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Automated quantum operations in photonic qutrits
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We report an experimental implementation of automated state transformations on spatial photonic qutrits
following the theoretical proposal made by Baldijão et al. [Phys. Rev. A 96, 032329 (2017)]. A qutrit state is
simulated by using three Gaussian beams, and after some state operations, the transformed state is available in the
end in terms of the basis state. The state transformation setup uses a spatial light modulator and a calcite-based
interferometer. The results reveal the usefulness of the operation method. The experimental data show a good
agreement with theoretical predictions, opening possibilities for explorations in higher dimensions and in a wide
range of applications. This is a necessary step in qualifying spatial photonic qudits as a competitive setup for
experimental research in the implementation of quantum algorithms which demand a large number of steps.
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I. INTRODUCTION

Quantum states of high dimensions (dimension d > 2) are
important in many aspects of quantum theory, such as funda-
mental tests of quantum physics [1–5], quantum information
and computation [6,7], and quantum key distribution [8,9].
Photonic qudits prepared in terms of angular momentum states
or photon transversal paths have been the subject of dif-
ferent quantum mechanical investigations. Other works have
reconstructed qudit density matrices via quantum tomography
[10–14], quantified the amount of entanglement [15], realized
entanglement witnesses and entanglement concentration in the
laboratory [16–18], simulated quantum open system dynamics
[19], produced cloning of qudit states [20], and implemented
noncontextuality tests [3,21,22].

A common technique in some of the previous works is
the preparation of so-called slit qudits: d slits placed in the
transverse path of photons allow one to define a d-dimensional
space state where quantum superpositions can be optically ma-
nipulated and tested. The main advantage of this approach is the
possibility of high-dimensional state generation by increasing
the number of slits [23–25]. If two multislit sets are placed in
the path of two noncollinear photons generated by spontaneous
parametric down-conversion (SPDC), a two-qubit photonic
path state is prepared. A quantum state can be propagated
immediately after the multislit planes by using a lens set, and
spatial correlation at the multislit planes are also propagated
to the image planes [26]. Typically, the characterization of
slit qudits is done in one of the following planes: image or
Fourier. The first reads the modulus of the diagonal terms of
the density operator in the slit basis, while the second serves
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to test coherence. However, a central issue in working with a
qudit in slit states is that it is not a simple approach to apply
a quantum operation and transform these states into a new
superposition of the basis states. For this reason, projective
measurements in different bases require operations at the
Fourier plane which discard the encoding on the slit states
[21,27]. This technique permits us to acquire the probability
of the projection operation, but it does not deliver the projected
qudit in a superposition state in the basis states, imposing
barriers to the application of such a technique. In recent years,
the manipulation of those slit qudits received the aid of spatial
light modulators (SLMs), used to modulate both the phase
and amplitude of each path mode [10,16,27,28], which allows
automation of the processes, but did not bypass the problem
of realizing nondiagonal operations. Here, we demonstrate
the implementation of a recently proposed technique [29]
in order to manipulate spatial qudit states. After reviewing
the central points of this technique, we show the realization
of projections over some representative quantum states, as
well as cyclic permutation operators on a qutrit. One central
advantage is that the decision of which transformation to
apply is communicated to the system by programming the
SLM. This is an important step in the automatization of
such a setup, allowing for flexibility and a certain degree of
integrability in sequential quantum operations. The technique
presented here tests important quantum state operations by
using three Gaussian laser beams to simulate a qutrit state in
a path variable instead of the usual slit states. This system is
isomorphic with a qutrit Hilbert space, and since the operations
are independent of the initial state, the results presented here
are the same as expected for a single-photon qutrit encoded
at transverse Gaussian paths. State transformations of qutrits
encoded in the Gaussian spatial modes of the photon state
usually require handmade interferometers [3,30]. Here, an
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interferometer is used only to sum up all the paths erasing
which path information, while diffraction gratings displayed at
the programmable SLM screen are responsible for defining the
operation being implemented. A review of these steps follows
below.

II. AUTOMATED OPERATIONS IN SINGLE-PHOTON
MULTIPATH QUTRIT

Let us consider a single-photon source in which three
parallel transverse Gaussian paths can be generated. This
system is represented in the preparation frame of Fig. 1.
Here, an attenuated Gaussian laser beam, having one photon
per mode and propagating in the ẑ direction, passes through
the calcite beam displacers (that separate the horizontal and
vertical polarization components by 3 mm), half- and quarter-
wave plates, and a polarizing beam splitter (PBS). The photon
path state is given by

|�〉 =
2∑

ν=0

Aν |ν〉x ⊗ |0〉y ⊗ |H 〉, (1)

where |H 〉 represents the horizontal polarization state, while
|0〉y represents a Gaussian path state in the ŷ direction centered
in y = 0, Aν are the amplitudes associated with the path state
components ν and |ν〉x = ∫ ∞

−∞ dx exp {− [x−νd]2

2σ 2 }|1x〉, where
|1x〉 is the Fourier transform of the Fock state |1q〉, q is the
photon transverse momentum, σ is the width of the Gaussian
transverse paths, and d is the spatial distance between the
center of the paths. The states {|ν〉x} form a basis in the
three-dimensional state space [29] and the state in Eq. (1)
represents a tensor product of a coherent superposition of the
possible transverse path state components |ν〉x and a fixed y

mode and polarization. The polarization can be regarded as
an auxiliary system while the main system initially prepared
in the x̂-direction paths will be transformed to paths that are
qutrits in the ŷ direction. The first step of the transformation
is to use a well-chosen ŷ-oriented diffraction grating centered
at each x = ν, implementing |ν〉x ⊗ |0〉y �−→ ∑

m cmν |ν〉x ⊗
|m〉y . A spatial filter is used to select the new Gaussian paths
in the ŷ direction by filtering only the diffraction orders
−1, 0, and 1. After the spatial filter, the state becomes
|� ′〉 ∝ ∑1

m=−1

∑2
ν=0 cmνAν |ν〉x ⊗ |m〉y ⊗ |H 〉, where |m〉y

represents one Gaussian beam centered in y = m. The three
initial paths can, in principle, generate nine Gaussian paths,
as shown in Fig. 1. The superposition of the three paths with
Gaussian transversal profiles along x̂ is necessary to obtain a
qutrit path state in the ŷ direction. It can be achieved by using
an interferometer based on calcite beam displacers, as shown
in Fig. 1. After the spatial filtering, a half-wave plate (HWP)
is positioned in the x̂ paths 1 and 2 in order to perform the
polarization transformation |H 〉 �→ |V 〉, where |V 〉 stands for
the vertical polarization state. In this way only path 0 suffers
a spatial shift after the beam displacer, |0〉x �→ |1〉x . At this
stage, the beams do not have the same polarization state. A
HWP oriented at 22.5◦ with respect to the horizontal axis
(x-direction) and a PBS is used to select the |H 〉 polarization
component, at the cost of half of the intensity. This same
procedure is repeated to recombine the two remaining beams.
After the second PBS we finally disentangle x̂, ŷ, and the

polarization, and obtain the transformed state in ŷ space,

|�〉f ∝
1∑

m=−1

(A0cm0 + A1cm1 + A2cm2)|m〉y. (2)

Equation (2) shows that this setup is capable of implementing a
large class of state transformations in an automated way, since
the initial-state amplitudes are modified by the appropriate
choice of diffraction gratings at the initial path ν. As pointed
out above, the polarization degree of freedom is an auxiliary
degree of freedom to perform transformations in the transverse
path modes, since these transformations are independent of the
number of photons in each path mode. The attenuated laser
beam in the setup of Fig. 1 can be substituted by an intense
laser beam, such that optical intensities can be detected instead
of the detection of the single photon. An intense laser beam
was used to demonstrate the ability of our setup to realize qutrit
operations.

III. RESULTS AND DISCUSSIONS

We now report the implementations of projections onto
specific subspaces, as well as some basic operations such as
identity and permutations. Let us first consider the projection
in the computational basis state |1〉 = (0,1,0)T , where the
superscript T means transposition. This operation is very
simple for the usual slit setup, so it is important to show that
this general method can also achieve it. In our experimental
setup, this means that the interferometer should discard any
signal coming from paths ν = 0,2, while the path ν = 1 should
feed the output state m = 0. To achieve such requirements, we
implement a blazed diffraction grating (BZDG) [29] in the 0
and 2 paths, which linearly increases (or decreases) the phase
from 0 to 2π (2π to 0) inside a period. Such a periodic phase
profile diffracts each of the beams at the 0 (2) path to the −1
(+1) diffraction order [29]. If we set the period to be short
enough, these diffracted orders can be blocked by the spatial
filter inserted in the interferometer. This procedure to block
some photon paths is also automated, through the SLM, and
will be present in almost all cases shown here. On the other
hand, the path ν = 1 needs only to be reflected by the SLM, i.e.,
with no diffraction. Projections on the remaining states of the
computational basis, |0〉 =(1,0,0)T and |2〉 =(0,0,1)T , follow
ideas similar to the last one. For the first one, we use at path
0 a crescent BZDG with phase values 0 to 2π in a period T ,
so this path state component is diffracted in the order +1. This
period must be large enough to avoid blocking by the spatial
filter, while paths 1 and 2 are blocked as described above. The
projection on the last state uses a decreasing BZDG at path 2,
and components 0 and 1 are blocked.

Figures 2(a)–2(c) show the experimental results of the use
of our quantum operation setup for projections at the com-
putational basis. The optical beams are prepared in the initial
state |ψi〉 = |1〉x and the apparatus performs the projection
in each of the three computational basis states. The CCD
camera registers the transverse profile of the transmitted optical
beams at the end of the interferometer (Fig. 1). We integrated
the optical profile in the x̂ transverse direction and called it
the integrated transverse optical profile (ITOP). We obtain a
significant readout only in the case of projection in the same
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FIG. 1. Experimental setup. State preparation consists of wave plates, calcite x̂-beam displacers, and a polarizer, in order to prepare |�〉
shown in (1). The transformation apparatus consists in actuating in each path with a specific ŷ-diffraction grating, using the programmable
phase-only reflection SLM (Hamamatsu, model LCOS-SLM X1046801), and a sequence of wave plates, calcite x̂-beam displacers, PBS,
and spatial filters in order to recombine the beam transformed as |� ′〉 shown in (2). In the right-hand panel, the effect of the spatial filter is
highlighted, with each of the three x̂ paths generating three ŷ orders of diffraction. After a collimating lens, the final readout is accomplished
by a CCD.

initial state [Fig. 2(a)], while in the case of orthogonal state
projection we just observe a noise level signal [Figs. 2(b) and
2(c)], as expected. Notice that the final path state is well fitted
by a Gaussian profile, as showed by the continuous red line in
Fig. 2(a).

We can also perform projections at the superposition states
|ψf 〉 =(1,0,1)T and |ψf 〉 =(1,0, − 1)T . In the first case, we
use triangular phase grating profiles of height 2π and period
T at paths 0 and 2 [29]. Such a grating consists of a crescent
linear function at a spatial interval [0,T /2] and a decreasing
linear function at [T/2,T ]. In this condition, c1ν = c−1ν , while
c0ν = 0. Path 1 is blocked, as explained above. Figures 2(d) and
2(e) show the final ITOP when the initial states are |ψi〉 = |0〉x
and |ψi〉 ∝ |0〉x + |1〉x , respectively. In order to implement
projection at the state |ψf 〉 = (1,0, − 1)T , we could perform
the same operation proposed for |ψf 〉 = (1,0,1)T , except we
now need to add a π phase at some diffraction orders. In this
case, the use of an extra transmission phase-only SLM would
be a good option, but an alternative way was chosen. At paths 0
and 2 we use a binary phase grating (BPG) of height π and pe-
riod T [29]. Figures 2(f) and 2(g) show the results obtained by
using this strategy for two different nonorthogonal initial states
(again |ψi〉 = |0〉x and |ψi〉 ∝ |0〉x + |1〉x). Gaussian fits of the
transverse light intensity reveal that the final path state com-
ponents remain with a good Gaussian profile after projection.

A state projection that is worth discussing is the projection
over |ψf 〉 = (−1,1,1)T . In this case, we set a binary phase
grating (BPG) of height 2 arctan (π/2) in all paths, which
should distribute the initial-state components equally among
the components of the final state [29] and with the correct
relative phases. The only difference between the three BPGs
in each path is that the grating at path 0 has an additional phase
of π in all diffraction orders. In Fig. 2(h), we show the ITOP
for the projection of the initial state |ψi〉 = |0〉x .

By projecting onto one of the basis states, we just generate
a Gaussian packet. However, the other states generated by the

already discussed projections are much richer, in the sense
that the spatial interference between path modes gives extra
information about the projected state.

Important information given by the interference pattern is
the relative phases between the path components. This infor-
mation can be obtained by fitting the resulting pattern using a
generic equation for the three-path interference given by

I (q) = Ne−(σkx/f ){|a|2 + |b|2 + |c|2
+ 2[|a||b| cos(2πqd + φab)

+ |b||c| cos(2πqd + φab + φac)

+ |a||c| cos(4πqd + φac)]}, (3)

where a, b, and c, are the complex amplitudes of a general
three-path initial state, d is the Gaussian path separations,
σ is the Gaussian path width, φb(c) are the phase differences
between the paths with amplitudes b (c) in relation to path
a, and the transverse momentum is given by q = kx/f , in
the case where a spherical lens is used to project the Fourier
plane at the detector plane. The relative phases in this case are
the free parameters of the fit, while the other parameters are
extracted from the experimental transverse path profile at the
image plane.

In order to test it, we use another spherical lens (f = 30 cm)
and detect the interference pattern with the CCD at the Fourier
plane. Figure 3(a) shows the spatial interference patterns with
the projected Gaussian states |ψf 〉 = (1,0, − 1)T (blue square)
and |ψf 〉 = (1,0,1)T (red dot). One can see the phase shift
between the two Gaussian interference patterns, suggesting
the orthogonality of the two subspaces explored. Figure 3(b)
shows the interference pattern between the spatial modes of the
projected state |ψf 〉 = (−1,1,1)T . The small peaks in Fig. 3(b)
are characteristic of three Gaussian interference patterns and
the high visibility indicates that the state coherence is preserved
after the operation.
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FIG. 2. Integrated transverse optical profile (ITOP) of resulting
states after performing the operations. (a)–(c) Projections onto com-
putational basis states (0,1,0)T , (0,0,1)T , and (0,0,1)T , respectively.
The initial state is fixed as |ψi〉 = |1〉x . The continuous red line
represents a Gaussian fit. In (d) and (e), the black circles register
the projection onto (1,0,1)T for the initial states (d) |ψi〉 = |0〉x

and (e) |ψi〉 ∝ |0〉x + |1〉x , while the continuous red line represents
a two-Gaussian fit. In (f) and (g), projection onto (1,0, − 1)T for
the initial states (f) |ψi〉 = |0〉x and (g) |ψi〉 ∝ |0〉x + |1〉x , while the
continuous red line represents a two-Gaussian fit. In (h), projection
onto (−1,1,1)T for the initial state |ψi〉 = |0〉x , with a three-Gaussian
fit (continuous red line).

Using the relative path phases obtained from the interfer-
ence pattern and the path amplitudes of the projected states
[obtained by integrating and normalizing the Gaussian area
of Figs. 2(d)–2(h)], we can characterize the projected state
and calculate the fidelity with the ideal projected states. For
the projected states |ψf 〉 = (1,0,1)T and |ψf 〉 = (1,0, − 1)T ,
the calculated fidelities to the respective ideal states are
f = 0.92 ± 0.04 and f = 0.98 ± 0.04, respectively, while
the fidelity for the projected state |ψf 〉 = (−1,1,1)T is f =
0.73 ± 0.06.

Since this method encodes input and output states in
different spaces, x̂ and ŷ path states, the identity opera-
tor cannot be implemented as doing nothing. As discussed
above, we define identity as the operator |ν〉x �→ |ν − 1〉y ,
but now we need to program the SLM to implement this
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FIG. 3. Interference patterns at the Fourier plane. (a) Interference
fringes after projection onto (1,0, − 1)T (blue square) and (1,0,1)T

(red dot). (b) Interference fringes after projection onto (−1,1,1)T . In
all cases, the solid lines just link the points.

transformation. The approach we took was to use a negative
slope BZDG of height 2π at path 0, no phase grating at
path 1, and a positive slope BZDG of height 2π at path
2. Another class of operations implemented by using the
BZDG is the permutation operations. They just interchange
coefficients of the state components. While the identity was
defined by {|0〉x,|1〉x,|2〉x} �→ {| − 1〉y,|0〉y,| + 1〉y}, a cyclic
right permutation, for instance, is given by {|0〉x,|1〉x,|2〉x} �→
{|0〉y,| + 1〉y,| − 1〉y}. Experimentally, the only difference is
in which paths ν the positive and negative slope BZDG
gratings will act on. Such permutation operations can be
used as logical gates and are clearly nondiagonal. Any other
permutation can be similarly implemented. Figure 4 shows
the ITOP after the identity operation (blue squares) and the
cyclic right permutation operation (black circles) are applied to
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FIG. 4. Integrated transverse optical profiles (ITOPs) for identity
and cyclic right permutation applied to the state |ψi〉 = A0|0〉x +
A2|2〉x , in which |A0| > |A2|. Blue squares stand for the data from the
identity operation, with the red dotted line a two-Gaussian fit, while
black circles show the permutation operation, with the green dashed
line the corresponding two-Gaussian fit.
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an initial state |ψi〉 = A0|0〉x + A2|2〉x , in which |A0| > |A2|.
The quality of the permutation operation can be estimated
by performing the inner product of the ideal permuted state
(|ψideal〉) with the experimentally permuted state (|ψ ′〉). We
will assume that the ideal permuted state is the measured
qutrit state after the identity operation with the coefficients
is permuted. Since there are no phases added to the diffraction
order for the BZDG grating used, the states |ψideal〉 and |ψ ′〉
can be obtained from the experimental data by calculating the
path amplitudes of the experimental states after the identity
and permutation operations. These states are given by

|ψideal〉 =
√

0.31|0〉 +
√

0.69|1〉,
|ψ ′〉 =

√
0.29|0〉 +

√
0.71|1〉. (4)

The inner product 〈ψideal||ψ ′〉 = 0.99 ± 0.04, revealing that
the state after the permutation operation can be regarded as
the state after the identity operation with their amplitudes
interchanged.

We may not be able to implement an arbitrary three-
dimensional projector, but we can implement a great number
of them, modifying the type of phase grating, its height, and
its period. On the other hand, a tomographically complete set
of projectors can be implemented. We are able to perform
state tomography in spatial qutrits by using, for example, the
symmetric informationally complete positive operator-valued
measure (SIC-POVM) discussed in Refs. [31,32]. For one
qutrit state there are nine POVM elements, M̂ ∝ |ψk〉〈ψk|, with
k = 1,2, . . . ,9, and |ψk〉 are given by

|ψ1〉 ∝ |0〉 + |2〉,
|ψ2〉 ∝ eiφ|0〉 + e−iφ |2〉,
|ψ3〉 ∝ e−iφ|0〉 + eiφ|2〉,
|ψ4〉 ∝ |1〉 + |0〉,
|ψ5〉 ∝ eiφ|1〉 + e−iφ|0〉, (5)

|ψ6〉 ∝ eiφ|1〉 + e−iφ|0〉,
|ψ7〉 ∝ |2〉 + |1〉,
|ψ8〉 ∝ eiφ|2〉 + e−iφ |1〉,
|ψ9〉 ∝ e−iφ|2〉 + eiφ|1〉,

where φ = 2π/3. These can be implemented by a similar
strategy used for the (1,0,1)T projectors plus a constant phase
in one of the twow paths.

Two aspects are important when single photons from a
heralded spontaneous parametric down-conversion (SPDC)
source are used in the setup: coherence and efficiency in
implementing the operations. Interference is essential in the
state transformation part of the setup, requiring that the length
differences between the interferometer arms be smaller than
the single-photon coherence length. This can be achieved with
birefringent materials for temporal delay compensation, as
shown in Ref. [29]. Temporal delay compensation is not neces-
sary though if narrow-band frequency photon pairs produced
by cavity-enhanced SPDC are used [33].

This means that the setup used here can be adapted with
few changes to work with SPDC photon sources. Figure 5
shows an example of a setup that can be used with single

FIG. 5. Experimental setup to prepare and operate over a qutrit
state encoded at the transverse paths of a single-photon heralded
source (spontaneous parametric down-conversion).

photons from a heralded SPDC regular source. All beams
pass inside the calcites and D-shaped wave plates are used
such that the path differences can be compensated and the
polarizations of the modes are independently rotated, as shown
in Ref. [34]. Concerning the second aspect (efficiency), the
setup presented here has losses that can be overcome in future
realizations with single-photon sources. For instance, losses in
the state preparation can be reduced to a few percent with some
suitable changes. The SLM can be set for oblique reflection,
avoiding the losses due to the beam splitter; D-shaped half-
wave plates can be used for rotating the polarization of each
mode individually [34], temporal delay compensation can
be used, and the first PBS removed. The angles in which
the polarization projections are made can be optimized to
minimize losses [29]. However, all losses due to spatial filtering
or polarization projection strongly depend on the operation to
be implemented. For the cases studied here, the projection in
the state (1,1, − 1)T can achieve 86% probability of actually
having the operation implemented, while the projection in the
state (1,0,1)T reaches only 24% probability of success. This
difference is due to the efficiency of the grating, revealing the
strong dependency of the losses with respect to the specific
grating used to achieve each operation. If only permutation
operations are performed, path information need not be erased
at all and only a sawtooth grating is necessary. The relevant
parameter in this operation is the SLM diffraction efficiency,
in our case near 94%.

IV. CONCLUSIONS

We demonstrate the possibility of the automated state ma-
nipulation of spatial photonics in qudits in the laboratory. The
experimental approach explored in this work already confirms
the possibility of an operation on qutrits encoded in transverse
photon paths in an automated way, surpassing a barrier for
its use in the implementation of quantum computation and
quantum fundamental tests. This opens a wide range of appli-
cations, such as simulating quantum open system dynamics,
manipulation of twin photon states, and fundamental tests, such
as sequential measurements in noncontextuality tests.
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