
PHYSICAL REVIEW A 97, 022303 (2018)

Quantum machine learning with glow for episodic tasks and decision games

Jens Clausen and Hans J. Briegel
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria

(Received 5 July 2017; published 5 February 2018)

We consider a general class of models, where a reinforcement learning (RL) agent learns from cyclic interactions
with an external environment via classical signals. Perceptual inputs are encoded as quantum states, which
are subsequently transformed by a quantum channel representing the agent’s memory, while the outcomes of
measurements performed at the channel’s output determine the agent’s actions. The learning takes place via
stepwise modifications of the channel properties. They are described by an update rule that is inspired by the
projective simulation (PS) model and equipped with a glow mechanism that allows for a backpropagation of
policy changes, analogous to the eligibility traces in RL and edge glow in PS. In this way, the model combines
features of PS with the ability for generalization, offered by its physical embodiment as a quantum system. We
apply the agent to various setups of an invasion game and a grid world, which serve as elementary model tasks
allowing a direct comparison with a basic classical PS agent.

DOI: 10.1103/PhysRevA.97.022303

I. INTRODUCTION

If we consider the development of new technologies as
a collective learning process, we can distinguish between
different interlaced processes. While basic research focuses on
exploration characterized by a search for potential alternatives
to established methods, the more promising an approach
appears, the more likely it becomes subject to subsequent
exploitation, where it is optimized and matured with the
ultimate hope to supersede what is available. Examples of
explorative activity are early efforts to solve problems by
artificial intelligence (AI), such as inventing unconventional
heuristic techniques. Interest in AI has recently been renewed
[1,2], which may be a consequence of new approaches to
computation [3–6] as well as improved capacities of classical
computing and networking. The present work aims at drawing
a connection between the recently suggested scheme of PS
[7,8] and quantum control theory [9–12].

We consider a class of schemes, where a quantum agent
learns from cyclic interactions with an external environment
via classical signals. The learning can be considered as an
internal quantum navigation process of the agent’s “hardware”
or “substrate” that forms its memory of past experience. For
notational convenience, we describe the memory operation
as a unitary Û involving (information-carrying and other)
controllable and uncontrollable degrees of freedom (such as a
“bath”), where the latter are not necessarily identical with the
environment, on which the agent operates. While conceptually
the memory may hence be seen as an open quantum system
[13], the numerical examples considered in the present work
are restricted to closed-system dynamics. This navigation of
agent memory Û must be distinguished from the evolution
of quantum states in which, following external or internal
stimulus, the memory is excited [7,14]. Learning as an internal
navigation process corresponds to the colloquial notion of
a learner desiring to quickly “make progress” rather than
“marking time.” For the agent’s internal dynamics, we talk

of a navigation process rather than a navigation problem
that is to be solved, since ultimately the agent responds to
its environment that is generally unknown and subject to
unpredictable changes.

While the proposed PS model is characterized by an
episodic and compositional memory (ECM), we here ignore
the clip network aspect and restrict attention to a parameter
update that is motivated from the basic scheme [7,8], which
we apply to simple learning tasks involving an agent equipped
with a quantum memory. We specifically reconsider some
of the examples discussed in Refs. [7,15,16] in order to
investigate to what extent the results can be reproduced. A
comprehensive comparative numerical study of applications to
computer games has been carried out in Ref. [17]. In contrast
to the classical scheme, where the parameters are weights in a
clip network, we here refrain from ascribing a particular role,
they could play (e.g., in a quantum walk picture mentioned in
Ref. [7]). Here, the parameters are simply controls, although
in our examples they are defined as interaction strengths in a
stack of layers constituting the agent memory Û . This choice of
construction is, however, not essential for the main principle.
From the viewpoint of RL [18,19], classical PS considers a
type of problems, where an “agent” (embodied decision maker
or “controller”) learns from interaction with an environment
(controlled system or “plant”) to achieve a goal. The learning
consists in developing a (generally stochastic) rule, the agent’s
“policy,” of how to act depending on the situation it faces, with
the goal to accumulate “reward” granted by the environment.
In RL, the environment is anything outside of control of this
decision making. The reward could describe, for example,
pleasure or pain felt by an individual. It is generated within
the individual’s body but is beyond its control, and therefore
is considered as originating in the agent’s environment.

Another aspect is embodiment. A historical example is
application-specific classical optical computing with a 4F-
optical correlator. A more recent effort is neuromorphic
computing, which aims at a very-large-scale integration

2469-9926/2018/97(2)/022303(17) 022303-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.022303&domain=pdf&date_stamp=2018-02-05
https://doi.org/10.1103/PhysRevA.97.022303

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

(VLSI)–based physical implementation of neural networks,
whose simulation with a conventional computer architecture
is inefficient. This becomes even more crucial for quantum
systems, which may be implemented as superconducting solid-
state devices, trapped ions or atoms, or waveguide-confined
optical fields. Given the availability of a controllable quantum
system, it is hence tempting to transform quantum-state-
encoded sensory input and select actions based on measure-
ment outcomes. While the parameter update is typically done
by some standard linear temporal difference (TD) rule, the
selection of actions is in classical algorithms governed by
a separate stochastic rule that tries to balance exploration
and exploitation. This stochastic rule is described in terms
of a policy function that determines how the probabilities for
choosing the respective actions depend on the value functions
in RL, edge strengths in PS, or controls in direct policy
approaches. Examples are the ε greedy” and the “softmax”
rules. The quantum measurement here serves as a direct
physical realization of an action selection, whose uncertainty
allows us to incorporate both exploration and exploitation [20].
In our context, the resulting measurement-based (and hence
effectively quadratic) policy forms an intermediate between the
linear stochastic function used in Ref. [7] and the exponential
softmax function applied in Ref. [15]. A measurement-based
policy moreover can be tailored on demand by the way in which
classical input is encoded as a quantum state. One could, e.g.,
apply mixtures of a pure state and a maximally mixed state to
mimic an ε-greedy policy function, or one could use thermal
input states to mimic an exponential function. In contrast
to the value-function-based RL, our approach amounts to a
direct policy search, where the agent-environment interaction
employs a general state preparation → transformation →
measurement scheme that reflects the kinematic structure of
quantum mechanics.

This work is organized as follows. Section II serves to
provide some first intuition into the connection between learn-
ing and navigation through unitaries. It may be skipped in
the first instance, but becomes relevant later in the example
Fig. 7 discussed in Sec. V A 2. While Sec. III provides a
detailed description of the agent framework, Sec. IV defines
the learning rule and introduces the glow parameter. Section V
discusses two examples, namely an invasion game in Sec. V A,
where the environment provides a feedback at each cycle,
and a grid world in Sec. V B, where feedback is delayed to
the end of a multicycle episode to illustrate the role of glow.
Section VI briefly outlines how features such as internal loops
mentioned in Sec. III may be employed to empirically estimate
the gradient or instead use finite difference alternatives. A
summary and outlook is given in Sec. VII. Additional technical
details can be found in two appendixes.

II. RL AS A REWARD-DRIVEN NAVIGATION
OF THE AGENT MEMORY

Consider the specific task of mapping input states |si〉 by
means of a controllable unitary Û to outputs |ai〉. Under the
(restrictive) assumption, that for each input there is exactly one
correct output, the task is to learn this output from interaction
with an environment. In our context, the |si〉 (|ai〉) are regarded
as encoded percepts (actions), while Û acts as memory of the

learned information and can finally accomplish the mapping
as an embodied “ad hoc” computer or an “oracle,” which is
similar to adjusting a unitary as a means to solve a given task
[21].

Consider (i) the case where there is only one possible
input state |s〉. If the task is the navigation of the output state
�̂ = Û |s〉〈s|Û † by means of Û to a desired destination
state |a〉, a learning agent has to realize the maximization of
the conditional probability p(a|s) = 〈a|�̂|a〉 by tuning Û . The
intuition behind this is that p is bounded and if Û (h) depends
analytically on some control vector h, the gradient with respect
to h must vanish at the maximum of p. To give a simple
example, we assume that Û (t) depends (rather than on h) on a
single real parameter t in a continuous and differentiable way
such that it obeys the Schrödinger equation d

dt
Û = −iĤ Û with

the state boundary conditions �̂(0) = |s〉〈s| and �̂(tF) = |a〉〈a|.
This gives

dp(t)

dt
= 2Re〈a|

(d

dt
Û

)
|s〉〈s|Û †|a〉 (1)

= 2Im〈a|Ĥ �̂(t)|a〉, (2)

so that indeed

dp(t)

dt
|t=tF = 2Im〈a|Ĥ |a〉 = 0. (3)

Any algorithm that results in a Û such that p approaches 1
accomplishes this task.

Assume now that (ii) we are required to transform a given
orthonormal basis (ONB) {|si〉} into another given ONB {|ai〉}
of a vector space of same dimension, but we are not told which
state is to be transformed into which other state. We could build
a quantum device that implements some unitary ÛT such that
|ai〉 = ÛT|si〉. Preparing the system in state |si〉 and measuring
in the second basis gives outcome |ai〉. One may consider the
problem as a (trivial) learning task, namely that of an identical
mapping of the state indices i. However, if we do not know
from the beginning what kind of mapping the solution is, we
have to learn it. In our quantum device, we would tune Û until
it gives the desired measurement statistics. Inspired by Ref. [7],
we call this task “invasion game.” To solve it, we initialize the
device in states |si〉 chosen randomly from the given ONB,
while the measurement is done in the second ONB formed by
the |ai〉. The algorithm will drive Û to some unitary Û ′

2ÛTÛ1,
where Û1 (Û ′

2) are undetermined unitaries which are diagonal
in the basis {|si〉} ({|ai〉}).

If (iii) the percept states are random, this phase freedom is
removed up to a global phase. In the simplest case, we draw the
initial states of the device from an “overcomplete” basis, where
the set of all possible states is linearly dependent. For a n-level
system, this can be accomplished by (randomly) choosing n

SU(n) unitaries. During each state initialization, we then take
one ÛR from this set, a random |si〉 from our first ONB, and
then prepare the device in a state ÛR|si〉. Consequently, the
measurement is done in a transformed basis formed by the
ÛTÛRÛ−1

T |ai〉 rather than the |ai〉 themselves.
In this sense, the navigation of (i) a given input state, (ii)

a given ONB, and (iii) random states can be described as a
navigation of unitaries Û with a varying amount of freedom.
While formally, all three cases (i)–(iii) can be considered as

022303-2

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

at

st rt δht

st+1 rt+1

(̂st) Π̂(at)
Memory(ht)

Environment

Agent
planning

NO

FIG. 1. Agent-environment interaction as a feedback scheme. The
s are percepts, which initialize the agent’s memory in a quantum state
�̂(s). Choice of an action a is made by a measurement process as
described by a given POVM �̂. Depending on the rewards r given
by the environment, the memory is updated at the end of each cycle
t . The memory can also be modified by internal loops based on a
numerical objective NO (dotted line) or measurements (dash-dotted
line).

special cases of a navigation of Û (h) to a point (B11), where
a percept statistics-based fidelity (B9) becomes maximum,
practically they can be accomplished in RL by means of the
mentioned reward signal, independently of the availability of
analytic solutions. In what follows, we consider Û as a memory
of an RL agent that solves tasks arising from its interaction with
an environment.

III. A CYBERNETIC PERSPECTIVE

The scheme is depicted in Fig. 1. The agent is equipped
with some quantum channel that acts as its memory whose
properties can be modified by control parameters denoted
by a vector h. Examples of memory structures are listed in
Fig. 2. In Fig. 2 and in what follows, we refer to the memory
operation by means of some unitary Û for notational simplicity.
Since any quantum process can be treated as unitary on an
enlarged space, this is not a conceptual restriction. The agent
interacts with an external environment in discrete cycles t .
At the beginning of a cycle, the agent receives (via sensors)
some percept s, which it encodes as a quantum state �̂(s), in
which its memory is prepared. After transformation of �̂(s) by
the memory channel, a quantum measurement is performed,
where we assume for simplicity that the positive-operator-
valued measure (POVM) {�̂} describing this measurement
is fixed. Depending on the outcome of this measurement,
an action a is selected and performed on the environment
(via actuators), which completes the cycle. The environment
reacts with a new percept and a reward r , which are perceived
by the agent during the following cycle. Depending on the
reward, some adjustments are made on the control parameters,
which modify the properties of the memory channel (i.e., its
“hardware”). This feedback loop is adapted from the classical
schemes in Refs. [18] and [19], where the percepts s in Fig. 1
correspond to the states in Ref. [18]. The agent’s interaction

(a)

Ŝ ÛS Π̂S

(b)

ŜB ÛSB

Π̂S

(c)

ŜA ÛSA
Π̂A

(d)

ŜAB ÛSAB Π̂A

FIG. 2. Examples for the agent’s memory as shown in Fig. 1.
(a) Unitary evolution of the percept states, (b) open system evolution
due to interaction with a bath B, (c) composite memory with coupled
subsystems for percept (S) and action (A) variables, (d) extends panel
(c) to an open system evolution analogous to panel (b) extending panel
(a). Further ancilla systems may be added (not shown), to account for,
e.g., emotion degrees of freedom introduced in Ref. [7].

with the environment is here considered classical in the sense
that percepts, actions, and rewards are classical signals. The
environment itself is not specified; it could represent, e.g.,
an experiment performed on a quantum system. Note that the
environment in Fig. 1 is not to be confused with the bath in
Fig. 2, which affects the memory channel but is not considered
part of the agent’s “habitat.”

In addition to the external loop, we may also equip the agent
with two types of internal feedback loops, which allow the
agent to undertake what corresponds to “planning steps” in
RL and “reflection” in PS. One type is similar to the external
loop in that it involves state initializations and measurements
on the memory channel, but exploits that percepts, actions,
and rewards can be recorded and reproduced as a consequence
of their classicality. The second type of internal loop does
not involve state evolutions but requires some mathematical
model of the memory channel itself, which is used to directly
calculate a numerical objective (NO), whose value is used to
alter the control parameters. Figure 1 does not imply that all of
these loops need to be simultaneously present; they are rather
thought of either subprocesses within an overall agent scheme
or possible modes of its operation. The numerical examples in
this work will exclusively apply the external loop.

All three loops involve a parameter update δh. In a “first-
order” update, δh is proportional to some quantity that depends
on the gradient ∇Û of Û with respect to h. This gradient
can either be computed directly from a memory model Û (h)
(i.e., from some symbolic expression of ∇Û if available) or
estimated from measurements. These “measurements” can be
physical (POVM in Fig. 1) or numerical (NO in Fig. 1). For the
estimation, one varies the components of h by a small amount
and records the changes in the measured POVM or computed
NO. Here are some elementary examples: (1a) A simulation of
an external loop with a given model-based (i.e., analytic) ∇Û

is performed in Sec. V A 1 (Fig. 4) for the case Fig. 2(c), in

022303-3

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

Sec. V A 2 (Figs. 6 and 7) for the case Fig. 2(a), and in Sec. V B
(Figs. 10 and 11) for the case Fig. 2(c). (1b) A simulation
of an external loop with a POVM measurement-based ∇Û is
carried out in Ref. [22] (Fig. 6) for the case Fig. 2(b). (2) An
NO-based internal loop with a model-based ∇Û is considered
in Ref. [23] for the case Fig. 2(b) and in Ref. [22] (Figs. 2–4)
for the case Fig. 2(a). (3) The POVM-based internal loop in
Fig. 1 can be used to estimate ∇Û in the absence of a model
Û (h) of the agent memory. To this end, one of the agent’s
possibilities consists in inserting a number of internal cycles
between each external cycle, where it repeatedly prepares its
memory in the latest percept state and observes how a variation
δh affects the measurement statistics. A discussion of this will
be given in Sec. VI. Beyond these examples, all three loops
can be interlaced with each other in various ways, analogous
to the wealth of approaches reviewed in Ref. [18].

IV. UPDATE RULE IN PARAMETER SPACE

For the cyclewise update of the control parameters h of the
memory channel Û , we apply a rule

h′ = h + αr

t−1∑
k=0

(1 − η)k Dt−k. (4)

The number of components hk can range from one (h scalar) to
infinity (h may represent a function or a vector of functions),
and the hk can be assumed to be real valued without loss
of generality. In Refs. [7,8], the components of h are the
edge strengths of a directed graph representing a network of
clips (the graph’s vertices). While these clips are considered
sequences of remembered percepts and actions, the network
itself abstracts from the clip’s internal contents. Our view
of h as a control vector is one further simplification and
generalization that may allow for but does not require the view
of the memory as a network.

In (4), h and h′ are the control vectors before and after the
update at cycle t , respectively. α � 0 is a (typically small)
learning rate, and r is the reward given at cycle t . Dt is a
difference vector. While some options for finite difference
choices of D are outlined in Sec. VI, in all numerical examples
within this work we restrict to the case, where Dt = ∇t is a
short-hand notation for the gradient

∇t = ∇p(a|s)t = 2Re〈Û †�̂(a)∇Û〉t , (5)

p(a|s) = Tr[Û �̂(s)Û †�̂(a)] = 〈Û †�̂(a)Û 〉, (6)

with components ∂p(a|s)
∂hk

at cycle t . p(a|s) is the probability
of the obtained measurement outcome a under the condition
of the respective cycle’s percept state �̂(s), where 〈· · · 〉 ≡
Tr[�̂(s) · · ·] denotes the expectation value with respect to this
state, and �̂(a) is the member of the POVM that corresponds
to measurement outcome a. The latter determines the action
performed by the agent, and we use the same symbol for both.
(1 − η) describes a backward-discount rate, which we have
defined via a parameter η ∈ [0,1] to allow comparison with the
glow mechanism introduced in Ref. [8]. As mentioned above,
the unitary transformation of the respective percept states �̂(st)
by the memory Û = Û (ht) at cycle t in (6) refers in general
to a larger (dilated) space. The dynamical semigroup of CPT

maps proposed in Ref. [7] is included and can be recovered
by referring to Fig. 2(d) [or alternatively Fig. 2(b)] and the
assumption that

�̂(st) (≡ �̂SAB) = �̂SA(st) ⊗ �̂B, (7)

TrB[Û �̂(st)Û
†] = eLSA	T

(mem)
t �̂SA(st), (8)

where the physical memory evolution time 	T
(mem)
t may

depend on the cycle t for a chosen parametrization Û (h) and
must be distinguished from the agent response time that can
additionally be affected by the potential involvement of internal
loops in Fig. 1. The superoperator L = LSA, whose effect on
�̂ = �̂SA is defined as a sum

L�̂ = −i[Ĥ ,�̂] + L�̂, (9)

generates in Ref. [7] a quantum walk and is given by a
Hamiltonian Ĥ = ∑

{j,k}∈E λjk(ĉkj +ĉ
†
kj) + ∑

j∈V εj ĉjj and a

Lindbladian L�̂ = ∑
{j,k}∈E κjk(ĉkj �̂ĉ

†
kj − 1

2 {ĉ†kj ĉkj ,�̂}), with
ĉkj = |ck〉〈cj | performing transitions between clip states |cl〉 ∈
HSA along a graph G = (V,E) consisting of a set V of vertices
and a set E of edges. Since on the one hand we here do not
intend to necessarily represent Û by a clip network and on
the other hand we do not want to exclude from the outset
situations involving time-dependent or non-Markovian bath
effects, we use the dilated Û for simplicity instead. The set
of all probabilities p(a|s) in (6), i.e, the whole conditional
distribution, then defines the agent’s policy.

A reward given by the environment at time t raises the
question of the extent to which decisions made by the agent in
the past have contributed to this respective reward. A heuristic
method is to attribute all past decisions, but to a lesser degree
the further the decision lies in the past. (Considering the agent’s
life as a trajectory of subsequent percepts and actions, we
could imagine the latest event trailing a decaying tail behind.)
A detailed description of this idea is presented in Ref. [18]
in the form of eligibility traces, which can be implemented
as accumulating, replacing, clearing, or dutch [24] traces. In
the context of PS, a similar idea has been introduced as an
afterglow mechanism that can be implemented as edge or clip
glow [8,15]. In stochastic gradient descent, a related technique
is the momentum method [25]. In our context (4), we realize it
by updating the control vector by a backward-discounted sum
of gradients ∇t−k referring to percepts and actions involved
in cycles that happened k steps in the past. A sole update by
the present gradient is included as limit η = 1, for which (4)
reduces to h′ = h + αr∇p(a|s). This special case is sufficient
for the invasion game, which we will consider in Sec. V,
because at each cycle, the environment provides a feedback on
the correctness of the agent’s decision by means of a nonzero
reward. After that, we apply the general update (4) to a grid
world task, where the agent’s goal cannot be achieved by a
single action, and where the long-term consequences of its
individual decisions cannot be foreseen by the agent.

We conclude this section with some comments on how
the update rule (4) is related to other existing approaches to
RL. Since the latter is an umbrella term for problems that can
be described as agent-environment interactions characterized
by percepts, actions, and rewards, let us focus on the com-
putational aspects and ignore the quantum implementation

022303-4

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

RL-Methods

gradient-based gradient-free

gradient-descent
w.r.t. TD-error

gradient-ascent
w.r.t. policy

“computational” “physical”

“parametric” “non-parametric”

value function - based “direct policy”

SARSA(λ)

PS

Eq.(4) here

FIG. 3. Relation between the scheme discussed in this work and
other existing approaches to RL problems. While the agent learning
as a navigation of the memory “hardware” Û governed by (4) is a
computational gradient-based concept (unless a direct physical mech-
anism can be found for this purpose), the action selection is physical
in the sense that it employs a generic preparation, transformation, and
measurement of quantum states.

described in Sec. III. As summarized in Fig. 3, we may
distinguish (a) between gradient-based methods, which math-
ematically compute a gradient of a quantity of interest relating
to a given set of parameters, and gradient-free methods such
as PS, which do not explicitly rely on a gradient. Apart from
this, we may distinguish (b) between “parametric” methods,
which apply a fixed set of parameters and methods, for which
parameters (like edge strengths in PS) can be identified, but
their number may not be fixed (since, e.g., in PS, the graph
topology of the clip network may be subject to change), and
hence we here refer to them as “nonparametric.” Apart from
this, we may distinguish (c) whether the action selection is
done “computationally” (i.e., by an algorithm running on a
general purpose computer) or by an ad hoc “physical” process
(such as diffusion within a PS clip network). To keep things
simple, in Fig. 3 we have roughly identified the parametric and
computational with the gradient-based approaches: standard
RL methods such as Q-learning or SARSA (for details see
e.g., [18]) base their actions on running estimates of value
functions (expected discounted sums of future rewards the
agent is trying to maximize). At each cycle, the agent then
adjusts its parameters’ gradient descent with respect to a TD
error (the mismatch between the respective reward expected
by the agent and the one actually received). In contrast, the
update rule (4) is gradient ascent with respect to the conditional
probabilities p(a|s), which are increased if the actions are
rewarded. Since the p(a|s) form the agent policy, (4) can be
considered a “direct policy” method. “Tabular” methods (not
separately highlighted in Fig. 3) are a special parametric case,
in which the parameters are the running estimates themselves
and which are explicitly stored by the algorithm as a table.

V. EXAMPLES

A. Invasion game

In what follows, we consider a simple invasion game as
treated in Ref. [7]. An attacker randomly chooses one out of

two possible symbols {⇐ , ⇒} which signals the direction in
which it intends to move. The chosen symbol may represent,
e.g., a head turn and is visible to the defender, whose task
is to learn to move in the same direction, which is required
to block the attacker. We approach this learning task as an
external loop in Fig. 1 with a closed system (i.e., bathless)
memory [cases (a) and (c) in Fig. 2], described within a
four-dimensional Hilbert space. The control parameters are
updated according to (4) in the absence of gradient glow
(η = 1). The update is done with an analytic ∇Û as described
in Appendix A 2, where the memory consists of alternating
layers, Û = · · · e−ih3Ĥ

(1)
e−ih2Ĥ

(2)
e−ih1Ĥ

(1)
, with a given number

of controls h1, . . . ,hn. At the beginning of the first cycle, the
memory is initialized as identity. For the two Hamiltonians Ĥ (1)

and Ĥ (2), we distinguish (I) a general case, where Ĥ (1) and Ĥ (2)

are two given (randomly generated) four-rowed Hamiltonians
acting on the total Hilbert space and (II) a more specialized
case, in which they have the form

Ĥ (1) = Ĥ
(1)
S ⊗ ÎA + ÎS ⊗ Ĥ

(1)
A , (10)

Ĥ (2) = Ĥ
(2)
S ⊗ Ĥ

(2)
A , (11)

where Ĥ
(1)
S , Ĥ

(1)
A , Ĥ

(2)
S , Ĥ

(2)
A are four given (randomly gen-

erated) two-rowed Hamiltonians acting on the percept (S)
and action (A) subsystems, respectively, with Î denoting the
identity. The latter case (II) refers to a physical implementation
of Fig. 2(c) as a bath-mediated interaction of the S and A
subsystems that is obtained from the setup Fig. 2(d) by elimi-
nating the bath [22]. It has been included here to demonstrate
that this special structure as considered in Ref. [22] may be
applied in the present context, but this is not mandatory. While
the Hamiltonians have been chosen in both cases (I) and (II)
at random to avoid shifting focus toward a specific physical
realization, in an experimental setup, the respective laboratory
Hamiltonians will take their place (assuming that they generate
universal gates in the sense of Ref. [26], which is almost surely
the case for a random choice).

1. Two percepts → two actions

We start with a basic version of the game with two possible
percepts (the two symbols shown by the attacker) and two
possible actions (the two moves of the defender). For each
percept, there is hence exactly one correct action, which is to
be identified. The memory applied is shown in Fig. 2(c), and
the different input states are

�̂ = �̂S ⊗ �̂A, �̂S = |s〉〈s|, (12)

�̂A = pcoh|ϕ〉〈ϕ| + (1 − pcoh)
1

dA
ÎA, (13)

|ϕ〉 = 1√
dA

∑
a

|a〉, (14)

where dA = dimHA = 2 is given by the number of actions. |s〉
and |a〉 can both be one of the two orthonormal states |0〉 or |1〉
of the S and A subsystem, respectively. The POVM consists of
the elements

�̂(a) = ÎS ⊗ |a〉A〈a|. (15)

022303-5

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

Choosing the correct (wrong) action [i.e., a = s (a �= s) in
(15) and (12)] returns a reward of r = +1 (r = −1).

Figure 4 shows the average reward r received at each cycle,
where the averaging is performed over an ensemble of 103

independent agents. (r + 1)/2 is hence an estimate of the
defender’s probability to block an attack. Referring to pure
states in (13), Fig. 4(a) shows the increase of learning speed
with the number of controls. Significant learning progress
begins only after some initial period of stagnation. From
the viewpoint of control theory, the identity, in which the
memory is initialized, may lie on a “near-flat ground” (valley),
which must first be left before progress can be made [27].
Asymptotically, perfect blocking can be achieved once the
memory becomes controllable, i.e., if the number of controls
equals (or exceeds) the number of group generators. Figure 4(b)
demonstrates the need of a pure input state �̂A in (13) of the
action subsystem A rather than an incoherent mixture. After
the agent in Fig. 4(b) had some time to adapt to the attacker,
the meaning of the symbols is suddenly interchanged, and
the agent must now learn to move in the opposite direction.
This relearning differs from the preceding learning period in
the absence of the mentioned initial stagnation phase, which
supports the above hypothesis of the proposed valley, the agent
has left during the initial learning. This plot is motivated by
Fig. 5 in Ref. [7] describing classical PS. While Figs. 4(a) and
4(b) refer to case (I) described before (10), Fig. 4(c) refers to
the restricted case (II), which appears to impede learning. In
the simulations of the following Sec. V A 2, which all refer to
case (II), this is resolved by applying a negative reward that is
10 times larger for each wrong action. This demonstrates the
flexibility in approaching RL problems offered by the freedom
to allocate rewards in a suitable way.

2. Four percepts → four or two actions

We now consider a version with four percepts, referring
to an attacker presenting each of its two symbols in two
colors at random. Since we want to keep the Hilbert space
dimension unchanged (rather than doubling it by adding the
color category) for better comparison of the effect of the
number of controls on the learning curve, we must apply a
memory as shown in Fig. 2(a). The four percepts are encoded
as tensor products of orthonormal projectors

�̂jk = |j 〉〈j | ⊗ |k〉〈k|, (16)

where j = 0,1 (k = 0,1) refers to the symbol (color). The
POVM operators are the four projectors

�̂jk = ÛT�̂jkÛ
†
T, (17)

where ÛT is a given (randomly generated) four-rowed target
unitary acting on the total system. The memory in Fig. 2(a) is
hence still composed of two subsystems referring to the two
percept categories “symbol” and “color,” but both subsystem’s
initial state depends on the respective percept, and both are
measured afterward. The differences between the setup dis-
cussed in the previous Sec. V A 1 and the two setups discussed
in the present Sec. V A 2 are summarized in Fig. 5.

0 500 1000 1500 2000 2500 3000 3500 4000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

r

c

0 1000 2000 3000 4000 5000 6000 7000 8000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

r

c

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

r

c

FIG. 4. Average reward r as a function of the number of cycles
c for an invasion game (two symbols, two moves), learning rate α =
10−3, with a reward of +1 (−1) for a correct (false) move, averaged
over 103 agents. The input states and POVM are given by Eqs. (12) and
(15), respectively. (a) The six graphs from bottom to top correspond
to 1, 2, 3, 4, 8, and 16 controls, respectively, with pcoh = 1 in (13). (b)
16 controls, where after 4 × 103 cycles the meaning of the symbols is
reversed. The five graphs from bottom to top correspond in Eq. (13)
to pcoh = 0, 0.25, 0.5, 0.75, and 1, respectively. Panel (c) shows the
case of 32 controls and pcoh = 1, but refers to case (II) described by
(10) and (11), whereas Figs. 4(a) and 4(b) refer to case (I).

022303-6

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

(a)

Ŝ

ˆA

symbol

move

Û

Π̂(a)

(b)

ĵk

symbol

color
Û †

T

j

k

Û
Π̂jk or Π̂j

(c)

Ŝ

Ĉ

ˆA

symbol

color

move

Û

Π̂(a)

FIG. 5. Setups for the invasion game as investigated numerically
in Sec. V A. Setup (a) involves two percepts (symbols) and two
actions (moves) as discussed in Sec. V A 1 (Fig. 4). Setup (b)
involves four percepts consisting of two two-colored symbols and
two measurements yielding four different outcomes described by
(j,k = 0,1) as discussed in Sec. V A 2 and determining either four
[Figs. 6(a) and 7] or—if outcome k is ignored—two [Fig. 6(b)]
possible actions (moves). While setup (a) refers to Fig. 2(c), setup
(b) must refer to Fig. 2(a), if we want to keep the same Hilbert space
dimension of four for both setups, which allows better comparison of
the effect of the number of controls on the learning curve. Setup
(c) involves a continuum of percepts consisting of two arbitrary-
colored symbols and two actions (moves) as discussed in Sec. V A 3
(Fig. 8). In setup (c), separate subsystems are used for all three
categories, hence it refers to Fig. 2(c), and the Hilbert space dimension
becomes 8.

Figure 6 shows the average reward r received at each cycle,
where the averaging is performed over an ensemble of 103

independent agents, analogous to Fig. 4. Note that in this
Sec. V A 2, all figures refer to case (II) described by (10) and
(11), where S and A now denote symbol and color, respectively.
To account for this [cf. the comments on Fig. 4(c) above], a
reward of r = −10 (instead of −1) is now given for a wrong
action. The estimate of the defender’s probability to block an
attack is hence now (r + 10)/11.

In Fig. 6(a), the defender can choose between four moves,
where for each percept, there is exactly one correct action
[i.e., detecting �̂jk (�̂j ′k′ �= �̂jk) for �̂jk in (17) and (16)
returns a reward of r = +1 (r = −10)]. After 5 × 103 cycles,
symbol j and color k are read as symbol 1 − j and color 1 − k,
respectively, similar to the manipulations in Fig. 5 in Ref. [7].
In Fig. 6(b), the defender can choose between two moves,
where for each symbol (relevant category), there is exactly
one correct action, irrespective of its color (irrelevant category)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

(a)

r

c
1

3
2
4

8
3216

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

(b)

r

c

1

2

3
4,8

16
32

FIG. 6. Average reward r as a function of the number of cycles c

for an invasion game (two symbols in two colors), learning rate α =
10−2, with a reward of +1 (−10) for a correct (false) move, averaged
over 103 agents. The input states and POVM are given by Eqs. (16)
and (17), respectively. The graphs correspond to 1, 2, 3, 4, 8, 16, and
32 controls, as marked on the right. (a) Out of four possible moves, the
defender must learn the correct one for each symbol and color. After
5 × 103 cycles, the meanings of the symbols as well as the colors
are reversed. (b) Out of two possible moves, the defender must learn
the correct one for each symbol, whereas the color is irrelevant. For
the first 5 × 103 cycles, only symbols in a single color are presented,
whereas for the remaining cycles, they are shown randomly in both
colors.

[i.e., detecting �̂j = ∑1
k=0 �̂jk (�̂j ′ �= �̂j) for �̂jk in (17)

and (16) returns a reward of r = +1 (r = −10)]. The second
color is added only after 5 × 103 cycles, analogous to Fig. 6 in
Ref. [7]. [Note that the mentioned initial stagnation phase in
Fig. 4 is not visible in Fig. 6, which is attributed to the choice
of parameters (rewards), accelerating the initial learning.]

Figures 4(b) and 6 are all motivated by Figs. 5 and 6 in
Ref. [7] and confirm that the agent’s adaptation to changing
environments is recovered in our quantum control context. In
addition, Figs. 4(a) and 6 show the behavior of an underac-
tuated memory, where the number of controls is insufficient
for its full controllability. Since a U (n) matrix is determined
by n2 real parameters, and a global phase can be disregarded

022303-7

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

(so that we can restrict to SU(n) matrices), n2 − 1 controls are
sufficient, i.e., 15 for our invasion game, as mentioned above.

In (17), the measurements are made in a basis rotated by
a randomly given unitary ÛT, which serves two purposes. On
the one hand, it is required to ensure that the agent starts at
the beginning of the first cycle with a policy that does not
give exclusive preference to certain actions that follow from
symmetries of the (identity-) initialized memory. This is a flaw
of Fig. 2(a) and can be overcome by using Fig. 2(c) instead (cf.
a more detailed discussion in the grid world example below).
On the other hand, ÛT serves as a given target in our discussion,
Sec. II, where we consider the agent learning as a navigation
of its memory Û ; cf. also Fig. 5(b). Figure 7 compares the
case, where the agent is always fed with percept states drawn
from one single ONB defined via (16) with the case, where
the percept states are drawn randomly, i.e., taking ÛR�̂jkÛ

†
R

with a random unitary ÛR as explained in Sec. II instead of
(16). Note that in Fig. 7, we generate a new random ÛR at each
cycle, although a fixed set of dimH (four in our case) such ÛR

is sufficient as mentioned in Sec. II. Fidelity F and squared
distance D are defined in (B2) and (B1), where Û represents the
agent memory and ÛT is the target unitary. Each cycle’s update
constitutes a single navigation step in the unitary group [U (4)
in our example]. If, for a single ONB, after a number of cycles,
the average reward has approached unity, Û has reached a
close neighborhood of any unitary of the form Û ′

2ÛTÛ1, where
Û ′

2 = ÛTÛ2Û
†
T with Û1 and Û2 being undetermined four-rowed

unitary matrices diagonal in the common eigenbasis of the �̂jk

(i.e., the “computational basis”). Figure 7(a) shows that for
a solution of the invasion game, a fixed ONB is sufficient.
Drawing the percept states randomly, so that the set of all
percept states is linearly dependent, does not affect the agent’s
ability to achieve perfect blocking efficiency but does slow
down the learning process. The single ONB case allows for
a larger set of Û = Û ′

2ÛTÛ1 with respect to ÛT, as becomes
evident in Fig. 7(b), so that navigation of Û from the identity to
a member of this set takes less time (as measured in cycles). The
only freedom left in the case of multiple ONBs is a global phase
of Û , which remains undefined: navigation of Û toward ÛT

with respect to the squared Euclidean distance D is not required
for the learning tasks discussed, as evidenced by Fig. 7(c).

3. Never-ending-color scenario

In Sec. V A 2, we considered the case, where the symbols
are presented in two different colors, as depicted in Fig. 5(b).
The original motivation for introducing colors as an additional
percept category was to demonstrate the agent’s ability to learn
that they are irrelevant [7]. In contrast, [16] present a “never-
ending-color scenario,” where at each cycle, the respective
symbol is presented in a new color. It is shown that while the
basic PS agent is in this case unable to learn at all, it becomes
able to generalize (abstract) from the colors, if it is enhanced
by a wild-card mechanism. The latter consists in adding an
additional (wild card “#”) value to each percept category and
inserting between the input layer of percept clips and the output
layer of action clips hidden layers of wildcard percept clips,
in which some of the percept categories attain the wild-card
value. The creation of these wild-card clips follows predefined
deterministic rules, and the transitions from percept to action

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−6

−5

−4

−3

−2

−1

0

1

(a)

r

c

multi ONB

single ONB

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
F

c

multi ONB

single ONB

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4.5

5

5.5

6

6.5

7

7.5

(c)

D

c

multi ONB

single ONB

FIG. 7. (a) Reward r , (b) fidelity F defined in (B2), and (c)
squared distance D defined in (B1), as a function of the number of
cycles c, where the overline denotes the ensemble average over 103

agents for the setup as in Fig. 6(a) (i.e., four percepts and four actions)
with 16 controls but without the reversal of meaning. The initial
memory states are drawn from either a single or multiple orthonormal
bases.

clips take then place via the hidden layers. (The notion of layers
in the general ECM clip network Fig. 2 in Ref. [7] follows from
restricting to clips of length L = 1).

022303-8

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

Since the use of wild-card clips is an integrated mechanism
within PS (inspired by learning classifier systems), the question
is raised how similar ideas could be implemented in our
context. For a memory, Fig. 2(c), we could, e.g., attribute
one of the levels (such as the respective ground state) of
the quantum system of each percept category Si to the wild-
card-level |#〉i , so that the percept space HS = ⊗HSi

is
enlarged to HS = ⊗(HSi

⊕ H#i
), where the H#i

are one
dimensional.

Instead of this, let us simply make use of the built-in
generalization capacity of a quantum agent resulting from
its coding of percepts as quantum states, which is much in
the sense of Sec. 8 in Ref. [18], where the percepts can be
arbitrarily real valued rather than being drawn from a countable
or finite value set. Consider the setup shown in Fig. 5(c),
whose percept system includes a symbol and a color category
and refers to a memory structure, Fig. 2(c). To allow for
infinite colors, we could apply a color quantum system with
infinite levels H∞ (such as an oscillator-type system), which
is initialized at each cycle in a new state drawn from a fixed
ONB (such as a higher number state for an oscillator-type
system). While such a scheme becomes more challenging to
control, because the control vector h has an infinite number
of components [we may replace it with a continuous control
function h(t)], it still ignores the fact that colors (as most
percept categories in general) are not countable. With this in
mind, we can take the notion of colors literally and, to put
it simply, code them in some appropriate color space such as
RGB, where three parameters correspond to the red, green,
and blue signals of the agent’s eye sensors. This suggests
encoding a color as a mixed state of a two-level system, which
is also given by three real-valued parameters (determining
its location in the Bloch ball). The generalization from two
colors to all RGB colors then corresponds to the generalization
from a classical to a quantum bit. In our setup, it is hence
sufficient to apply a two-level system for the color category
and initialize it at each cycle in a randomly chosen mixed
state �̂C (for never-ending colors) rather than a (pure) state
randomly drawn from a single ONB (for two colors), whereas
no changes are required on the agent’s memory configuration
itself. Figure 8 demonstrates the learning process. Similar to
Fig. 7, random initialization slows down the learning process,
so that we restrict to a single agent in Fig. 8, rather than
an ensemble average. As illustrated in Fig. 8(a), the agent’s
response becomes near deterministic after about 106 cycles,
irrespective of the color. Figure 8(b) illustrates in the example

of the Euclidean length of the control vector |h| =
√

hT · h,
that the navigation, which starts at h0 = 0, eventually comes
to rest. While the random �̂C are drawn such that a positive
probability is attributed to every volume element in the Bloch
ball, we did not care about drawing them with a uniform
probability density, since mapping of an RGB space of color
(as a perceptual property) to the Bloch ball is not uniquely
defined.

The ability to learn to distinguish between relevant Srel

and an arbitrary number of irrelevant percept categories Sirr

as discussed in Ref. [16] is of particular relevance for a
quantum agent, where the irrelevant percept categories can be
understood as adopting the role of a bath as shown in Figs. 2(b)

0 1 2 3 4 5 6 7 8 9 10
x 10

5

−10

−8

−6

−4

−2

0

2

(a)

r

c

0 1 2 3 4 5 6 7 8 9 10
x 10

5

0

2

4

6

8

10

12

(b)

|h|

c

FIG. 8. (a) Reward r and (b) length |h| of the control vector as a
function of the number of cycles c for a single agent, Fig. 5(c), playing
an invasion game with two symbols, presented in a continuum of
never-ending colors, and two moves. A reward of +1 (−10) is given
for each correct (false) move. The agent applies 64 controls with a
learning rate of α = 10−2 in an alternating layer scheme, Appendix
A 2, defined by two (Schmidt-orthonormalized) eight-rowed random
Hamiltonians.

and 2(d). Here, a formal solution consists in a decoupled
ÛSA = ÛSrelA ⊗ÛSirr .

B. Grid world

In what follows, we consider an arrangement of eight grid
cells as shown in Fig. 9. The agent’s task is to find the shortest
route to a goal cell G, where at each step, only moves to
an adjacent cell in four directions (left, right, up, down) are
allowed. If the agent hits a boundary of the grid or the black
cell, which is considered an obstacle, its location remains
unchanged.

This external classical navigation task constitutes a learning
problem, because situations (present location) must be mapped
to decisions (direction to go). The agent only perceives whether
or not it has arrived at the goal cell. It has no access to a “bird’s
perspective,” which would allow immediate exact location of

022303-9

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

GS

1

0

0 0

0

0

0 1

0

0

0 1

0

1

0 0

0.20

0.26

0.46 0.08

0.10

0.47

0.23 0.21

0.05

0.49

0.04 0.41

0.12

0.26

0.36 0.27

(0.98)

(0.55)

(0.43) (0.99) (1)

FIG. 9. (3 × 3)-grid world with an obstacle (black cell). The
arrows show the optimal policy for the shortest path to G, and the
numbers present the policy numerically obtained with the agent
Fig. 10(d) after 104 episodes. The red numbers in parentheses are
the relevant different values obtained after 105 episodes, if the agent
starts each episode from a random cell, rather than always at S.

the goal. It also has no access to a measure of goal distance or
fidelity (as in the case of the internal NO-based loop regarding
its own quantum memory in Fig. 1), which prevents the use of
external gradient information that could be obtained by testing
the nearest neighbourhood of the present location. One can thus
distinguish two objectives: (a) locating the goal and (b) finding
a shortest route to it. This task constitutes a RL-type problem,
whose composite “two-objective” structure is approached by
nesting iterations. The individual action selections, i.e., choices
of moves, correspond to the cycles in Fig. 1. Sequences of
cycles form episodes, which are terminated only once objective
(a) has been solved. Objective (b) is solved by sequences of
episodes, which allow the agent to gradually solve objective (a)
more efficiently and find an optimal policy. In Fig. 9, the policy
consists of a set of four probabilities for each cell, with which
a corresponding move should be made from there. The optimal
policy corresponding to the shortest route to G is indicated by
the arrows in Fig. 9.

This grid world extends the above decision game in two
aspects: (a) The optimal policy is in contrast to the decision
game not deterministic, as indicated by the double arrows in the
upper left and middle cells in Fig. 9. (b) Depending on where
the agent starts, more than a single move is required to reach
G in general, preventing the agent from obtaining immediate
environmental feedback on the correctness of each individual
move it makes. This second aspect leads to the mentioned
notion of episodes. In what follows, we always place the agent
at a fixed start cell S at the beginning of each episode, which is
sufficient for learning the shortest path from S to G. While in
the invasion game, episodes and cycles are synonyms, here an
episode is longer than a single cycle, since at least four moves
are required to reach G from S.

When designing the agent’s memory structure in the sense
of Fig. 2, we must take into account that the unitarity of
the state transformation ÛS in Fig. 2(a) places restrictions
on the percept encodings and the action measurements, since

ÛS maps an ONB into another one. If we encode in Fig. 9
each cell location as a member of a given ONB in an eight-
dimensional system Hilbert space H8 and perform a naive
symmetric H8 = H2 ⊕H2 ⊕ H2 ⊕ H2 measurement for
action selection, where the four two-dimensional subspaces
correspond to right, down, left, and up moves, we cannot
properly ascribe the upper left and upper middle cells, because
the right and downward pointing actions are already ascribed to
the remaining four white cells. One may either try to construct a
learning algorithm that exploits the fact that the two mentioned
cells are off the optimal path from S to G so that the agent
quickly ceases to visit them or construct a new POVM such
as a H8 = H1 ⊕ H3 ⊕H3 ⊕ H1 measurement, where two
three-dimensional subspaces correspond to right and down,
and two one-dimensional subspaces correspond to left and up
moves. These possibilities require insight into the specifics of
this problem and are not generalizable. In addition to that,
Fig. 2(a) requires initialization of the agent memory in a
random unitary to ensure it starts with a policy that does not
give exclusive preference to certain actions that follow from
symmetries of the initial ÛS (such as the identity ÛS = ÎS).
If we want to avoid invoking a bath as in Fig. 2(b), we hence
must resort to Fig. 2(c), which here implies a factorization
H = HS ⊗HA ofH into an eight-dimensionalHS for encoding
the grid cells and a four-dimensional HA for encoding the
four actions. If we encode the cells and actions as members
of some ONB in S and A, then initializing the agent’s memory
as identity, ÛSA = ÎSA, and the initial action states as in (14)
ensures that the agent starts at the beginning of the first episode
with a policy that assigns the same probability to all possible
actions.

In Figs. 10 and 11, we investigate the episode length
which is defined as the number of cycles per episode. Rather
than performing an ensemble average, we consider individual
agents. These agents are described by (4) with a learning rate
of α = 10−1 and varying amounts of gradient glow (η � 1).
The number of episodes equals the number of times the agent
is allowed to restart from S, whereas the time passed equals
the sum of episode lengths. The episode length can be infinite
but not smaller than four, the length of the shortest path from
S to G.

Figure 10 shows evolutions of episode lengths with the
number of episodes, where we have set a maximum of 104

episodes. As explained, each episode starts at S and ends only
when G has been reached.

Figure 10(f) shows for comparison the lengths of 104

random walks through the grid of an agent whose learning has
been disabled by always setting the reward to 0. The average
number of 54.1 steps to reach G from S is shown in Figs. 10
and 11 as a dashed line for comparison. In Figs. 10(a)–10(e),
a positive reward of r = 1 is given for hitting G. While in
Fig. 10(a), the reward is always zero before G has been hit, in
Fig. 10(c) hitting a boundary is punished with a negative reward
of r = −10, which slightly improves the agent’s performance.
[Note that all plots are specific to the respective learning rate
(here α = 10−1), which has been chosen by hand to observe an
improvement within our 104 episode window and at the same
time minimizing the risk of oversized learning steps. While
in general, the learning rate is gradually decreased (cf. the

022303-10

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

160

180

200

(a)

c

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

(b)

c

n

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

(c)

c

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

(d)
c

n

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

(e)

c

n
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

50

100

150

200

250

300

350

400

(f)

c

FIG. 10. Episode lengths (number of cycles c per episode) as a function of the number of episodes n for the (3 × 3)-grid world as shown
in Fig. 9. The plots illustrate the effect of gradient glow for single histories of individual agents. (a) The agent receives a reward r = 1 when it
has found the goal, without gradient glow (η = 1). (b) As in panel (a), but with gradient glow enabled (η = 0.01). (c) In addition to receiving
a reward r = 1 when it has found the goal, the agent is punished with a reward r = −10, when it has hit a boundary, without gradient glow
(η = 1). (d) As in panel (c), but with gradient glow enabled (η = 0.7). (e) As in panel (d), but with gradient glow prolonged further (η = 0.5).
(f) Learning is disabled by always setting the reward to 0. The agent performs a random walk through the grid with average length 54.1 which
is included as dashed line in Figs. 10 and 11.

conditions Eq. (2.8) in Ref. [18] to ensure convergence), this is
not strictly necessary. In our numerical examples, we have kept
α constant for simplicity. Implementation of a dynamic adap-
tation of the learning rate as was done in Refs. [23] and [22]

in the present context is left for future work.] The transitions
Figs. 10(a→b) and Fig. 10(c→d) show the effect of enabling
gradient glow, i.e., (η = 1) → (η < 1) in (4). Gradient glow
provides a mechanism of gradual backpropagation of the policy

022303-11

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70
c 500

η

no rewards (f)

positive rewards and
boundary punishment

only positive
rewards

minimum

a

b

c

de

FIG. 11. Episode lengths c averaged over the last 500 episodes
in Fig. 10, i.e., episodes 9.5 × 103 to 1 × 104 of single histories of
individual agents in the (3 × 3)-grid world as shown in Fig. 9. The data
points distinguish various rewarding strategies and values of gradient
glow η as explained in Fig. 10. The upper and lower dashed lines
reflect a random walk and the shortest path, respectively, and the letters
(a)–(f) correspond to the respective plots in Fig. 10. The optimum
value of η depends on the details of the rewarding strategy.

change from the nearest neighbourhood of G to cells more
distant from G as the number of episodes increases. The agent
settles in the optimal policy in the cases in Figs. 10(b), 10(d)
and 10(e).

The policy resulting after 104 episodes in case Fig. 10(d)
is given in Fig. 9, where the numbers in each cell present
the probability to move in the respective direction. While the
agent finds the optimal policy for all cells forming the shortest
path, it remains ignorant for the remaining cells. As the agent
finds and consolidates the shortest path, then episode over
episode, it soon visits the off-path cells less frequently, so that
the transition probabilities from these cells do not accumulate
enough iterations and are “frozen” in suboptimal values. This
is characteristic of RL and can also be observed in learning to
play games such as backgammon [18], where it is sufficient to
play well only in typical rather than all possible constellations
of the game. Since for large games, the former often form
a small subset of the latter, this can be seen as a strategy to
combat with large state spaces (such as number of possible
game constellations). To find an optimal policy for all cells in
Fig. 9, we may start each episode from a random cell, analogous
to initializing the agent in an overcomplete basis as explained
in Fig. 7. The red numbers in parentheses shown in Fig. 9
present a new policy obtained after 105 episodes in this way.
In contrast to the old policy, it is optimal or nearly optimal for
all cells, with the difference between 1 and the sum of these
numbers quantifying the deviation from optimality for each
cell (�0.02). Since on average, the agent starts from a given
cell only in one-seventh of all episodes, the learning is slowed
down, analogous to Fig. 7(a).

Figure 11 summarizes the effect of gradient glow illustrated
in Fig. 10 for the two rewarding strategies. To limit the
numerical effort, we have averaged the episode lengths over
the last 500 episodes in Fig. 10 for individual agents as
a “rule of thumb” measure of the agent’s performance for

the strategy chosen. For a deterministic calculation, we must
instead average the length of each episode (and for each η) over
a sufficiently large ensemble of independent agents for as many
episodes as needed to reach convergence. Despite these short-
comings, the results indicate a qualitatively similar behavior
as Fig. 4(a) in Ref. [15]. Figures 10 and 11 demonstrate that
gradient glow improves the agent performance, irrespective
of whether or not it receives information on false intermediate
moves by means of negative rewards, although the latter reduce
the required length of glow. It is expected that for an ensemble
average, an optimal value of η can be found, with which
the fastest convergence to the shortest path can be achieved.
Figure 10 distinguishes two qualitatively different modes of
convergence. If η is larger than optimal, a gradual improvement
is observed, as seen by the damping of spikes in Fig. 10(d). If η

is smaller than optimal, then an abrupt collapse to the optimal
policy without visible evidence in the preceding statistics that
would provide an indication is observed, cf. Fig. 10(e). If η is
decreased further, this transition is likely to happen later, to the
point it will not be observed within a fixed number of episodes.
This results in the steep increase in episode length shown in
Fig. 11, which would be absent if the ensemble average was
used instead. This sudden transition as shown in Fig. 10(e) can
also be observed for individual agents in [15] (not shown there),
which applies a softmax-policy function along with edge glow.
It is surprising that the quadratic measurement-based policy
simulated here exhibits the same phenomenon. Note, however,
that convergence does not imply optimality. In tabular RL and
PS, such an abrupt transition can be observed if the λ parameter
and hence the “correlation length” is too large (in RL) or if the η

parameter is too small, so that the glow lasts too long (in PS).
The policies obtained in this way are typically suboptimal,
especially in larger scale tasks such as bigger grid worlds, for
which the agent learns “fast but bad” in this case. It is hence
expected that a similar behavior can be observed for our method
if we increased the size of the grid.

VI. FINITE DIFFERENCE UPDATES

This work’s numerical experiments rely on a symbolic
expression (A7) for the gradient ∇t in (5) for simplicity, which
is usually not available in practice, also keeping in mind the
variety of compositions, Fig. 2, so that the agent’s memory
Û (h) is generally unknown. As explained in the discussion
of Fig. 1, the agent may then apply a measurement-based
internal loop by repeatedly preparing its memory in a state that
corresponds to the last percept st and register whether or how
often the last measurement outcome at can be recovered. This
approach can be done with either infinitesimal or finite changes
in the control vector h, where we can distinguish between
expectation value- and sample-based updates, depending on
how many internal cycles are performed between consecutive
external cycles. It should be stressed that the external cycles
in Fig. 1 represent the agent-environment interaction, resulting
in sequences of state-action pairs and corresponding rewards.
While in an elementary optimal control problem, a given
objective is to be optimized, here the environment poses at
each external cycle a separate and generally unpredictable
control problem, all of which must be addressed by the agent
simultaneously.

022303-12

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

h∗
t

ht

∇t

Dt

FIG. 12. Following the direction ∇p(at |st) of steepest ascent
(dashed line) does not necessarily lead to the shortest route Dt =
h∗

t − ht from a given control vector ht at cycle t to a location h∗
t , for

which p(at |st) becomes maximum.

Because of the small learning rate α, the update rule (4)
is in all cases local in parameter space, which reflects the as-
sumption that a physical agent cannot completely reconfigure
its “hardware” in a single instant. While it is then consistent
to apply a gradient Dt = ∇t as a local quantity in (4), from
a computational perspective, it has a few drawbacks, however.
One is that the direction of steepest accent at the current
control vector ht does not need to coincide with the direction
Dt = h∗

t − ht toward the optimum h∗
t , as illustrated in Fig. 12.

Another aspect is the vanishing of the gradient. Consider,
for example, the initialization of the action system in a mixed
state (13) as done in Fig. 4(b). In particular, the graph with
pcoh = 0 does not display any learning ability. Substituting
the corresponding �̂A = ÎA/2 in (13) and Û = Î into
(A7), we see that the reason is the vanishing gradient, ∇k =
ImTr[�̂S�̂(a)Ĥk]= 0. On the other hand, the corresponding
setup, Fig. 5(a), reveals that in this case substituting a SWAP

gate between S and A for Û provides an optimal solution (along
with an X gate if the meaning of the symbols is reversed) for
any �̂A that is obviously not found in Fig. 4(b). This failure
occurs despite the fact that the agents explore, as indicated
by the fluctuations in Fig. 4(b). To understand the difference,
note that we may generate an ε-greedy policy function by

replacing in (6) an (arbitrarily given) state �̂(s) with �̂(s)+εÎ

1+εd
,

where 0 < ε � 1 and d = TrÎ . The term with Î then
gives to (6) a contribution ∼TrA�̂(a), that is independent of
s. At the same time, it does not contribute in (A7) to the
gradient, ∇k = 0. If Dt = ∇t = 0 for all t in (4), the
agent’s learning comes to rest, however. Finite difference-
and sample-based updates here offer a possibility to explore
in parameter space the neighborhood of the present location
ht (or, colloquially, the “state”) of the agent’s memory, as
a consequence of asymmetries in the control landscape or
statistical fluctuations in the samples.

Of particular relevance is a final fixpoint (B11). Intuitively,
one would assume that (despite the compactness of the (S)U(n)
groups, that is in contrast to the potentially unbounded values
of U in RL or h in PS) once an agent has settled in a
point (B11), due to the vanishing gradient, it will not be
able to react quickly if the environment suddenly changes
its allocation of rewards (without confronting the agent with
percepts it has not perceived before). However, the learning
curves for controllable memories (16 and 32 controls) in
Fig. 6(a) demonstrate that relearning after 5 × 103 cycles is
not affected. A study of individual agents with 32 controls in
Fig. 6(a) reveals that the Euclidean length of the numerical

h+
1

h−
2

h+
3

h+
4

h−
5

h−
6

h+
7

ht

FIG. 13. Internally generated random cloud of sample controls
hk around a given control vector ht at cycle t for which binary
measurements “given st , detect at , or not” are carried out between
external cycles, yielding positive (h+

k) or negative (h−
k) outcomes.

gradient rises from 10−14 at cycle 5000 to a value >1 in only
15 cycles. Better understanding of this is left for future study.
In what follows, we outline the mentioned alternatives in some
more detail.

A. Expectation value-based updates

If the time consumed by the internal cycles is uncritical
with respect to the external cycles, the agent can obtain esti-
mates of p(at |st) from a sufficiently large number of internal
binary measurements. With these, it can either approximate
the components ∇kp(at |st ; hj) ≈ [p(at |st ; hj + δjkδhk) −
p(at |st ; hj)]/δhk of the local gradient ∇t = ∇p(at |st ; ht),
which is then substituted as Dt = ∇t into (4). Alternatively,
it can perform a global search for the location h∗

t of the
maximum of p(at |st). A possible algorithm for the latter is
differential evolution, which relies on deterministic values
p(at |st ; h) rather than noisy samples. Once an estimate for
h∗

t has been found, the difference Dt = h∗
t − ht is used in (4).

B. Sample-based updates

Reliance on expectation values may give away potential
speed gains offered by a quantum memory, which poses the
question of whether a finite number of sample measurements
is sufficient. Since individual updates in (4) are made with a
small fraction α of the whole Dt , the assumption is that the
individual statistical errors in the sampled Dt cancel out in the
long run.

As for the expectation value-based updates discussed
above, samples can be used to either create discrete estimates
∇kp(at |st ; hj) ≈ [s(hj + δjkδhk)− s(hj)]/2 for the com-
ponents k of the local gradient ∇t = ∇p(at |st ; ht), where
s = s(ht) = ±1 depending on whether the outcome of the
binary measurement (at |st ; ht) is positive or not. Alternatively,
for finite difference updates, one may consider a neural gas
[28] inspired approach depicted in Fig. 13. In this approach,
the differences

D(n)
t = 1

n

n∑
k=1

skhk = n − 1

n
D(n−1)

t + 1

n
snhn (18)

022303-13

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

between the sampled centers of positive [sk = s(hk) = +1,
i.e., hk = h+

k] and negative outcomes (sk = s(hk) = −1,
i.e., hk = h−

k) of the binary measurements (at |st ; hk) are then
applied in (4). Although one could store a current estimate D(n)

t

for each observed state-action pair (at |st) and merely update it
according to (18) with each new measurement point sn+1hn+1,
this would give away the generalization capability described in
Sec. V A 3. One would hence need to perform n internal cycles
with the POVM-based internal loop between each external
cycle. The hk could be drawn, e.g., from a Gaussian centered
around the respective ht . The variance of this Gaussian could
be gradually decreased with the number of external cycles to
increase the locality (local resolution) of the cloud.

Figure 12 gives the misleading impression that finite dif-
ference updates are superior to gradient-based methods. To
give an illustrative counterexample, one could think of a
two-dimensional h = (hx,hy) and a control landscape p(h)
modeled by the monotonically increasing height p(l) along
the length l of a tape of paper bent into a spiral and placed
onto the dashed line in Fig. 12, such that one end with
p(0) = 0 is located at ht and the other one at h∗

t . Here, a
gradient-based method would safely follow the long path on
the tape’s upper edge, whereas a finite difference method would
trade a potential speedup with the risk of missing the paper at
all trials. Since a comparison of state-of-the-art optimal control
methods based on noisy samples for the agent’s learning would
go beyond the scope of this work, we here restrict ourselves
to these sketchy lines of thought, whose numerical study is
pending, and leave open the question of what the best method
is for a given task.

A characteristic shared by the loops of Fig. 1 and optimal
control setups is the need of an experimental “mastermind”
who controls the controls. An agent which is supposed to
act autonomously would be required to accomplish this by
itself, ideally in a “natural” or “organic computing” sense.
An elementary example from everyday life are “desire paths”
which form or dissipate, depending on their usage and without
a designated planner.

VII. SUMMARY AND OUTLOOK

In summary, we have considered a basic PS-inspired
quantum agent scheme and analyzed its performance for the
invasion game and grid world tasks analogous to Refs. [7,8,15].
The numerical results show that similar behavior can be
observed for the quantum agent, as long as the memory
is not underactuated. This is not obvious because of the
fundamental difference in the number of free parameters. If NS

and NA denote the number of possible percepts and actions,
respectively, then in classical tabular action value RL methods,
the estimated values of all percept-action pairs are combined
to a (NS × NA) matrix, i.e., we have (NSNA) real parameters.
If we encoded in our scheme each percept and action category
by a separate subsystem, whose dimensionalities correspond
to the number of values, the respective category can adopt, then
Û is an at least U (N = NSNA) matrix for which we are faced
with (NSNA)2 real parameters.

Our agent inherited from PS the absence of a value function
as expectation of a discounted sum of future rewards, which
distinguishes it from standard RL algorithms. Moreover, our

examples may have also allowed us to omit the learning
rate α as in PS, which here merely served as a constant
reward rescaling. In value-function-based RL algorithms with
deterministic environments, a constant α = 1 is optimal,
whereas α is gradually decreased to 0 to ensure convergence
in stochastic (but on average time-independent) environments.
In contrast, our examples also include deterministic time-
dependent environments whose rewarding changes abruptly.

For its decision making, the agent can query two oracles: its
internal memory and the external environment. One important
purpose of the internal “thinking” is to reduce the number of
external queries, since in practice, the (potentially hazardous)
environment is the more expensive oracle to query. On the
other hand, the time associated with internal queries may
be detrimental when the environment changes over time.
References [14,29], for example, implement an adaptation
of Grover search [30] by applying a Szegedy-type quantum
walk [31,32] on a Hilbert space HSA ⊗ HSA, where HSA is
spanned by the clip basis states |cj 〉. Internal queries have been
formalized in [14,29] as mixing of a classical Markov chain
(which in turn formalizes an elementary ECM query). The
quantum walk implementation of the mixing allows a quadratic
reduction in the number of elementary ECM queries required
for this mixing. The resulting speedup in internal “thinking
steps” thus refers to composite random walks in the ECM
(such as reflection [7]) that are absent in basic PS, where each
walk between successive environmental interactions reduces
to traversing one single ECM edge. In its basic form, our
scheme also applies just one single query of the memory
Fig. 2 (although Fig. 1 allows for optional internal feedback
loops in principle). In addition, our approach follows the
tradition of gradient-based methods and must be distinguished
from analytically defined quantum algorithms such as Grover
search.

While each individual memory query in our scheme re-
sembles circuit-based quantum computing, the quantum walk
sped-up Markov chain mixing in Ref. [14,29] appears in a
wider sense to be more closely related to quantum annealing,
which has recently attracted interest for RL [33,34]. This in
turn raises the question of the relation between the nature of
typical optimization problems and those of agents coping with
environments. In the latter case, for example, the learning of
a good policy only for percepts which are “typical” and have
thus been encountered sufficiently often in the past, shares
features with “soft computing,” where it is sufficient to find
a good rather than an exact solution, where the latter would
here consist in a policy that is optimal for all possible percepts.
One may think of, e.g., simplifying a symbolic mathematical
expression: While all transformation steps themselves must be
exact, there are no strict rules, as far as the best way of its
formulation is concerned.

Apart from a potential speedup in decision making, the
nonorthogonality of quantum states could form a natural basis
for (a) implementing generalization during state initialization,
as we have shown in the never-ending-color scenario in
Sec. V A 3, and (b) balancing exploration and exploitation
during state measurement. An open problem is how this can
be scaled up to allow tasks such as dimensionality reduction
or feature learning, which are relevant in “big data” machine
learning. Finally, an interesting direction for future work is

022303-14

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

to incorporate a framework of quantum walks and networks
[31,32,35–37] with the goal to find physically feasible alterna-
tives to a computational determination of the gradients.

ACKNOWLEDGMENTS

This work was supported in part by the Austrian Science
Fund (FWF) through Grant No. SFB FoQuS F4012, and by the
Templeton World Charity Foundation (TWCF) through Grant
No. TWCF0078/AB46.

APPENDIX A: UPDATING THE MEMORY Û

In Appendix A, we focus on a model-based (i.e., symbolic)
determination of the gradient ∇Û (h). The exact form of
the gradient depends on the parametrization. For example, if
Û (h) = e−iĤ (h) is given by some Hermitian Ĥ , then

∇Û =
∫ 1

0
e−ixĤ (−i∇Ĥ)e−i(1−x)Ĥ dx. (A1)

For small Ĥ , we can expand the exponentials in Ĥ to lowest
order, and the approximation ∇Û ≈ −i∇Ĥ holds.

In the case of a continuous time dependence, the vector
h can be replaced by a function h(t), with which a unitary
propagator from time t1 to time t3 is given as a positively time-
ordered integral

Û (t3,t1) = T e
−i

∫ t3
t1

dt2h(t2)Ĥ (t2) (A2)

and

δÛ (t,0)

δh
(t1) = −iÛ (t,t1)Ĥ (t1)Û (t1,0). (A3)

If Ĥ (t) = ∑
k h̃k(t)Ĥk is expanded in terms of some

fixed Hamiltonians Ĥk , then with hk = hh̃k , (A2) be-

comes Û (t3,t1) = T e
−i

∫ t3
t1

dt2
∑

k hk(t2)Ĥk , and (A3) is replaced
with δÛ (t,0)

δhk
(t1) = −iÛ (t,t1)ĤkÛ (t1,0). Navigation on unitary

groups becomes discretized if only a restricted (finite) set of
Hamiltonians Ĥk can be implemented at a time rather than an
analytically time-dependent Hamiltonian Ĥ (t), so that only
one of the h̃k is nonzero for a given t . A known example
is the alternating application of two fixed Hamiltonians [26],
Ĥ2k = Ĥ (2) and Ĥ2k+1 = Ĥ (1) (k = 0,1,2, . . . ,� n

2 �), for a set
of times to be determined from the target unitary [38]. In this
discrete case as defined by a piecewise constant normalized
Ĥ in (A2), the function h(t) can be replaced with a vector h,
and the functional derivatives with respect to h(t) reduce to
gradients with respect to h.

1. Adding layer after layer

We can update the present unitary Û by multiplying it from
the left with a new layer Û (δh) after each cycle,

Û ← Û (δh)Û . (A4)

If Û (δh) = e−i
∑

k δhkĤk is a small modification close to the
identity, then the mentioned approximation of (A1) gives
(∇Û)k ≈ −iĤkÛ . This is of advantage if the agent or its
simulation is able to store only the present Û and not the history

of updates (layers). The components of (5) then become

∂p(a|s)

∂hk

= 2Im〈Û †�̂(a)ĤkÛ 〉. (A5)

2. Fixed number of layers

In our numerical examples, we consider a discretized
memory model, for which (A2) reduces to a product of n

unitaries

Û = Ûn . . . Û2Û1, Ûk = e−ihkĤk , (A6)

which simplifies the determination of the gradient,
since (∇Û)k = −iÛ Ĥk(tk), where Ĥk(tk) =
(Ûk · · · Û1)†Ĥk(Ûk · · · Û1), so that the components of (5)
now become

∂p(a|s)

∂hk

= 2Im〈Û †�̂(a)ÛĤk(tk)〉. (A7)

In this work, we use alternating layers defined by two fixed
Hamiltonians Ĥ (1) and Ĥ (2) as mentioned at the beginning of
this section.

APPENDIX B: NUMERICAL AND
MEASUREMENT-BASED OBJECTIVES

1. Distance and uniformly averaged fidelity

Consider an n-level system and two unitary operators Û and
ÛT, where Û = Û (h) depends on an (unrestricted) external
control field h(t), and ÛT is a desired target. Their (squared)
Euclidean distance as induced by the Hilbert-Schmidt dot
product is given by

D ≡ ‖Û − ÛT‖2 = Tr[(Û − ÛT)†(Û − ÛT)]

= 2n − 2ReTr(Û †
TÛ) ∈ [0,4n]. (B1)

If Û (h) is controllable in the sense that at least one h(t) exists
such that Û (h) = ÛT, then (B1) has the set {0,4, . . . ,4n} as
possible extremal values (i.e., δD

δh
= 0), where the values 0 and

4n are attained for Û = ±ÛT, while the remaining extrema
are saddle points [39]. A measure insensitive to global phases
Û = eiϕÛT is the average fidelity defined by

F ≡ |〈�|Û †
TÛ |�〉|2 = n + |Tr(Û †

TÛ)|2
n(n + 1)

, (B2)

where the overline denotes uniform average over all |�〉
[40,41]. Note that F ∈ [(n + 1)−1,1] for n > 1, and F = 1
for n = 1. Both (B1) and (B2) are determined by the complex

cos�(Û ,ÛT) ≡ Tr(Û †
TÛ)√

Tr(Û †Û)
√

Tr(Û †
TÛT)

= Tr(Û †
TÛ)

n
, (B3)

which is confined to the complex unit circle and whose
expectation 〈| cos�(Û ,ÛT)|2〉= n−1 for uniform random Û

drops to zero with growing n.
If in (B2), the averaging is restricted to a d-dimensional

subspace P, we must replace (B2) with

FP ≡ |〈�|M̂|�〉|2(P) = Tr(M̂†M̂) + |Tr(M̂)|2
d(d + 1)

, (B4)

022303-15

JENS CLAUSEN AND HANS J. BRIEGEL PHYSICAL REVIEW A 97, 022303 (2018)

where M̂ = P̂ Û
†
TÛ P̂ , with P̂ being the projector onto P.

Note that FP ∈ [max(0,2d−n)
d(d+1) ,1] for n > 1 [since Tr(M̂†M̂) =

Tr(P̂TP̂U) ∈max(0,2d − n) with P̂T = ÛTP̂ Û
†
T, P̂U =

Û P̂ Û †], and FP = 1 for n = 1. While for a one-dimensional
P̂ = |�〉〈�|, (B4) reduces to F� = |〈�|Û †

TÛ |�〉|2, the other
limit d = n recovers (B2).

If in (B4), Û = ÛSB couples the quantum system S to a bath
B, then we define a projector �̂ = ÛTP̂ |�〉〈�|P̂ Û

†
T ⊗ ÎB and

generalize (B4) to

FP ≡ TrSB[Û P̂ |�〉�̂B〈�|P̂ Û †�̂]
(P)

(B5)

=
〈

TrS(M̂†M̂) + (TrSM̂)†(TrSM̂)

d(d + 1)

〉
B

, (B6)

where 〈· · · 〉B ≡TrB[�̂B(· · ·)] with a fixed bath state �̂B.
Replacing Û |�〉〈�|Û † in (B2) with the output M(|�〉〈�|)

of a quantum channel generalizes (B2) to [40]

F = 〈�|Û †
TM(|�〉〈�|)ÛT|�〉 = n + ∑

k |Tr(Û †
TĜk)|2

n(n + 1)
,

(B7)
where Ĝk are the Kraus operators of the decomposition of the
channel map M(�̂) = ∑

k Ĝk�̂Ĝ
†
k . Note that a change Ĝ′

k =∑
j Vkj Ĝj of the Kraus operators as described by a unitary

matrix V leaves (B7) invariant.

2. Percept statistics-based fidelity

The uniform average in (B7) can be generalized to an
arbitrary distribution p(|�k〉) of possible input states |�k〉,

�̂in =
∑

k

p(|�k〉)|�k〉〈�k|, (B8)

that reflects the statistics of their occurrence in different
instances of applications of the device (external cycles in a
control loop). This generalizes (B7) to

F�̂in ≡ p(ÛT) =
∑

k

p(ÛT||�k〉)p(|�k〉), (B9)

p(ÛT||�k〉) = 〈�k|Û †
TM(|�k〉〈�k|)ÛT|�k〉, (B10)

which is just the total probability p(ÛT) of correctly detecting
a ÛT-transformed pure (but unknown) input state drawn from
a distribution (B8). Once p(ÛT) = 1, the channel’s effect is
indistinguishable from that of ÛT for the set of possible inputs
|�k〉, (i.e., those for which p(|�k〉) > 0). The case p(ÛT)�1
is relevant from a numerical and experimental point of view.
Rare inputs |�k〉, for which 0 < p(|�k〉) � 1, will hardly
affect p(ÛT) in a control loop, which relaxes the demands
on the channel compared to the uniform average (B7). The
channel optimization itself is thus economized in the sense
that it is required to perform well only on typical rather than all
inputs.

Here, we consider a navigation of Û in the above-
mentioned discretized case, Û = Û (h), that starts at the
identity Û (h = 0) = Î and from there undertakes a gradient-
based maximization of p(ÛT) as defined in (B9) to a point

where

∇p(ÛT) = 0. (B11)

The control vector h typically represents system variables and
not those of the bath. Rather than solving for the parameters
[38] for which the scheme [26] yields a desired given unitary,
we search parameters, for which the unitary, whose specific
form we are not interested in, solves a given task.

3. Optimal memory navigation and constrained optimization

While here we have discussed and compared concrete
types of algorithms, a more fundamental question concerns
the optimality and derivation of general (e.g., speed) limits
of the learning process. Although the physical time is given
as the sum of the agent and environment response times over
each cycle, one may restrict to counting the number of (a)
memory cycles in total, (b) external cycles only (c) episodes
or (d) parameter updates δh of the memory Û (h), depending
on what the most critical criterion is. Not only should the
navigation of Û from the identity to a point (B11) follow
an optimal trajectory, but also the navigation of the percept
states by a given Û should be such that the individual physical
memory evolution times become minimum. Such demands
may conflict with restrictions on the practical implementability
and complexity of the memory. Since these questions are
beyond the scope of this work, in what follows we restrict
ourselves to outline a connection to constrained optimization
as a possible formal approach.

Assuming the Schrödinger equation d
dt

Û = −iĤ Û and a
fixed energy-type constraint ‖ d

dt
Û‖2 = Tr(Ĥ 2) !=E2, the length

of a curve in the space of unitaries becomes

L =
∫ T

0

∥∥∥dÛ

dt

∥∥∥dt
!= ET, (B12)

where T is the arrival (or protocol) time, Û (t = T) = ÛT

[42,43]. (A “protocol” refers to a prescription for the time
dependence of h, Ĥ , or Û .) In addition to (or instead of) the
protocol time T , we may also consider

C ≡
∫ T

0

∥∥∥dĤ

dt

∥∥∥dt (B13)

as a measure of the complexity of the protocol that integrates
the changes that have to be made on Ĥ via the control fields.

If the optimization problem comprises two objectives such
as minimizing a distance D or maximizing a fidelity F with
minimum amount of (B12) or (B13), then an approximate
approach consists in first finding an h(t) that optimizes an
objective function J1 under a fixed constraint J2. Here, J1

represents D or F , while J2 may represent L or C. This can
be formulated as an Euler-Lagrange equation

δJ1

δh
− λ

δJ2

δh
= 0, (B14)

where the Lagrange multiplier λ must finally be substituted
with the given constant such as L or C. This optimization
is then repeated with stepwise decreased L or C, until the
deterioration of the achievable J1 exceeds a certain threshold.
Equivalently, (B14) may also be thought of optimizing J2 under
the constraint of constant J1. Equation (B14), which contains

022303-16

QUANTUM MACHINE LEARNING WITH GLOW FOR … PHYSICAL REVIEW A 97, 022303 (2018)

both derivatives in a symmetric way, merely states the linear
dependence of the functional derivatives at an extremal point
h in the function space {h}.

In the discrete case, the time integrals in Eqs. (B12) and
(B13) reduce to sums over time intervals with constant Ĥ ,
and in (B13) we assume that each jump of Ĥ gives a fixed
finite contribution. To gain some intuition into the meaning of
C, we may think of navigating through a classical rectangular
grid. There is a set of shortest paths connecting the diagonal

corners, but they are not equivalent with respect to the number
of turns the navigator has to make along its way. In the quantum
context, the number of switches equals the number of intervals
with constant Ĥ , which may be thought of as “gates.” In
contrast to an analytical design of quantum circuits, the circuit
is here generated numerically, however. Since each switch to
a different Ĥ changes the instantaneous eigenbasis, we may
thus think rather of “layers,” drawing an analogy to classical
artificial neural networks [44].

[1] Nature (London) 521, 435 (2015), special issue on machine
intelligence.

[2] Science 349, 248 (2015), special issue on artificial intelligence.
[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[4] P. Wittek, Quantum Machine Learning (Elsevier, Amsterdam,
2014).

[5] M. Schuld, I. Sinayskiy, and F. Petruccione, Contemp. Phys. 56,
172 (2015).

[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, Nature 549, 195 (2017).

[7] H. J. Briegel and G. D. las Cuevas, Sci. Rep. 2, 400 (2012).
[8] J. Mautner, A. Makmal, D. Manzano, M. Tiersch, and H. J.

Briegel, New Gener. Comput. 33, 69 (2015).
[9] D. D’Alessandro, Introduction to Quantum Control and Dynam-

ics (Chapman & Hall/CRC, Boca Raton, FL, 2008).
[10] H. M. Wiseman and G. J. Milburn, Quantum Measurement

and Control (Cambridge University Press, Cambridge, UK,
2009).

[11] D. Dong and I. R. Petersen, IET Control Theory Appl. 4, 2651
(2010).

[12] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köcken-
berger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-
Herbrüggen, D. Sugny, and F. K. Wilhelm, Eur. Phys. J. D 69,
279 (2015).

[13] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, UK, 2002).

[14] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado,
and H. J. Briegel, Phys. Rev. X 4, 031002 (2014).

[15] A. A. Melnikov, A. Makmal, and H. J. Briegel, arXiv:1405.5459.
[16] A. A. Melnikov, A. Makmal, V. Dunjko, and H. J. Briegel,

Sci. Rep. 7, 14430 (2017).
[17] Ø. F. Bjerland, Projective simulation compared to reinforcement

learning, Master’s thesis, University of Bergen, Norway, 2015
(unpublished).

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (MIT Press, Cambridge, MA, 1998).

[19] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach (Prentice Hall, Englewood Cliffs, NJ, 2009).

[20] D. Dong, C. Chen, H. Li, and T.-J. Tarn, IEEE Trans. Syst. Man,
Cybern. B, Cybern 38, 1207 (2008).

[21] J. Bang, J. Ryu, S. Yoo, M. Pawlowski, and J. Lee, New J. Phys.
16, 073017 (2014).

[22] J. Clausen, arXiv:1507.08990.
[23] J. Clausen, G. Bensky, and G. Kurizki, Phys. Rev. Lett. 104,

040401 (2010).
[24] H. van Seijen, A. R. Mahmood, P. M. Pilarski, M. C. Machado,

and R. S. Sutton, J. Mach. Learn. Res. 17, 5057 (2016).

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature
(London) 323, 533 (1986).

[26] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[27] M. H. Goerz, K. B. Whaley, and C. P. Koch, EPJ Quantum

Technol. 2, 21 (2015).
[28] T. M. Martinetz and K. J. Schulten, in Proceedings of the

1991 International Conference on Artificial Neural Networks
(Icann-91), Espoo, Finland, 24–28 June, 1991, edited by K.
Mäkisara, O. Simula, J. Kangas, and T. Kohonen (Elsevier,
North-Holland, Amsterdam, 1991), pp. 397–402; B. Fritzke, in
Advances in Neural Information Processing Systems 7, NIPS
Conference, Denver, Colorado, USA, 1994, edited by G. Tesauro,
D. S. Touretzky, and T. K. Leen (MIT Press, Cambridge, MA,
1995), pp. 625–632.

[29] V. Dunjko, N. Friis, and H. J. Briegel, New J. Phys. 17, 023006
(2015).

[30] L. K. Grover, in Proceedings of the 28th Annual ACM Sym-
posium on the Theory of Computing, SOTC ’96, Philadelphia,
Pennsylvania, USA, May 22–24, 1996 (ACM, New York, 1996),
pp. 212–219.

[31] M. Szegedy, in Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science, (FOCS 2004),
17–19 October 2004, Rome, Italy (IEEE, Piscataway, NJ, 2004),
pp. 32–41.

[32] F. Magniez, A. Nayak, J. Roland, and M. Santha, SIAM J.
Comput. 40, 142 (2011).

[33] D. Crawford, A. Levit, N. Ghadermarzy, J. S. Oberoi, and
P. Ronagh, arXiv:1612.05695.

[34] A. Levit, D. Crawford, N. Ghadermarzy, J. S. Oberoi, E.
Zahedinejad, and P. Ronagh, arXiv:1706.00074.

[35] M. Schuld, I. Sinayskiy, and F. Petruccione, Quant. Info. Proc.
13, 2567 (2014).

[36] M. Schuld, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 89,
032333 (2014).

[37] J. Biamonte, M. Faccin, and M. D. Domenico,
arXiv:1702.08459.

[38] G. Harel and V. M. Akulin, Phys. Rev. Lett. 82, 1 (1999).
[39] H. Rabitz, M. Hsieh, and C. Rosenthal, Phys. Rev. A 72, 052337

(2005).
[40] L. H. Pedersen, N. M. Møller, and K. Mølmer, Phys. Lett. A

367, 47 (2007).
[41] C. Dankert, Efficient simulation of random quantum states and

operators, Master’s thesis, University of Waterloo, Ontario,
Canada, 2005 (unpublished).

[42] B. Russell and S. Stepney, Phys. Rev. A 90, 012303 (2014).
[43] X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo, and M.

Mohseni, Phys. Rev. Lett. 114, 170501 (2015).
[44] R. Rojas, Neural Networks: A Systematic Introduction (Springer-

Verlag, Berlin, 1996).

022303-17

https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/srep00400
https://doi.org/10.1038/srep00400
https://doi.org/10.1038/srep00400
https://doi.org/10.1038/srep00400
https://doi.org/10.1007/s00354-015-0102-0
https://doi.org/10.1007/s00354-015-0102-0
https://doi.org/10.1007/s00354-015-0102-0
https://doi.org/10.1007/s00354-015-0102-0
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1049/iet-cta.2009.0508
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1103/PhysRevX.4.031002
https://doi.org/10.1103/PhysRevX.4.031002
https://doi.org/10.1103/PhysRevX.4.031002
https://doi.org/10.1103/PhysRevX.4.031002
http://arxiv.org/abs/arXiv:1405.5459
https://doi.org/10.1038/s41598-017-14740-y
https://doi.org/10.1038/s41598-017-14740-y
https://doi.org/10.1038/s41598-017-14740-y
https://doi.org/10.1038/s41598-017-14740-y
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1088/1367-2630/16/7/073017
https://doi.org/10.1088/1367-2630/16/7/073017
https://doi.org/10.1088/1367-2630/16/7/073017
https://doi.org/10.1088/1367-2630/16/7/073017
http://arxiv.org/abs/arXiv:1507.08990
https://doi.org/10.1103/PhysRevLett.104.040401
https://doi.org/10.1103/PhysRevLett.104.040401
https://doi.org/10.1103/PhysRevLett.104.040401
https://doi.org/10.1103/PhysRevLett.104.040401
https://dl.acm.org/citation.cfm?id=2946645.3007098
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1140/epjqt/s40507-015-0034-0
https://doi.org/10.1140/epjqt/s40507-015-0034-0
https://doi.org/10.1140/epjqt/s40507-015-0034-0
https://doi.org/10.1140/epjqt/s40507-015-0034-0
https://doi.org/10.1088/1367-2630/17/2/023006
https://doi.org/10.1088/1367-2630/17/2/023006
https://doi.org/10.1088/1367-2630/17/2/023006
https://doi.org/10.1088/1367-2630/17/2/023006
https://doi.org/10.1137/090745854
https://doi.org/10.1137/090745854
https://doi.org/10.1137/090745854
https://doi.org/10.1137/090745854
http://arxiv.org/abs/arXiv:1612.05695
http://arxiv.org/abs/arXiv:1706.00074
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
http://arxiv.org/abs/arXiv:1702.08459
https://doi.org/10.1103/PhysRevLett.82.1
https://doi.org/10.1103/PhysRevLett.82.1
https://doi.org/10.1103/PhysRevLett.82.1
https://doi.org/10.1103/PhysRevLett.82.1
https://doi.org/10.1103/PhysRevA.72.052337
https://doi.org/10.1103/PhysRevA.72.052337
https://doi.org/10.1103/PhysRevA.72.052337
https://doi.org/10.1103/PhysRevA.72.052337
https://doi.org/10.1016/j.physleta.2007.02.069
https://doi.org/10.1016/j.physleta.2007.02.069
https://doi.org/10.1016/j.physleta.2007.02.069
https://doi.org/10.1016/j.physleta.2007.02.069
https://doi.org/10.1103/PhysRevA.90.012303
https://doi.org/10.1103/PhysRevA.90.012303
https://doi.org/10.1103/PhysRevA.90.012303
https://doi.org/10.1103/PhysRevA.90.012303
https://doi.org/10.1103/PhysRevLett.114.170501
https://doi.org/10.1103/PhysRevLett.114.170501
https://doi.org/10.1103/PhysRevLett.114.170501
https://doi.org/10.1103/PhysRevLett.114.170501

