions of the paper.

II. RECAP OF THE ALGORITHM

Given an objective function C : {0,1}n → R to maximize,
the aim of an approximation algorithm is to find, upon speci-
fication of a desired approximation ratio r∗, a bit string x such
that C(x) is within a factor of r∗ of the maximum:

C(x)

Cmax
� r∗. (1)

An algorithm is an r∗-approximation algorithm for the problem
if for every instance of the problem the algorithm finds a
bit string with cost function within r∗ of the maximum. The
QAOA is a quantum approximate optimization algorithm that
iteratively alternates between applying a problem Hamiltonian
HC derived from the cost function and applying a mixing
Hamiltonian HB , which in the standard case is the transverse
field HB = ∑

j σ x
j . For many problems, alternative mixing

Hamiltonians that incorporate some problem constraints can
reduce resource requirements and improve performance over
the standard setup [6].

From a classical cost function that is a polynomial in
binary variables x1, . . . ,xn, we can construct a Hamiltonian
HC on n qubits by first rewriting the cost function in terms
of variables zi ∈ {−1,1}, where xi = (1 − zi)/2 to obtain a
polynomial f (z) = ∑

C⊂{1,...,n} αC

∏
j∈C zj , and then replacing

each occurrence of zi with the Pauli operator σ z
i . Thus, HC is

diagonal in the σ z basis and takes the form

HC =
∑

C⊂{1,...,n}
αC

⊗
j∈C

σ z
j , (2)

where C is a subset of all qubits and αC is a real coefficient for
the many-body coupling between qubits in the subset C.

We will use QAOAp to refer to a level-p QAOA circuit
consisting of p steps. In each step, we first apply the problem
Hamiltonian HC and then a mixing Hamiltonian HB . Once the

mixing Hamiltonian and the problem Hamiltonian have been
chosen, the parameters of a QAOAp circuit are the 2p real
numbers (γi,βi), for 1 � i � p, which determine how long
each operator is applied in iteration i:

UC(γi) = exp[−iγiHC], (3)

UB(βi) = exp[−iβiHB]. (4)

Following Farhi et al. [2], we refer to these times as angles.
The standard initial state |ψ0〉, a superposition of all classical
bit strings, is prepared as the ground state of −HB with density
matrix

ρ0 = |ψ0〉〈ψ0| =
⊗

j

1

2

(
1 + σx

j

)
. (5)

The circuit

U = UB(βp)UC(γp) · · · UB(β2)UC(γ2)UB(β1)UC(γ1) (6)

applied to the initial state creates a final state

|γ ,β〉 = U |ψ0〉, (7)

for which the expectation value of HC is

F (γ ,β) = Tr[HCUρ0U
†]. (8)

Let F ∗ = F (γ ∗,β∗) be the optimal value of F over the value
range of the parameter set {(γ ,β)}. The approximation ratio
for the QAOA circuit with the parameters {(γ ,β)} is

r ≡ F/Cmax. (9)

The goal of the circuit U is to drive the system into a
quantum state which, upon measuring in the computational
basis, yields with high probability a classical bit string that
is r∗-approximately optimal. This goal is achieved if the
expectation value F ∗ in the final state is r∗-approximately
optimal, i.e., r � r∗, and the distribution of bit strings from
measuring this state in the computational basis is concentrated
on bit strings with costs close to this expectation value.

In Ref. [2], a QAOA1 beat the existing best approxima-
tion bound for efficient classical algorithms for the problem
E3Lin2, only to inspire a better classical algorithm [7] that
beats the approximation ratio for the QAOA1 by a logarithmic
factor. The performance of the QAOAp for E3Lin2 with p > 1
is yet to be determined. Circuits with the above alternating
structure have been used for purposes other than approximate
optimization. For example, such QAOA circuits have also been
applied for exact optimization [5,8] and sampling [3]. Wecker
et al. [8] explores learning parameters for QAOA circuits on
instances of MAX-2-SAT that result in high overlap with the
optimal state. Jiang et al. [5] demonstrate that the class of
QAOA circuits is powerful enough to obtain the �(

√
2n) query

complexity on Grover’s problem and also provides the first
algorithm within the QAOA framework to show a quantum
advantage for a number of iterations p in the intermediate range
between p = 1 and p → ∞. Farhi and Harrow [3] proved
that, under reasonable complexity assumptions, the output
distribution of even QAOA1 circuits cannot be efficiently
sampled classically. The QAOA circuits are therefore among
the most promising candidates for early demonstrations of
“quantum supremacy” [9,10]. It remains an open question
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whether QAOA circuits provide a quantum advantage for
approximate optimization.

The QAOA has a close connection with the variational
quantum algorithm, in which classical optimization of pa-
rameters for a quantum evolution is performed. The result
of evaluation of the final state is fed back to the parameter
optimization, forming a closed-loop learning process. Yang
et al. [4] proved that for evolution under a Hamiltonian that
is the weighted sum of Hamiltonian terms, with the weights
allowed to vary in time, the optimal control is bang-bang,
i.e., constant magnitude, of either the maximum or minimum
allowed weight, for each of the terms in the Hamiltonian at
any given time. Their work implies that QAOA circuits with
the right parameters are optimal among Hamiltonians of the
form H (s) = [1 − f (s)]HB + f (s)HC , where f (s) is a real
function in the range [0,1].

The ultimate success of the QAOA approach will depend
on finding effective parameter-setting strategies. For fixed p,
the optimal parameters can be computed in a time polynomial
in the number of qubits n [1]. With increasing p, however, an
exhaustive search of the QAOA parameters becomes inefficient
due to the curse of dimensionality. If we discretize so that
each parameter can take on m values, the exhaustive search
of the optimum takes exponential steps in p as m2p. Here we
analytically and numerically study parameter setting for the
QAOA applied to MaxCut.

III. THE QAOA1 FOR MAXCUT

In this section, we derive an analytical expression for the
expectation value F for the QAOA1 for MaxCut on general
graphs, furthering the analysis in [1]. In principle, we could
similarly derive expressions for higher p, but the workload
quickly becomes prohibitive.

MaxCut problem. Given a graph G = (V,E) with n = |V |
vertices and |E| edges, the objective is to partition the graph
vertices into two sets such that the number of edges connecting
vertices in different sets is maximized.

The cost function for MaxCut is

C = 1

2

∑
(i,j )∈E

(1 − zizj ), (10)

where zi and zj are binary variables associated with the vertices
in V which assume a value +1 or −1 depending on which of the
two partitions defined by the cut is assigned. The Hamiltonian
corresponding to this cost function is

HC =
∑

〈uv〉∈E

Cuv, Cuv = 1

2

(
I − σ z

uσ z
v

)
. (11)

The expectation value of HC in the QAOA decomposes as

F (γ ,β) =
∑

〈uv〉∈E

〈Cuv〉, (12)

where 〈Cuv〉 := Tr[CuvUρ0U
†]. As 〈Cuv〉 � 1, the expected

approximation ratio is lower bounded as

r � F (γ ,β)

|E| . (13)

Theorem 1. For the QAOA with p = 1, for each edge 〈uv〉,

〈Cuv〉 = 1
2 + 1

4 (sin 4β sin γ )(cosdu γ + cosdv γ )

− 1
4 (sin2 2β cosdu+dv−2λuv γ )(1 − cosλuv 2γ ), (14)

where du + 1 and dv + 1 are the degrees of vertices u and v,
respectively, and λuv is the number of triangles in the graph
containing an edge 〈uv〉.

See Appendix A for a proof. The theorem implies that for
p = 1 the expectation value of any edge 〈Cuv〉 depends only on
the parameters (du,dv,λuv). Then the overall expectation value
is F (γ,β) = ∑

(d1,d2,λ)〈Cuv〉χ (d1,d2,λ), where the summation
is taken over distinct subgraphs (d1,d2,λ) and χ is the multi-
plicity of the subgraph, i.e., the number of times the subgraph
appears in G. Thus, for an arbitrary graph the expectation value
F (γ,β) may be efficiently computed classically, while to find
an actual bit string realizing an approximate solution, quantum
computation resulting in the quantum state U |ψ0〉 followed by
measurement is required.

Corollary 1. For a triangle-free (d + 1)-regular graph, the
expectation value of the QAOA1 is

F (γ,β) = |E|
2

(1 + sin 4β sin γ cosd γ ), (15)

with the maximum

F ∗ = |E|
2

[
1 + 1√

d + 1

(
d

d + 1

)d/2]
=: Creg

max(d). (16)

For any such graph, one optimal pair of angles is (γ,β) =
(arctan(1/

√
d),π/8). Notice that ( d

d+1 )d > 1
e
, the optimal ap-

proximation ratio, is lower bounded as

r >
1

2

(
1 + 1√

e

1√
d + 1

)
. (17)

MaxCut in the case of a regular graph of degree 2, so the graph
is a ring, is termed the ring of disagrees in Ref. [1]. In this case,
for even n, the optimal partition is simply to include every other
vertex in one set and the rest in the other set, hence Cmax = n.
Equation (16) yields the approximation ratio 0.75 at (β,γ ) =
(π/8,π/4), reproducing the results in [1]. For triangle-free 3-
regular graph (d = 2), the ratio is 0.692, also in agreement
with the results of Ref. [1] for a general 3-regular graph.

Because C
reg
max(d) > |E|/2 holds for all d and the values

are concentrated around the expectation, the QAOA1 beats
random guessing for arbitrary triangle-free regular graphs. For
an arbitrary triangle-free graph with maximum vertex degree
d + 1, applying the value to the right-hand side of Eq. (16)
gives a lower bound to F ∗.

While it is straightforward to extend the analysis in the
proof of Theorem 1 to the QAOA of higher levels, the number
of terms quickly becomes prohibitive for direct calculation;
many more noncommuting terms coming from the UC’s and
UB’s must be retained and carried through the calculation.
The expectation value of a given edge will also depend on
its local graph topology, which becomes difficult to succinctly
characterize as p increases. (See Appendix C for the expression
for the ring of disagrees for p = 2.)
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IV. ANALYSIS OF THE PROBLEM OF RING OF
DISAGREES (ANTIFERROMAGNETIC CHAIN)

We now study in detail the QAOA for the ring of disagrees.
We show that analysis can be done for the QAOAp for an
arbitrary level p, extending numerical results for the small p

given in Ref. [1].

A. Formulation of the problem

The Hamiltonian for the ring of disagrees with n vertices
i.e., a one-dimensional ring of spins of spin 1/2, is H̃C =
1
2

∑n
j=1(1 − σ z

j σ z
j+1), where σ z

n+1 = σ z
1 . For convenience, we

later consider only even n, in which case the ground state of
H̃C is trivial with every pair of neighboring spins aligned in
antiparallel fashion, corresponding to Cmax = n. The approxi-
mation ratio is then r = F ∗/n.

To simplify the derivation and also to conform to the
convention in physics to minimize instead of maximize, we
drop the constant and rescale H̃C to be

HC =
∑

j

σ z
j σ z

j+1, (18)

which defines the operator UC(γ ) given in Eq. (3). The initial
state of the system is prepared [Eq. (5)] and the algorithm is
specified by the QAOA circuit of Eq. (6). Rewriting Eq. (8)
taking into account our simplification, the approximation ratio
for F with the parameters (β,γ ) is

r = 1

2

(
1 − F ∗

n

)
. (19)

The problem is now to determine the parameters (β,γ ) that
create a quantum state that approximately minimizes the
expectation value of HC (and thus maximizes r). The relation
between the angles and the expectation values used in the
remainder of this paper and the ones in Ref. [1] (terms with
a tilde) is γ = −γ̃ /2, β = β̃, and F̃ (γ̃ ,β̃) = (n − F (γ ,β))/2,
while the approximation ratio is the same.

B. Fermionic representation

We show that using a fermionic representation, the pa-
rameter setting of the QAOA reduces to finding the optimal
quantum control of an ensemble of independent spins (spin
1/2). Since spin operators do not obey canonical commutation
relations, transforming them into bosonic or fermionic opera-
tors is often useful for analysis. Such transformations enable
the application of standard techniques in condensed matter
physics such as diagrammatic perturbation. The algebra of the
original spin operators must be preserved in the mappings. The
Jordan-Wigner transformation [11,12] maps the spin operators
to fermions with a long-range phase factor.

We apply the Jordan-Wigner transformation [11,12]

aj = S−
j e−iφj , (20)

a
†
j = S+

j eiφj , (21)

where S+
j = (σy

j + iσ z
j )/2, S−

j = (σy

j − iσ z
j )/2, and the phase

factor φj = π
∑

j ′<j (σx
j ′ + 1)/2 is long ranged involving all

operators for j ′ < j . The operators aj and a
†
j can be verified

to obey the fermion anticommutation relations {aj ,a
†
j ′ } =

aja
†
j ′ + a

†
j ′aj = δj,j ′ and {aj ,aj ′ } = {a†

j ,a
†
j ′ } = 0. The inverse

transformation reads

S+
j = a

†
j e

−iφj , (22)

S−
j = aj e

iφj , (23)

σx
j = 2a

†
j aj − 1 (24)

and the phase factor in the fermionic representation is φj =
π

∑
j ′<j a

†
j ′aj ′ . The Jordan-Wigner transformation is a con-

venient tool for one-dimensional spin systems, particularly
for nearest-neighbor couplings because in products of the
neighboring spin operators like S+

j S−
j+1, the phase factors drop

out, leaving a concise expression with short-range coupling.
The Jordan-Wigner transformation for our problem works

for both even and odd n. We will work on this general case in
this section. Applying the transformation to the problem and
mixing Hamiltonians, we get

HB =
n∑

j=1

(2a
†
j aj − 1), (25)

HC =
n−1∑
j=1

a
†
j aj+1 + ajaj+1 − (a†

Na1 + aNa1)G + H.c.,

(26)

where we introduce the gauge operator G =
exp[iπ

∑n
l=1 a

†
l al] = (−1)n

∏n
j=1 σx

j , a necessary treatment
for periodic boundary conditions. In the standard QAOA
setting, the initial state is an eigenstate of G with eigenvalue 1
for even n and −1 for odd n. The operator G is a constant of
motion since it commutes with both HB and HC , so the value
of G remains constant throughout the evolution. Therefore,
for even n, the sign of the j = n term in HC is different from
the others and requires a special treatment.

We further introduce a phase factor to unify the expression,
bj = aj e

−ijπ/n. The Hamiltonians then read

HB =
n∑

j=1

(2b
†
j bj − 1), (27)

HC = eiπ/n

n∑
j=1

(b†j bj+1 + e2ijπ/nbjbj+1) + H.c. (28)

Upon applying a Fourier transformation to bj (to aj for odd
n),

ck = 1√
n

n∑
j=1

eωjkbj , ω = 2iπ/n, (29)

the driver and the problem Hamiltonians in the momentum
space take the form

HB =
n−1∑
k=0

(2c
†
kck − 1), (30)

HC = 2
�(n−1)/2�∑

k=0

cos θk(c†kck + c
†
−kc−k)

+ i sin θk(ckc−k + c
†
kc

†
−k) + HC,0, (31)

022304-4



QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM … PHYSICAL REVIEW A 97, 022304 (2018)

where for even n,

HC,0 = 0,

θk = (2k + 1)π/n,

c−k ≡ cn−1−k,

(32)

and for odd n,

HC,0 = −c
†
0c0,

θk = 2kπ/n,

c−k ≡ cn−k.

(33)

Since in Eq. (31) ck and c
†
k are solely coupled to c−k and c

†
−k , we

only need to solve a set of 2-fermion problems. Because both
HB and HC preserve the parity of the fermionic excitations, we
need to consider only the ground state and the double excited
state of the two fermions. For each k, in this two-dimensional
subspace the driver and the problem Hamiltonians become 2σ z

and 2σ z cos θk + 2σx sin θk , respectively.
In summary, after transforming the problem to a fermionic

representation, the original many-body Hamiltonian of a ring
of n spins reduces to an ensemble of n/2 noninteracting
spins of spin 1/2, which we would refer to as pseudospins
to distinguish them from spins in the original problem. The
governing Hamiltonians read:

HB =
�(n−1)/2�∑

k=0

HB,k,

HC =
�(n−1)/2�∑

k=0

HC,k,

(34)

each term taking the form

HB,k = 2σ z, (35)

HC,k = 2(cos θkσ
z + sin θkσ

x) = 2k̂ · σ̂ , (36)

where the unit vector k̂ = (sin θk,0, cos θk).
The initial state for each pseudospin is the ground state of

−HB,k , i.e., ρ0 = |1〉〈1| = (1 + σ z)/2, and the optimization is
reduced to minimize

F (γ ,β) =
�(n−1)/2�∑

k=0

Fk(γ ,β), (37)

where

Fk(γ ,β) = 1
2 [HC,kUkσ

zU
†
k ] (38)

= Tr[k̂ · σ̂Ukσ
zU

†
k ]. (39)

Hereafter, for notational simplicity, we drop the subscript for
Uk and use U to refer to the evolution operator for the single
pseudospin. Now U = UB(βp)UC(γp) · · · UB(β1)UC(γ1) con-
sists of only single-spin operators

UB(βl) = exp[−i2βlσ
z], (40)

UC(γl) = exp[−i2γlk̂ · σ̂ ] (41)

for l = 1,2, . . . ,p.

C. Size dependence of the approximation ratio

For sufficiently large problem sizes, the approximation ratio
of the QAOA for the problem of ring of disagrees of even n is
independent of the problem size. This property has been shown
in Ref. [1] using an operator reduction argument. The specific
value of the approximation ratio for the QAOAp was conjec-
tured to be (2p + 1)/(2p + 2) therein. Here we show that this
size-independent feature comes naturally out of the picture of
single-spin rotations. Each UC(γ ) = cos(2γ ) − i sin(2γ )k · σ̂

can contribute a trigonometric function of θk . Thus, Fk takes
the form

Fk =
2p+1∑
l,l′ = 0

l + l′ � 2p + 1

fl,l′ (γ ,β) sinl θk cosl′ θk, (42)

where the (fl,l′ ) are real coefficients independent of θk . Since
each sin θk accompanies one σx , using properties of Pauli
matrices Tr[σασα′] = 2δα,α′ , the coefficient fl,l′ (γ ,β) is zero
for odd l. Recall that θk = (2k − 1)π/n. When we consider F ,

F =
2p+1∑
l,l′ = 0

l + l′ � 2p + 1

(
fl,l′ (γ ,β)

n/2∑
k=1

sinl θk cosl′ θk

)
(43)

for even l, we have
∑n/2

k=1 sinl θk cosl′ θk = 0 for odd l′. There-
fore, we need to keep only terms with even l and even l′,
reducing Eq. (42) to a trigonometric polynomial of 2θk of
degree p,

Fk =
p∑

s=0

d2s(γ ,β) cos(2sθk), (44)

where d2s(γ ,β) is a coefficient independent of k. See the
analysis for p = 1 and 2 in Sec. IV E for an example.

Equation (44) takes the form of the Fourier transformation
of series d2s with a cutoff at order p. For any specific parameter
values (γ ,β), for n � 2p + 2, the constant component d0 =∑

k Fk/n:

F = n

2
d0(γ ,β). (45)

Since the n dependence of Fk lies in θk and d0 is θk independent,
the expectation value F , and furthermore the approximation
ratio of the QAOA, is independent of n. For an arbitrary level
p, simplifying Eq. (39) to get the specific trigonometrical
function form can be done easily. Finding parameters (γ ,β)
that optimize F appears to be highly nontrivial.

D. Symmetry and criticality-constrained manifolds

In this section, we show that, based on symmetries in
the pseudospin rotations, we can identify submanifolds in
the search space that admit extrema. In later sections, we
provide numerical evidence that the global minima always lie
in these submanifolds. This evidence suggests that one can
focus the search within the identified submanifolds and thus
reduce the search effort.
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1. Physics: Rotations of the Bloch vectors

For each pseudospin, Eq. (39) can be expressed as

Fk(γ ,β) = 4Fk − 2, (46)

where

Fk ≡ Tr[ρk̂UρzU
†], (47)

with ρk̂ = 1
2 (1 + k̂ · σ̂ ) and ρz = 1

2 (1 + σ z). On the Bloch
sphere, ρk̂ and ρẑ can be interpreted as the density matrices
for the Bloch vectors in the k̂ direction and ẑ direction, respec-
tively. Equation (47) represents a single pseudospin, initialized
along the ẑ direction, then rotated about the k̂ axis for angle 4γ1,
rotated about ẑ for 4β1, . . . , rotated about k̂ for 4γp, rotated
about ẑ for 4βp, and measured along k̂. The fidelity Fk mea-
sures the overlap between the final state and the state ρk̂ , whose
Bloch vector is along the direction k̂. Due to the periodic-
ity in rotation, F (4γ + 2lπ,4β + 2l ′π ) = F (γ ,β) ⇒ F (γ +
l · π/2,β + l ′ · π/2) = F (γ ,β), where l,l ′ ∈ Zp. Hence the
search space can be limited to βk,γk ∈ [0,π/2] for k =
1,2, . . . ,p.

The QAOA on the ring of disagrees thus corresponds to
a physical picture in optimal quantum control, albeit with a
specialized set of constraints. For the final average over k to get
F , we can think of the system as an ensemble of pseudospins,
each pseudospin k experiencing a constant magnetic field along
k̂ (the quantization field) and the system controlled by applying
a strong uniform magnetic field along ẑ in the bang-bang style.
Specifically, when the field along ẑ, �Bz, is on, the quantization
field is negligible and all pseudospins are rotated about ẑ by the
same angle 4γp; when �Bz is paused, each pseudospin evolves
freely, i.e., rotates about its own quantization axis k̂ to pick up
an angle 4βp. After the whole control sequence is applied, the
overall magnetization along ẑ, F = ∑

k〈σ z
k 〉, is measured. The

goal of the quantum control is to design a time sequence (γ ,β)
so that F is minimized.

2. Criticality-constrained submanifolds

Since the trace operator preserves cycling and the roles of
ẑ and k̂ in Eq. (47) are interchangeable, after initializing the
pseudospin along the k̂ direction, the same result would be
obtained by rotating about the ẑ axis by an angle −4βp, rotating
about k̂ by −4γp, etc., rotating about ẑ by −4β1, rotating about
k̂ by −4γ1, and measuring along ẑ.

Manifold 1. Due to equivalence in the two views, it must
hold that

Fk(γ ,β) = Fk(−β ′, − γ ′), (48)

where

γ = (γ1,γ2, . . . ,γp−1,γp), (49)

β = (β1,β2, . . . ,βp−1,βp), (50)

γ ′ = (γp,γp−1, . . . ,γ2,γ1), (51)

β ′ = (βp,βp−1, . . . ,β2,β1). (52)

This can be verified with the help of a π rotation about the axis
ẑ + k̂; see Appendix B for a proof. Consider the manifold that

FIG. 1. Schematic for the evolution trajectory of spin k on the
Bloch sphere under the QAOA1 for arbitrary θk > θ∗

1 = 2π/3. The
trajectory of the QAOA1 is shown as arcs in solid lines.

satisfies

γi + βp+1−i = 0 for i = 1,2, . . . ,p. (53)

It has a special property: The gradient of the function Fk(γ ,β)
is constrained to lie tangent to the manifold. Therefore, critical
points in the manifold are critical points of the whole function.

For p = 1, the relation (53) can also be proven to be a
necessary condition for the global minima. On the Bloch sphere
for a pseudospin, the rotation trajectory has to switch at the
intersection of the two circles on the Bloch sphere which are
perpendicular to one axis and passes through the vector end
of the other pseudospin, as illustrated in Fig. 1. Because the
intersection lies in the plane spanned by ŷ and the bisector of
−ẑ and k̂, it is obvious that γ1 + β1 = 0, i.e., the relation (53)
has to be observed.

Manifold 2. Equation (47) actually holds for ρk̂ = 1
2 (1 ±

k̂ · σ̂ ) and ρz = 1
2 (1 ± σ z). The + (−) sign corresponds to the

picture when the initial and final states are parallel (antiparallel)
with respect to the rotation axes, respectively. Comparing these
two pictures, since rotations about any axes ±v̂ by the same
angle are inverses of each other, R̂(v̂)(α) = R̂

†
(−v̂)(α), it must

hold that

Fk(γ ,β) = Fk(β ′,γ ′). (54)

Equation (54) defines another manifold

γi − βp+1−i = 0 for i = 1,2, . . . ,p (55)

with constrained gradient.
Equations (48) and (54) further indicate that Fk is an even

function of the angle sequence Fk(γ ,β) = Fk(−γ , − β) and
accordingly so is F ,

F (γ ,β) = F (−γ , − β). (56)

In our numerical search, the minima of F were always
contained in the manifold defined by Eq. (53) while the maxima
of F always lie in the manifold (55).
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FIG. 2. The QAOA1. The expectation value F/n is shown as a
function of γ1 and β1.

E. Illustration of the QAOA1 and QAOA2

We use the QAOA1 and QAOA2 to illustrate the results
of the symmetry and size dependence of the optimization
discussed above. Numerical results for higher levels (p > 2)
are shown in Appendix C.

For the QAOA1, the unitary evolution operator is U =
e−i2β1σ

z

e−i2γ1 k̂·σ̂ . Note that if a term f (k) in Fk satisfies
f (n/2 + 1 − k) = −f (k), then f (k) would vanish in F

through the summation over k; also noting the properties of
the Pauli matrices, Tr[σασα′ ] = 2δα,α′ , one arrives at

F = 2 sin(4β) sin(4γ )
∑

k

sin2 θk (57)

=
{
n sin(4β) sin(4γ ) for n = 2
n
2 sin(4β) sin(4γ ) for n > 2.

(58)

The optimal angles are (γ ∗
1 ,β∗

1 ) = π × (3/8,1/8) or π ×
(1/8,3/8).

For n = 2, the optimal angles correspond to F ∗ = −n,
while for a larger problem size, F ∗ = −n/2. This reflects the
property that the QAOAp suffices to perfectly optimize the ring
for n � 2p, but for n � 2p + 2 the optimization ratio is a fixed
constant smaller than 1.

Equation (58) is plotted in Fig. 2. Along the symmetry line
β1 + γ1 = 0, the critical points are global minima and saddle
points, while along the symmetry line β1 − γ1 = 0, the critical
points are global maxima and saddle points.

For level-2, the evolution operator reads

U = e−i2β2σ
z

e−i2γ2σ̂ ·k̂e−i2β1σ
z

e−i2γ1σ̂ ·k̂ . (59)

The expectation value F as a trigonometric function of (γ ,β)
is shown in Appendix C. Numerically found optimal angles
are (γ ∗

1 ,β∗
1 ,γ ∗

2 ,β∗
2 ) = π × (0.3956,0.1978,0.3022,0.1044) or

π × (0.2052,0.1026,0.3974,0.2948). In both optimal angle
sets, 4(γ ∗

1 + β∗
2 ) and 4(γ ∗

2 + β∗
1 ) are integer multipliers of 2π ,

thus both optima lie in the manifold defined by Eq. (53).

γ1/π
0 0.1 0.2 0.3 0.4 0.5

β
1/

π

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.6

-0.4

-0.2

0

0.2

0.4

F/n

FIG. 3. Landscape of F/n for the QAOA2, in the submanifold
(53). The four darkest spots indicate the global minima F ∗/n =
−2/3. The origin (0,0) is a saddle point. No local minima are
observed. The contour is symmetric with respect to (γ1,β1) =
(π/4,π/4), reflecting the symmetry in Eq. (56) (and the period π/2).

F. Discussion: Controllability and optimality

The optima of F for the QAOA level p = 1−10 are
tabulated in Appendix C. The optimal angles were obtained
through a numerical gradient descent search in the submanifold
(53). The evaluation for Fk in each step is realized as Eq. (39),
which only involves 2p multiplications of 2 × 2 matrices, and
summation over k gives F , so optimal angles for higher p could
be computed easily if desired.

Starting with a random initial guess of (γ ,β), the search
(with sufficiently small steps) always converges to a global
minimum. This behavior suggests that at least within the sub-
manifold, all local minima are global minima. For example, for
p = 2, there are two free parameters in the submanifold, which
we choose to be γ1 and β1. Figure 3 shows the landscape of the
expectation value F . The four minima (darkest spots) observed
in one period (γ1,β1, ∈ [0,π/2]) are all global minima.

This result calls for an extended understanding of land-
scapes of quantum control. In quantum control theory, it
has been shown that assuming controllability, i.e., evolution
between any two states is achievable via the set of controls
given, the landscape of the infidelity F over the space of
parameter values (γ ,β) generically has only global minima
[13–15]. Without controllability, the quantum control land-
scape in general is rugged and admits local minima [16].

In the case of the QAOA, the controls are constrained in a
specific way: If an infinite number of controls is allowed, i.e.,
p → ∞, then the system is controllable. The finite number of
control steps dictated by the level p limits the controllability.
For more general graphs, however, Eq. (14) shows that for the
QAOA on MaxCut, even for p = 1, there exist local optima in
the space of parameter values. For the special case of the ring
of disagrees, the system is still not controllable, however, our
numerical results indicate that, at least within the submanifold
(53), all local minima are global minima.
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V. CONCLUSION

We studied parameter setting for the QAOA on MaxCut.
For the QAOA1, we extended the results in Ref. [1], providing
an analytical expression for general graphs. As a corollary,
for triangle-free graphs with fixed vertex degree, the optimal
angles for the driver Hamiltonian can be directly read off
while the optimal angles for the problem Hamiltonian show
a dependence on the vertex degree. For higher level p, direct
analysis of the operator expansion becomes cumbersome,
providing further evidence that more advanced parameter
setting techniques need to be developed.

For a special case of MaxCut, the ring of disagrees, which
corresponds to a one-dimensional antiferromagnetic spin ring,
we analyze the QAOAp, for arbitrary p, using a fermionic
representation. Applying the Jordan-Wigner transformation
transforms the evolution of an n-qubit system under the QAOA
to a set of n/2 independent evolutions within two-dimensional
subspaces. The parameter setting problem thus corresponds
to finding optimal control parameters for an ensemble of n/2
noninteracting pseudospins of spin 1

2 . From this treatment we
obtain an analytical expression for any p and an easy numerical
search for the corresponding optimal angles.

The fermionic picture also enables us to explain symmetries
in the optimal parameters, suggesting a means to further reduce
the effort required to find optimal parameters by restricting
the search to manifolds defined by these symmetries. The
specific symmetry in the problem of ring of disagrees has
its roots in the equal footing of the action of the driver and
the problem Hamiltonians: Each corresponds to a single-spin
rotation. We observed numerically that within the parameter
space, all minima are global minima. While such a “no-trap”
character of a quantum control landscape can be explained
given controllability, the structure of the QAOA for finite p

often does not guarantee controllability. Future research that
reveals the underlying theory may shed further light on the
control landscape and the structure of the QAOA and inspire
ways to simplify or improve the algorithm.

In Ref. [1] it is conjectured that the best achievable approx-
imation ratio for the QAOAp for a ring of size n � 2p + 2 is
(2p + 1)/(2p + 2). The fermionic view we have presented, by
simplifying the analysis, may be a useful step toward a proof,
but for the moment the conjecture remains open. Further work
should examine how realistic noise affects the performance.
While for certain simple noise models, including control noise
affecting the times for which the Hamiltonians are applied, can
be analyzed within the model, for other cases a combination
of more sophisticated analytical tools and experimentation on
quantum hardware will be needed to evaluate performance
under noise. The simplicity of the QAOA on the ring makes
it a promising target for implementation on early quantum
processors.
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APPENDIX A: PROOF OF THEOREM 1

Proof of Theorem 1. For p = 1, only terms corresponding
to neighbors of u and v can contribute to the expectation of
Cuv [1]. We thus partition our objective function as

C = 1
2

(
I − σ z

uσ z
v

) + Cu + Cv + C̄,

where Cu is the d-many constraints involving only vertex u but
not v and Cv is the e-many constraints involving only v. The
remaining constraints C̄ do not contribute to the expectation
value 〈Cuv〉. For simplicity, we write (d,e,f ) = (du,dv,λuv).

Let c = cos 2β and s = sin 2β. We have

eiβBσ z
uσ z

v e−iβB

= c2σ z
uσ z

v + sc
(
σy

u σ z
v + σ z

uσ y
v

) + s2σy
u σ y

v . (A1)

The first term σ z
uσ z

v commutes with C and does not contribute
to 〈Cuv〉. We conjugate each remaining term separately by eiγC .
Let c′ = cos γ and s ′ = sin γ . We have

Tr
[
ρ0e

iγCσ y
u σ z

v e−iγC
]

= Tr

[
ρ0

(
Ic′ − is ′σ z

uσ z
v

) d∏
i=1

(
Ic′ − is ′σ z

uσ z
wi

)
σy

u σ z
v

]
.

(A2)

Expanding the product on the right gives a sum of tensor
products of Pauli operators. Clearly, the only term that can con-
tribute is proportional to σ z

uσ z
v ∗ I⊗d ∗ σ

y
u σ z

v = −iσ x
u . Thus we

have

Tr
[
ρ0e

iγCσ y
u σ z

v e−iγC
] = Tr

[
ρ0(−i)s ′c′d( − iσ x

u

)] = −s ′c′d .

(A3)

By symmetry, we have Tr[ρ0e
iγCσ z

uσ
y
v e−iγC] = −s ′c′e. Ob-

serve that these terms are independent of the number of mutual
neighbors (triangles) of u and v. The next term is

Tr
[
ρ0e

iγCσ y
u σ y

v e−iγC
] = Tr

[
e2iγCue2iγCvσ y

u σ y
v

]

= Tr

⎡
⎣ d∏

i=1

(
c′I − is ′σ z

uσ z
wi

) e∏
j=1

(
c′I − is ′σ z

v σ z
wj

)
σy

u σ y
v

⎤
⎦.

(A4)

The simplest term that contributes in this case is
Tr[ρ0f c′d+e−2(−is ′)2(−iσ x

u )(−iσ x
v )] = f c′d+e−2s ′2. Corre-

sponding to the triangles of 〈uv〉, in the above product we
have f -many distinct values i such that wi = wj . As σ z

uσ z
wi

∗
σ z

uσ z
wi

= I , if f > 2 then higher-order terms depending on
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TABLE I. Optimal angles for different levels of the QAOA. Angles are in units of π radians. The gradient descent search is implemented
with the optimal angles for level p set to be the initial guess for level p + 1. The arbitrary initial guess also always converges to a global
minimum of F (γ ,β) in the submanifold (53). Multiple sets of optimal angles exist for p � 2; only one of them is shown for each level.

p r F∗/n γ1 β1 γ2 β2 γ3 β3 γ4 β4 γ5 β5

1 3/4 −1/2 0.1250
2 5/6 −2/3 0.2052 0.1026
3 7/8 −3/4 0.2268 0.1888 0.0918
4 9/10 −4/5 0.2357 0.2161 0.1791 0.0850
5 11/12 −5/6 0.2403 0.2282 0.2094 0.1724 0.0802
6 13/14 −6/7 0.3035 0.1639 0.2506 0.2835 0.0794 0.2409
7 15/16 −7/8 0.2303 0.1623 0.3468 0.2690 0.1042 0.2397 0.1599
8 17/18 −8/9 0.2445 0.1638 0.2839 0.3484 0.1539 0.1530 0.2581 0.1291
9 19/20 −9/10 0.1929 0.1648 0.3307 0.3016 0.1551 0.2538 0.2174 0.1089 0.3117
10 21/22 −10/11 0.2208 0.1374 0.3098 0.2974 0.2702 0.1205 0.3148 0.1904 0.1423 0.2572

the number of triangles f will contribute. For example, the
next-order terms will result from three pairs of (σ z

uσ z
wi

,σ z
uσ z

wi
)

and hence be proportional to s ′6. Thus we have

Tr
[
ρ0

(
eiγCσ y

u σ y
v e−iγC

)]
=

(
f

1

)
c′d+e−2s ′2 +

(
f

3

)
c′d+e−6s ′6

+
(

f

5

)
c′d+e−10s ′10 + . . .

= c′d+e−2f

f∑
i=1,3,5,...

(
f

i

)
(c′2)f −i(s ′2)i . (A5)

To sum this series, recall the binomial theorem, which we may
split into even and odd sums as

f∑
i=0,2,...

(
f

i

)
af −ibi +

f∑
i=1,3,...

(
f

i

)
af −ibi

=
f∑

i=0

(
f

i

)
af −ibi = (a + b)f , (A6)

which also gives

f∑
i=0,2,...

(
f

i

)
af −ibi −

f∑
i=1,3,...

(
f

i

)
af −ibi

=
f∑

i=0

(−1)i
(

f

i

)
af −ibi = (a − b)f (A7)

and hence
f∑

i=1,3,...

(
f

i

)
af −ibi = 1

2 [(a + b)f − (a − b)f ]. (A8)

Thus the above sum becomes
f∑

i=1,3,...

(
f

i

)
(c′2)f −i(s ′2)i = 1

2 (1 − cosf 2γ ), (A9)

which yields

Tr
[
ρ0

(
eiγCσ y

u σ y
v eiγC

)] = 1
2c′d+e−2f (1 − cosf 2γ ). (A10)

Putting this all together, we have

〈Cuv〉 = Tr[ρ0e
iγCeiβBCuve

−iβBe−iγC]

= 1

2
− sc

2
Tr

[
ρ0e

iγC
(
σy

u σ z
v + σ z

uσ y
v

)
e−iγC

]

− s2

2
Tr

[
ρ0e

iγCσ y
u σ y

v e−iγC
]

= 1

2
+ 1

2
scs ′(c′d + c′e) − 1

4
s2c′d+e−2f (1 − cosf 2γ ).

(A11)
�

4γ
1

4β
1

4γ
2

4β
2

4γ
3

4β
3

4γ
4

4β
4

4γ
5

4β
5

p = 1

p = 10

π/2

π 0

3π/2

FIG. 4. Optimal angles in the submanifold defined by Eq. (53).
The optimal points are plotted on the complex plane with angles
(4γ ,4β) as the argument and the radius given by the level p = 1
to p = 10 from the inner to the outer circles.
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APPENDIX B: PROOF OF THE SYMMETRY
RELATION (48)

We prove Eq. (48), Fk(γ ,β) = Fk(−β ′, − γ ′), where, as
before, γ = (γ1,γ2, . . . ,γp−1,γp), β = (β1,β2, . . . ,βp−1,βp),
γ ′ = (γp,γp−1, . . . ,γ2,γ1), and β ′ = (βp,βp−1, . . . ,β2,β1).

Proof. We consider a unitary operator R = cos θ
2 σ z +

sin θ
2 σx which rotates a Bloch vector about the axis k̂ + ẑ by

π . Noting that R† = R, R2 = 1, and

RσzR = k̂ · σ̂ ,

Rk̂ · σ̂R = σ z,

RUB(β)R = UC(β),

RUC(γ )R = UB(γ ),

(B1)

we have

RUR = RUB(βp)RRUC(γp)R · · · RUB(β1)RRUC(γ1)R

= UC(βp)UB(γp) · · · UC(β1)UB(γ1)

= [UB(−γ1)UC(−β1) · · · UB(−γp)UC(−βp)]†

= U ′†, (B2)

where U ′ ≡ U (−β ′, − γ ′). Inserting R2 = 1 in Fk we get

Fk(γ ,β) = Tr[(k̂ · σ̂ )UσzU †]

= Tr[R(k̂ · σ̂ )RRURRσzRRU †R]

= Tr[σ zRUR(k̂ · σ̂ )RU †R]

= Tr[σ zU ′†(k̂ · σ̂ )U ′]

= Tr[(k̂ · σ̂ )U ′σ zU ′†]

= Fk(−β ′, − γ ′). (B3)

�

APPENDIX C: DETAILED RESULTS FOR p = 2 AND HIGHER

For p = 2, terms that are nonvanishing to F are

F

n
= 1

64
[−7 cos(4β1 + 4β2 + 4γ1 + 4γ2) − 6 cos(4β1 + 4β2 + 4γ1)

+ 3 cos(4β1 + 4β2 − 4γ1 + 4γ2) + 4 cos(4β1 + 4β2 + 4γ2)

+ 3 cos(4β1 − 4β2 + 4γ1 + 4γ2) − 6 cos(4β1 − 4β2 + 4γ1)

− 3 cos(4β1 − 4β2 − 4γ1 + 4γ2) + 4 cos(4β1 + 4γ1 + 4γ2)

− 4 cos(4β1 + 4γ1) − 4 cos(4β1 + 4γ2) − 3 cos(−4β1 + 4β2 + 4γ1 + 4γ2)

+ 6 cos(−4β1 + 4β2 + 4γ1) + 3 cos(−4β1 + 4β2 − 4γ1 + 4γ2)

+ 7 cos(−4β1 − 4β2 + 4γ1 + 4γ2) + 6 cos(−4β1 − 4β2 + 4γ1)

− 3 cos(−4β1 − 4β2 − 4γ1 + 4γ2) − 4 cos(−4β1 − 4β2 + 4γ2)

− 4 cos(−4β1 + 4γ1 + 4γ2) + 4 cos(−4β1 + 4γ1) + 4 cos(−4β1 + 4γ2)

− 6 cos(4β2 + 4γ1 + 4γ2) − 6 cos(4β2 − 4γ1 + 4γ2) − 4 cos(4β2 + 4γ2)

+ 6 cos(−4β2 + 4γ1 + 4γ2) + 6 cos(−4β2 − 4γ1 + 4γ2) + 4 cos(−4β2 + 4γ2)]. (C1)

If limited in the submanifold (53),

F

n
= 1

64
[−2 cos(8β1) + 3 cos(8β1 + 8γ1) − 12 cos(4β1 + 8γ1)

− 8 cos(4β1 + 4γ1) + 12 cos(4β1 − 8γ1) + 8 cos(4β1 − 4γ1)

+ 7 cos(8β1 − 8γ1) − 8 cos(8β1 − 4γ1) + 6 cos(8γ1) + 8 cos(4γ1) − 14]. (C2)

In Table I we show numerical values for optimal angles for higher QAOA levels in the manifold (53) (multiple optima were found
for p � 2; we show only one for each p). The same sets of angles are also plotted on the circles in Fig. 4.
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