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Quantum trajectories for time-dependent adiabatic master equations
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We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation
in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of
dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is
required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making
this method suitable for high performance computing clusters. In general, the trajectories method can provide up
to a factor N advantage over directly solving the master equation. In special cases where only the expectation
values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method
by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum
annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced
to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve
directly using the master equation. The quantum trajectories method provides insight into individual quantum
jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the
master equation.
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I. INTRODUCTION

With the growing ability to control and measure ever-larger
quantum systems, understanding how to model the interactions
between open quantum systems and their environment has
become exceedingly important [1]. The open system dynamics
is often described in terms of a master equation in Lindblad
form, describing the effective dynamics of the quantum system
after the environmental degrees of freedom have been traced
out [2]. An equivalent approach is that of quantum trajectories
(also known as the Monte Carlo wave-function method) [3–5],
which can be understood as an unraveling of the master equa-
tion in Lindblad form, and which generates a stochastic process
whose average is fully equivalent to the master equation (for a
review, see Ref. [6]). Each trajectory in this approach can also
be viewed as the result of continuous indirect measurements of
the environment in a certain basis [7]. A quantum trajectories
approach exists also for non-Markovian master equations [8,9].

While a vast literature exists on the topic of quantum
trajectories for time-independent master equations, much less
is known for the case of time-dependent master equations
(see, e.g., Ref. [10]), which is our focus here. Specifically,
we focus on the case of open systems evolving adiabatically
according to a time-dependent Hamiltonian, weakly coupled
to the environment [11,12]. This is particularly relevant in the
context of quantum annealing and more generally adiabatic
quantum computing, whereby the computation proceeds via a
time-dependent Hamiltonian and the result of the computation
is encoded in the ground state of the final Hamiltonian (for
reviews, see Refs. [13,14]). A large body of literature exists

on the use of quantum Monte Carlo methods in the context
of quantum annealing (see, e.g., Refs. [15–17]), but these
methods focus on equilibrium properties, while here we are
interested in dynamics. The interplay between the key quanti-
ties that determine adiabaticity and nonunitary dynamics has
not been previously explored in the setting of Monte Carlo
wave-function methods, and here we resolve this question by
finding an upper bound on the size of the Monte Carlo time
step. Nor has the question of reducing the computational cost
of simulations of the adiabatic master equation via quantum
trajectories been discussed so far, and we address this here.

Thus here we develop the treatment of a quantum trajecto-
ries unravelling of a time-dependent adiabatic master equation
(AME). We make a formal comparison between the quantum
trajectory unraveling of the Lindblad master equation with
time-independent and time-dependent operators and discuss
the validity of applying it to the unraveling of the AME. While
our analysis closely follows the standard time-independent
approach, the time-dependent case results in additional validity
conditions that must be satisfied.

The individual trajectories of the AME shed light on how
the average case captured by the AME emerges. When the
quantum state is a pure energy eigenstate and the unitary
evolution is adiabatic, the drift term in the quantum trajec-
tories approach vanishes and the quantum state follows the
instantaneous eigenstates until a jump occurs. We can associate
these jumps with an excitation or relaxation process, depending
on the direction of the jump. This provides an intuitive (yet
rigorous) picture for how the averaged dynamics of the AME
arises.
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An important advantage of the quantum trajectories ap-
proach is that, for an N -dimensional system, one quantum
trajectory requires storing and updating 2N − 1 real numbers,
while solving the master equation for a density matrix requires
storing and updating N2 − 1 real numbers. This quadratic
saving allows simulations of systems with sizes that are
infeasible by directly solving the master equation. The tradeoff
is that many trajectories must be run in order to accurately
approximate the solution of the master equation, but this
tradeoff can be reduced by using many parallel processes to
represent each trajectory.

Our presentation is organized as follows. In Sec. II we
briefly review the AME. We unravel the AME in Sec. III
into quantum trajectories taking the form of quantum jumps,
allowing for an arbitrary time dependence of the Hamiltonian
and Lindblad operators. In Sec. IV we provide an algorithmic
implementation for our adiabatic quantum trajectories and
in Sec. V we present three case studies. We perform a cost
comparison between the direct simulation of the AME and the
quantum trajectories method in Sec. VI. Additional technical
details and proofs are provided in the Appendixes.

II. ADIABATIC MASTER EQUATION IN LINDBLAD FORM

We focus on the AME in Lindblad form, which can be
derived with suitable approximations (in the weak-coupling
limit after performing the Born-Markov, rotating wave, and
adiabatic approximation) from first principles starting from
the system Hamiltonian HS, the environment Hamiltonian
HB , and the interaction Hamiltonian HI = g

∑
α Aα ⊗ Bα ,

with system operators Aα , environment operators Bα , and
system-bath coupling strength g [12]. The adiabatic (Lindblad)
master equation describes the evolution of the system density
matrix ρ(t) and has the following form (setting h̄ = 1 from
now on):

d

dt
ρ(t) = −i[HS(t) + HLS(t),ρ(t)] + LWCL[ρ(t)], (1)

where HLS(t), which commutes with HS(t), is a Lamb shift
Hamiltonian arising from the interaction with the environment.
The dissipative term LWCL takes the form

LWCL[ρ(t)] ≡
∑
α,β

∑
ω

γαβ(ω)

(
Lβ,ω(t)ρ(t)L†

α,ω(t)

− 1

2
{L†

α,ω(t)Lβ,ω(t),ρ(t)}
)

, (2)

where the sum over ω is over the Bohr frequencies (eigenen-
ergy differences) of HS , γαβ(ω) is an element of the positive
matrix γ , and satisfies the Kubo-Martin-Schwinger (KMS)
condition if the bath is in a thermal state with inverse tem-
perature β = 1/T :

γαβ(−ω) = e−βωγβα(ω). (3)

The time-dependent Lindblad operators are given by

Lα,ω(t) =
∑
a,b

δω,εb(t)−εa (t) 〈εa(t)| Aα |εb(t)〉 |εa(t)〉〈εb(t)|,

(4)

where |εa(t)〉 is the ath instantaneous energy eigenstate of
HS(t) with eigenvalue εa(t). With this form for the Lindblad
operators, decoherence can be understood as occurring in the
instantaneous energy eigenbasis [18].

For the purpose of unravelling the above master equation
into quantum trajectories, it is convenient to diagonalize the
matrix γ by an appropriate unitary transformation u(ω),

∑
α,β

ui,α(ω)γαβ(ω)uj,β(ω)† = γ ′
i (ω)δij (5)

and to define new operators Ai,ω(t) given by

Lα,ω(t) =
∑

i

ui,α(ω)Ai,ω(t). (6)

In this basis, we can write the dissipative part in diagonal form
as

LWCL[ρ(t)] =
∑

i

∑
ω

γ ′
i (ω)

(
Ai,ω(t)ρ(t)A†

i,ω(t)

− 1

2
{A†

i,ω(t)Ai,ω(t),ρ(t)}
)

. (7)

III. STOCHASTIC SCHRÖDINGER EQUATION

With Eq. (7), the master equation (1) is in diagonal form and
can be unravelled into quantum trajectories. The trajectory is
described by a stochastic differential equation (SDE) in the
form of jumps or diffusion. Let us consider the case where
the coefficients γ ′

i (ω) in Eq. (7) also depend on time. If all
γ ′

i (ω,t) � 0, then the dynamics is completely positive (CP)
divisible [19], and the master equation can be unravelled by
using the known unravelling of the time-independent SDE case
[2,7,20], simply by replacing the time-independent operators
and coefficients by the time-dependent ones.

Such an unravelling is also possible, but with modifications,
when the dynamics is positive (P) divisible, i.e., where γ ′

i (ω,t)
need not be all positive.1 This can be in the form of the
following.

(i) Jump trajectories: the master equation is unravelled via
the non-Markovian quantum jump method (NMQJ) [21–24],
where terms with negative coefficients γ ′

i (ω,t) describe the
negative channel.

(ii) Diffusive trajectories: recent work on diffusive trajecto-
ries [10] replaces γ ′

i (ω,t) and the operators by the eigenvalues
and eigenvectors of a positive transition rate operator W

[Eq. (11) in [10]]. P-divisible dynamics can be unravelled into
a SDE in terms of such eigenvalues and eigenvectors.

In the following, we focus on the case of CP maps [with
all γ ′

i (ω) � 0] and unravel the master equation in the quantum
jumps picture.

1The condition on γ ′
i (ω,t) such that the map is P divisible can be

found in the proof given in [21] or Eq. (25) in [10].
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A. Unravelling the master equation

First we absorb the γ ′ coefficients into the definition of Ai :√
γ ′

i (ω)Ai,ω(t) → Ai(t). (8)

In this redefinition, the index i now includes the Bohr frequen-
cies. We write Eq. (1) in terms of an effective non-Hermitian
Hamiltonian Heff :

d

dt
ρ(t) = −i(Heff(t)ρS(t) − ρS(t)H †

eff(t))

+
∑

i

Ai(t)ρS(t)A†
i (t), (9)

where

Heff(t) = HS(t) + HLS(t) − i

2

∑
i

A
†
i (t)Ai(t). (10)

Equation (9) can be unravelled into quantum trajectories in
the quantum jumps picture, where each trajectory describes
the stochastic evolution of a pure state (if the initial state
ρ is mixed, ρ = ∑

i pi |ψi〉〈ψi |, then the evolution can be
performed on each initial pure state). The stochastic evolution
of the pure state can be written in terms of a stochastic
Schrödinger equation (in Itô form), the ensemble average of
which is equivalent to the master equation:

d |ψ(t)〉 =
(

−iHeff(t) + 1

2

∑
i

〈A†
i (t)Ai(t)〉

)
dt |ψ(t)〉

+
∑

i

dNi(t)

⎛
⎝ Ai(t)√

〈A†
i (t)Ai(t)〉

− 1

⎞
⎠ |ψ(t)〉 ,

(11)

where

〈A†
i (t)Ai(t)〉 ≡ 〈ψ(t)|A†

i (t)Ai(t)|ψ(t)〉 = ‖Ai(t) |ψ(t)〉 ‖2.

(12)

We give a derivation of Eq. (11) below. The first term on
the right-hand side (RHS) of Eq. (11) gives a deterministic
evolution composed of a Hermitian component [−i(HS(t) +
HLS(t))] and a “drift” component

D(t) ≡ 1

2

∑
i

A
†
i (t)Ai(t) − 〈A†

i (t)Ai(t)〉 (13)

and the second term describes the stochastic jump process. The
stochastic variable dNi(t) ≡ Ni(t + dt) − Ni(t) is the number
of jumps of type i in the interval dt , where we have denoted
by Ni(t) the number of jumps of type i up to time t . The
expectation value of the stochastic variable is given by [2]

E[dNi(t)] = 〈A†
i (t)Ai(t)〉 dt. (14)

Since the probability of a jump occurring scales linearly with
dt , the probability of having more than one jump vanishes
faster than dt , so as dt → 0 only one jump out of all possible
types during dt is permitted. Therefore, we can write [20]

dNi(t) =
{

1 with prob 〈A†
i (t)Ai(t)〉 dt,

0 with prob 1 − 〈A†
i (t)Ai(t)〉 dt,

(15)

|ψ(t)〉 |ψ(t + dt)〉

|ψ(t + dt)〉

no jump (1 − dp(t))

jump (dp(t))

FIG. 1. Depiction of the stochastic evolution of the state |ψ〉 by
an infinitesimal time state at time t .

with the Itô table:

dNj (t)dNk(t) = δjkdNj (t), (16a)

dNj (t)dt = 0. (16b)

From Eq. (15), the probability of any jump occurring,∑
i 〈A†

i (t)Ai(t)〉 dt , is small compared to the probability of no
jump occurring, so

∑
i dNi(t) = 0 most of the time. During

the infinitesimal time step dt , if
∑

i dNi(t) = 0, then only the
deterministic evolution takes place; if, however,

∑
i dNi(t) =

1, then a jump occurs. When a jump occurs, it dominates over
the deterministic evolution, which is proportional to dt , and
the deterministic part can be ignored.

B. Deterministic evolution and jump process

We now derive Eq. (11) by explaining how each probability
element appears. Let us denote by |ψ(t)〉 and |ψ̃(t)〉 the
normalized and unnormalized state vectors, respectively, and
assume they are equal at time t , i.e., |ψ̃(t)〉 = |ψ(t)〉. For
the infinitesimal time step from t to t + dt , the state vector
evolution from |ψ(t)〉 to |ψ(t + dt)〉 involves two possibilities:
either no jump occurring (with probability 1 − dp) or a jump
occurring (with probability dp). This is depicted in Fig. 1.

When no jump occurs, the evolution is described by the
Schrödinger equation associated with Heff and, since the
effective Hamiltonian is non-Hermitian, the norm of the state
vector is not preserved during the evolution:

d |ψ̃(t)〉
dt

= −iHeff(t) |ψ̃(t)〉 . (17)

The resulting state after one infinitesimal time step dt is

|ψ̃(t + dt)〉 = exp[−iHeff(t)dt] |ψ(t)〉 (18a)

= [I − i dt Heff(t) + O(dt2)] |ψ(t)〉 . (18b)

The norm squared ‖ψ̃(t + dt)‖2 is the probability of the
conditional evolution under Heff , so that (as we show explicitly
in Appendix A) the jump probability is given by

1 − ‖ψ̃(t + dt)‖2 = dt
∑

i

〈A†
i (t)Ai(t)〉 + O(dt2) (19)

[recall Eq. (12) and note that HS(t) + HLS(t) cancels out to
first order]. Therefore, we can identify the infinitesimal jump
probability dp(t) with the RHS of Eq. (19), i.e., to first order
in dt :

dp(t) =
∑

i

dpi(t) = dtλ(t), (20a)

dpi(t) = dt 〈A†
i (t)Ai(t)〉 , (20b)
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where λ(t) = ṗ(t) is the jump rate and dpi(t) is the probability
of the jump of type i. Note that since our definition of the Ai

operators includes the rates γ ′ [recall Eq. (8)], the jump rate
depends on the instantaneous Bohr frequencies and the KMS
condition.

When the jump of type i occurs the state is updated as

|ψ̃(t + dt)〉 = Ai(t) |ψ(t)〉 . (21)

We can unify the two possibilities in Eq. (18) and Eq. (21) as
a stochastic Schrödinger equation for the unnormalized state
vector where only terms of order dt are kept:

d |ψ̃(t)〉 = |ψ̃(t + dt)〉 − |ψ̃(t)〉 (22a)

= −idtHeff(t) |ψ̃(t)〉
+

∑
i

dNi(t)(Ai(t) − 1) |ψ̃(t)〉 , (22b)

where we used | ˜ψ(t)〉 = |ψ(t)〉. The stochastic element dNi(t)
has the properties given in Eqs. (15) and (16); 1 is subtracted
since when the jump occurs

∑
i dNi(t) |ψ̃(t)〉 = |ψ̃(t)〉 and the

term involving Heff(t) is absent, so in this manner we ensure
that |ψ̃(t)〉 is appropriately subtracted from the RHS.

We can write a similar expression for the normalized
state vector |ψ(t)〉 by normalizing Eqs. (18) and (21). If a
deterministic evolution occurs, we have

|ψ(t + dt)〉
= exp[−iHeff(t)dt] |ψ(t)〉

‖ exp[−iHeff(t)dt] |ψ(t)〉 ‖ (23a)

= (1 − i dt Heff(t) + O(dt2)) |ψ(t)〉√
1 − dt

∑
i 〈A†

i (t)Ai(t)〉 + O(dt2)
(23b)

=
(
1 − i dt Heff(t) + 1

2

∑
i

〈A†
i (t)Ai(t)〉 dt

)
|ψ(t)〉

+O(dt2). (23c)

If a jump of type i occurs, we have

|ψ(t + dt)〉 = Ai(t) |ψ(t)〉
‖Ai(t) |ψ(t)〉 ‖ = Ai(t) |ψ(t)〉√

〈A†
i (t)Ai(t)〉

. (24)

Therefore, in analogy to Eq. (22) we can write the stochastic
Schrödinger equation for the normalized state as in Eq. (11).

IV. SIMULATION PROCEDURE FOR ADIABATIC
QUANTUM TRAJECTORIES

In this section we formulate an algorithm for implementing
adiabatic quantum trajectories. We start by noticing that the
update in Eq. (23a) corresponds to the evolution by the first
part of the stochastic Schrödinger equation. Therefore, the
deterministic evolution in the first term of Eq. (11) is equivalent
to propagating the state vector via the Schrödinger equation
with Heff (t) and then renormalizing it.

When a jump occurs, one of the operators Ai(t) is applied.
The relative weight of eachAi(t) isdpi(t), given in Eq. (20b). In
this case, the state is evolved as in Eq. (21) and the normalized

state is given in Eq. (24). The update in Eq. (24) corresponds
to the evolution by the second term of Eq. (11).

This provides a direct way to algorithmically implement
the quantum trajectories method. Starting from a known
normalized initial state, the state is evolved via a sequence of
deterministic evolutions and jumps, as in Eqs. (18) and (24),
by drawing a random number at each finite but small time
step �t and determining which of the two choices to take.
Compared to the standard time-independent case, the size of
the time step must satisfy additional conditions in order for the
approximations to hold:

�t 	 min
t

{
2‖Heff(t)‖
‖Ḣeff(t)‖

,
1

‖Heff(t)‖ ,

∣∣∣∣ λ(t)

λ2(t) − λ̇(t)

∣∣∣∣
}
, (25)

where ‖ · ‖ is the operator norm (largest singular value). We
give a proof of this new bound in Appendix B. While the second
and third terms reduce to the known conditions for the time-
independent case, the first term in Eq. (25) is unique to the
time-dependent case and reflects the error associated with time
evolution under a time-dependent effective Hamiltonian. This
term highlights the fact that the faster the effective Hamiltonian
and its eigenstates vary in time, the smaller is the time step
required to properly follow the trajectory.

However, drawing a random number at each time step is
computationally expensive, so it is more efficient to use the
waiting time distribution [2] to determine the first jump event.
As we mentioned before [Eq. (19)], the square norm of the
unnormalized wave function at t + dt gives the probability of
no jump during the infinitesimal interval [t,t + dt]. We show in
Appendix C that starting from the normalized state |ψ(t)〉, the
probability of no jump occurring in the finite (not necessarily
small) time interval [t,t + τ ] is given by

‖ψ̃(t + τ )‖2 = exp

(
−

∫ t+τ

t

λ(s)ds

)
, (26)

where the jump rate λ(t) is given in Eq. (20a). With this, the
simulation procedure for one single trajectory is as follows,
starting from t .

(i) Draw a random number r uniformly distributed in [0,1].
(ii) Propagate the unnormalized wave function by solv-

ing the Schrödinger equation with Heff [Eq. (17)] until the
jump condition is reached at t + τ , i.e., for τ such that
〈ψ̃(t + τ )|ψ̃(t + τ )〉 � r . (Recall that the norm of the unnor-
malized wave function will keep decreasing in this process.)

(iii) Determine which jump occurs by drawing another
random number and update the wave function by applying
jump operators, and renormalize.

(iv) Repeat the above steps with the new normalized state.
(v) Repeat until the final simulation time is reached.
We prove that averaging over quantum trajectories recovers

the master equation in Appendix B. Specifically, we show there
that if we denote the state of the kth trajectory at time t by
|ψk(t)〉, then we can approximate the master equation solution
for the density matrix ρ(t) as 1

n

∑n
k=1 |ψk(t)〉〈ψk(t)| for large

n. Choosing a basis {|zi〉} for the system Hilbert space, we can
thus approximate the density-matrix element 〈zi | ρ(t) |zj 〉 as
1
n

∑n
k=1〈zi |ψk(t)〉〈ψk(t)|zj 〉 for large n.
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V. CASE STUDIES

We consider a system of N qubits with a transverse-field
Ising Hamiltonian given by

HS(t) = A(t)HX
S + B(t)HZ

S , (27a)

HX
S ≡ −

N∑
i=1

σx
i , (27b)

HZ
S ≡ −

N∑
i=1

hiσ
z
i +

N∑
i>j=1

Jijσ
z
i σ z

j . (27c)

We assume that the qubit system is coupled to independent,
identical bosonic baths, with the bath and interaction Hamil-
tonian being

HB =
N∑

i=1

∞∑
k=1

ωkb
†
k,ibk,i , (28a)

HI = g

N∑
i=1

σ z
i ⊗

∑
k

(b†k,i + bk,i), (28b)

where b
†
k,i and bk,i are, respectively, raising and lowering

operators for the kth oscillator mode with natural frequency
ωk . The bath correlation functions appearing in Eq. (2) are
given by

γij (ω) = 2πg2 ωe−|ω|/ωc

1 − e−βω
δij , (29)

arising from an Ohmic spectral density [12], and satisfy the
KMS condition (3).

A. 8-qubit chain

As a first illustrative example and as a consistency check,
we reproduce the master equation evolution of the 8-qubit
ferromagnetic Ising spin chain in a transverse field studied
in Ref. [12]. For this problem, the Ising parameters are given
by [also shown in Fig. 2(a)]

h1 = 1

4
, hi>1 = 0, Ji,i+1 = −1, i = 1, . . . ,8. (30)

The functional form of the functions A(t) and B(t) is given in
Appendix D (they are the annealing schedule of the D-Wave
One “Rainier” processor, described in detail, e.g., in Ref. [26],
and were also used in the original AME study of the 8-qubit
chain [12]). The effect of changing the schedule is small; for
comparison we provide in Appendix D results for a linear
annealing schedule with the same bath parameters. As shown
in Fig. 3, we recover the master equation solution within the
error bars. The initial state is the ground state of HS(0), which
is the uniform superposition state.

It is illustrative to see how a single trajectory differs from
the averaged case, and we show this in Fig. 4. Instead of the
smooth change in the population as observed in the averaged
case, the single trajectory behaves like a step function. This is
explained by the fact that the drift term vanishes if |ψ(t)〉 is a
nondegenerate eigenstate, as shown in Appendix E. Therefore,
changes in the state’s overlap with the instantaneous ground

J=-1 J=-1 J=-1 J=-1 J=-1 J=-1 J=-1

h1=
1
4

(a)

-2/3

-2/3

2/3

-1

1/3

1

-1

1

(b)

hL hR=−1

j=1 j=5

j=2 j=6

j=3 j=7

j=4 j=8

J=−1

(c)

FIG. 2. Graphs of (a) the 8-qubit chain, (b) the 8-qubit Hamilto-
nian exhibiting a small gap, and (c) the 16-qubit “tunneling-probe”
Hamiltonian of Ref. [25]. (a) Only the first qubit is subjected to
an applied field and each qubit is ferromagnetically coupled with
J = −1. (b) Solid lines correspond to ferromagnetic coupling and
dashed lines correspond to antiferromagnetic coupling. The thickness
denotes the strength of the coupling. Local fields are shown inside the
circles. Full parameters are given in Eq. (32). (c) The left 8-qubit cell
and right 8-qubit cell are each subjected to applied fields with opposite
directions. Each qubit is ferromagnetically coupled to others as shown
by the lines, with J = −1.

state occur only due to the jump operators. In this picture, the
ground-state population revival observed after the minimum
gap is crossed is associated with jumps from the first excited
state (or higher states for large T ) to the ground state. After the
minimum gap, there are more transitions back to the ground
state than out of the ground state (see the inset of Fig. 4). This
difference (divided by the number of trajectories) leads to the
increase in the ground-state population seen in Fig. 3.

Using Eq. (20), we can give an explicit expression for the
jump rate from the first excited state back to ground state. As
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FIG. 3. Evolution of the population in the instantaneous ground
state for the 8-qubit problem in Eqs. (27) and (30) for a total time of
tf = 10 μs and temperature 2.6 GHz (in h̄ ≡ 1 units), as a function of
the normalized time s = t/tf . The quantum trajectories results with
104 trajectories (QT, blue circles) are in excellent agreement with the
adiabatic master equation (ME, red solid line). Inset: the convergence
of the ground-state population (averaged over quantum trajectories)
towards the master equation result as a function of the number of
trajectories, at s = 1. The error bars represent 2σ confidence intervals,
where σ is the standard deviation of the mean generated by taking 103

bootstraps over the number of trajectories.

shown in Appendix F, this is given by

λ1→0(t) =
8∑

α=1

γα(ω10)|〈ψ0(t)|σ z
α |ψ1(t)〉|2. (31)

B. 8-qubit nonadiabatic example

We now consider an 8-qubit problem with a sufficiently
small minimum gap such that the closed-system evolution
is not adiabatic even with tf = 10 μs and using the DW2X
annealing schedule (described in detail, e.g., in Ref. [17]).
While this violates a condition under which the AME is
derived,2 we can ask about the dynamics associated with the
master equation irrespective of its origins. We are interested in
this example since it illustrates some aspects of the quantum
trajectories picture which are not visible in the adiabatic limit,
as explained below.

The Ising Hamiltonian HZ
S is illustrated in Fig. 2(b) and is

defined with parameters

�h = (− 2
3 , − 2

3 , 2
3 ,−1, 1

3 ,1,−1,1), (32a)

J0,4 = 1
3 ,J0,5 = −1,J0,6 = − 1

3 ,J0,7 = − 1
3 , (32b)

J1,4 = − 1
3 ,J1,5 = − 2

3 ,J1,6 = 2
3 ,J1,7 = −1, (32c)

2Equation (27) in Ref. [12] arises in the course of the derivation of
the AME. It states that h

�2 tf
	 1, where � is the ground-state gap and

h = maxs∈[0,1];a,b |〈εa(s)| |∂sHS(s) |εb(s)〉|, with s = t/tf and |εa(s)〉
being the instantaneous ath eigenstate of the system Hamiltonian
HS(s). We find that, for tf = 10 μs, the LHS ≈ 5.

FIG. 4. Overlap squared of the (normalized) state with the in-
stantaneous ground state of HS(t) for a typical single trajectory of the
8-qubit chain in Sec. V A, with tf = 10 μs and temperature 2.62 GHz,
as a function of the normalized time s = t/tf . The sudden changes
in the overlap are due to the action of the jump operators {Ai(t)},
taking the state from one eigenstate to another. This is to be contrasted
with the smooth behavior of Fig. 3 when we average over different
trajectories. Inset: a histogram of the net number of jumps to the
instantaneous ground state (GS). A negative number indicates a jump
out of the ground state and a positive number indicates a jump into the
ground state. The change from negative to positive net jumps occurs
at the minimum gap point.

J2,4 = − 2
3 ,J2,5 = − 1

3 ,J2,6 = −1,J2,7 = − 2
3 , (32d)

J3,4 = −1,J3,5 = −1,J3,6 = − 1
3 ,J3,7 = −1. (32e)

Figure 5 shows our simulation results, obtained by solving
the AME directly and by using the trajectories approach.
Reassuringly, the agreement between the two is excellent. Also
plotted are the closed system results for this problem, which
exhibit a sharp diabatic transition out of the ground state at
the minimum gap point (the small gap is shown in the inset).
The AME and trajectories results show that the ground-state
population loss starts before the diabatic transition, due to
thermal excitations, but that the ground-state population loss is
partially mitigated by the presence of the thermal bath, with the
open system ending up with a higher ground-state population
than the closed system.

The diabatic transition results in different trajectories than
those observed for the adiabatic case in Sec. V A. We show
such a case in Fig. 6. Instead of the pulselike structure seen
in Fig. 4, we observe a combination of both drifts and jumps.
Because the diabatic transition generates a noneigenstate that
is a coherent superposition of the ground state and first
excited state, drifts caused by the environment show up in
the subsequent evolution. Furthermore, this superposition also
means that the Lindblad operator associated with ω = 0, if
having different component weights in Eq. (4), can also induce
jumps (e.g., the jumps around s = 0.6 in Fig. 6), an effect that
is completely absent in the adiabatic case. These jumps need
not project the state completely onto an instantaneous energy
eigenbasis state, but they can change the relative weights on
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FIG. 5. Evolution of the population in the instantaneous ground
state for the 8-qubit problem in Eqs. (27) and (32) for a total time
of tf = 10 μs and temperature 1.57 GHz (in units where kB = 1),
as a function of the normalized time s = t/tf . The quantum trajec-
tories results with 5 × 103 trajectories (blue circles) are in excellent
agreement with the master equation (red solid line). We also show
the closed-system evolution (yellow dashed line) to highlight that the
evolution is not adiabatic. Inset: the instantaneous energy gap between
the first excited state and the ground state during the anneal. The
minimum occurs at s∗ = 0.46, coinciding with the sharp discontinuity
observed in the instantaneous ground-state population.

the different occupied eigenstates, which manifest themselves
as “incomplete” jumps in the trajectories.

We reemphasize that due to the violation of one of the
conditions under which the AME is derived, the observations
we have reported for this example are strictly valid only when
the AME is taken at face value and do not necessarily reflect
actual physical dynamics.

C. 16-qubit “tunneling-probe” Hamiltonian

In order to demonstrate the computational utility of the
trajectories approach over the master equation approach, we
now give results for a 16-qubit system first studied in Ref. [25]
for the purpose of probing tunneling in quantum annealing.

For this problem, the parameters of Eq. (27) are [also shown
in Fig. 2(c)]

hL = 0.44, hR = −1, Ji,i+1 = −1, i = 1, . . . ,16, (33)

where the sets L and R range over i = 1, . . . ,8 and i =
9, . . . ,16, respectively. Reference [25] chose the value of hL

to ensure that the minimum ground-state gap is lower than
the temperature T = 15.5 mK, in order to study a nontrivial
interplay between tunneling and thermal activation.3 This

3The problem features one global minimum and one local (false)
minimum, which are separated by a tall energy barrier at around the
minimum gap point (see Fig. 2 in Ref. [25]); to reach the global
minimum from the false minimum, the system state has to transverse
the barrier. Such transitions can be modeled as quantum jumps in the
quantum trajectories formalism.
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FIG. 6. Overlap squared of the (normalized) state with the instan-
taneous ground state of HS(t) (blue solid curve) and the sum of the
first three instantaneous excited states (red dashed curve) for a typical
single trajectory of the 8-qubit problem in Sec. V B, with tf = 10 μs
and temperature 1.57 GHz, as a function of the normalized time
s = t/tf . A diabatic transition occurs at s∗ = 0.46. The continuous
decay immediately afterward and between the “incomplete” jumps is
to be contrasted with the step-function-like single trajectories of the
adiabatic case seen in Fig. 4.

parameter choice means that incoherent effects play a relatively
strong role in this problem, which are not well captured by
the AME. Thus, similar to the previous example, the AME is
being used here outside of its strict validity domain. We are
interested in testing whether it can nevertheless qualitatively
capture the correct physical effects. Moreover, direct master
equation simulations for such a large system take longer than
24 h (which is a standard time window on high-performance
clusters), while each quantum trajectory takes less than 24 h.
We can then exploit many CPU cores to simulate many
trajectories in parallel. To this end we used 320 CPU cores
and repeated the simulation 16 times for a total of over 5000
trajectories.

Our simulations (see Fig. 7) show how population is lost
from the instantaneous ground state to the first excited state
near the minimum gap point s ≈ 0.308. It also shows a small
population revival after the minimum gap is crossed. As in
Sec. V A, this revival is associated with jumps from the first
excited state (or higher states for large T ) back to the ground
state. Encouragingly, despite the perturbative nature of the
AME, this revival is qualitatively in agreement with the results
of Ref. [25] (see their Fig. 4). The latter work found a stronger
revival on the basis of the nonperturbative, noninteracting blip
approximation (NIBA), which more accurately captures addi-
tional transitions that occur when the energy level broadening
is larger than the energy gap between energy levels.

VI. SIMULATION COST COMPARISON

We now provide a cost comparison between the simulations
cost of directly solving the AME and the quantum trajectories
method. The first two subsections in this section follow Ref. [2]
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FIG. 7. Quantum trajectory results for a temperature of 12 mK
and 20 mK using the DW2X annealing schedule. Results are averaged
over 5000 trajectories. A revival of instantaneous ground-state pop-
ulation occurs after the minimum gap (shown by the dashed vertical
line). E0 and E1 denote the ground state and the first excited state
energies, respectively.

closely (while adding some details) and we borrow the notation
used in that reference. In Sec. VI C we provide an analysis
that reveals that the quantum trajectories method can exhibit a
scaling advantage ranging between O(N ) and O(N2) over the
direct solution of the AME.

A. Number of trajectories

The number of trajectories needed can be found from the
standard error of the sample mean. As an example, let us
consider the standard error σ̂t associated with the instantaneous
ground-state population 〈ψ0(t)|ρ(t)|ψ0(t)〉:

σ̂ 2
t = 1

R(R − 1)

R∑
r=1

(|〈ψ0(t)|ψr (t)〉|2 − M̂t )
2, (34)

where |ψr (t)〉 denotes the state associated with trajectory r

at time t , M̂t = 1
R

∑R
r=1 |〈ψ0(t)|ψr (t)〉|2, and R is the total

number of trajectories. By fixing the value of the standard
error σ̂t , the number of necessary trajectories R can then be
determined.

B. Cost comparison

Since we expect σ̂t ∼ 1√
R

, let us write

σ̂ 2
t = λB(N )

R
∼ 1

R
, (35)

where λB(N ) = 1
R−1

∑R
r=1(〈ψr (t)|B|ψr (t)〉 − M̂t )2 for an ob-

servable B and mean value M̂t = 1
R

∑R
r=1〈ψr (t)|B|ψr (t)〉.

The factor λB(N ) is a nonincreasing function of the system
dimension N [2],

λB(N ) ∼ N−x, (36)

where the scaling x depends on the observable:

0 (not self-averaging) � x � 1(strongly self-averaging).

(37)

Thus, to obtain the same standard error for increasing di-
mension, the number of trajectories need not be increased in
general. This is another advantage of the trajectories method
for growing system dimension. Such a phenomenon has also
been observed in time-dependent stochastic density functional
theory [27]. From Ref. [2], the total serial CPU time required
for the simulation of the master equation, denoted TAME, versus
the stochastic method with R trajectories, denoted TStS, is

TAME = k1s1(N )Nβ, (38a)

TStS = k2R(N )s2(N )Nα, (38b)

where k1 and k2 are constants depending on the specific
implementation of each method, s1(N ) is the total number of
evaluations of LWCL[ρ(t)] [Eq. (2)] using the master equation
method, and s2(N ) is the total number of evaluations of
Heff(t) |ψ(t)〉 [Eq. (10)] in a single trajectory.

R(N ) in Eq. (38b) is the minimum number of trajectories
needed to obtain a standard error lower than a particular chosen
value. To account for the constraint that R(N ) � 1, we rewrite
Eq. (36) as λB(N ) = �BN−x and Eq. (35) as

R(N ) =
{⌈

�BN−x

σ̂ 2
t

⌉
for N < N∗,

1 for N � N∗,
(39)

where N∗ = �(�B/σ̂ 2
t )

1
x �. For x > 0, the required number of

trajectories decreases with N until N∗, after which one trajec-
tory gives the expectation value within the desired accuracy.

In general, the number of operations needed to evalu-
ate LWCL[ρ(t)] relative to the number needed to evaluate
Heff(t) |ψ(t)〉 differs by a factor of N , so that β ≈ α + 1, and
Eq. (38) becomes

TAME = k1s1(N )Nα+1 , (40a)

TStS =
{
k′

2s2(N )Nα−x for N < N∗,
k2s2(N )Nα for N � N∗,

(40b)

where

k′
2 = k2

(
�B

σ̂ 2
t

)
, (41)

and k′
2 hence depends on the required accuracy as well. In many

situations s1(N ) and s2(N ) grow with N , but they are roughly
equal or grow in same manner with N . By dividing these two
expressions, we can obtain the ratio of TAME/TStS,

TAME

TStS
=

{
k1
k′

2
N1+x for N < N∗,

k1
k2

N for N � N∗.
(42)

Since 0 � x � 1, we can write

k1

k′
2

N � TAME

TStS
� k1

k′
2

N2 for N < N∗,

TAME

TStS
= k1

k2
N for N � N∗. (43)

We say that the trajectories method has an advantage over
the direct master equation solution if TAME

TStS
> 1. The constant

factor k1
k′

2
is typically a small number because it is proportional

to the required standard error squared [Eq. (41)]. Therefore,
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there is an advantage for the trajectories method when either
N is sufficiently large or when a sufficient number of CPU
cores C is available (see the next subsection). Equation (43)
shows that an advantage beyond linear in N is attainable for
N < N∗ on a single CPU. The reason is that the number of
trajectories needed to achieve a fixed accuracy decreases with
increasing system dimension. For N > N∗, only one trajectory
is required and the advantage scales as O(N ).

We note that the larger-than-linear advantage only holds if
we are interested in estimating operators with the same self-
averaging property. This is in contrast to evolving the entire
density matrix, as in the AME, which allows the expectation
value of any observable to be calculated. If we demand this
same capability from the trajectories approach, then only the
linear advantage holds.

C. Parallel implementation

The stochastic wave-function method is very well suited
for parallel computing implementations. The communication
needed between each core is minimal since each trajectory is
simulated independently. Assuming C CPU cores are used,
where C � R(N ), we can adjust the time cost [Eq. (38b)] for
the stochastic method to

TStS = k2
R(N )

C
s2(N )Nα. (44)

Note that the number of cores C is held constant, i.e., is
independent of the system dimension N . Therefore, we can
update Eq. (43) to

k1

k′
2

CN � TAME

TStS
� k1

k′
2

CN2 for N < N�,

TAME

TStS
= k1

k2
N for N � N�. (45)

where N� = �(�B/(Cσ̂ 2
t ))

1
x �. Here N� is the system dimen-

sion where R(N�) = C, and one execution of the C parallel
CPU cores is enough to obtain the desired standard error.

Again, the larger-than-linear advantage in N only holds if
we are interested in estimating operators with the same self-
averaging property, and otherwise we can only expect a linear
advantage in N .

VII. CONCLUSIONS AND OUTLOOK

In this work, we have shown how quantum trajectories (in
the form of quantum jumps) can be unravelled from the adia-
batic master equation. We have described and demonstrated a
simulation procedure in terms of the waiting time distribution
that reproduces the results of the master equation for examples
involving 8- and 16-qubit systems. Direct master equation
simulations for the 16-qubit example would take a long time,
but the simulation of the quantum trajectories remains compu-
tationally feasible for larger system dimensions by allowing
us to simulate many trajectories in parallel. A scaling cost
comparison of the two methods shows that, generically, the
quantum trajectories method yields an improvement by a factor
linear in the system dimension N over directly solving the
adiabatic master equation. However, the trajectories method
can be expected to be up to a factor cN2 faster than a direct

simulation of the master equation if only the expectation value
of specific self-averaging observables is desired. Here c is a
constant proportional to the number of parallel processes and
the target standard error.

We therefore believe this approach will be particularly
useful in enabling the study of larger systems than has been
possible using a direct simulation of the AME.

In addition, the quantum trajectories method offers fresh
physical insight into the nature of individual trajectories and
their statistics, which may become a helpful tool in interpreting
computational bottlenecks in quantum annealing and adiabatic
quantum computing.

Finally, while we did not address this in the present work, the
quantum trajectories approach is well known to be a convenient
path towards continuous measurement and the inclusion of
quantum feedback control [1]. This approach might in the
future provide a path towards error correction of adiabatic
quantum computing, e.g., by formulating control targets that
push the system back to the ground state after diabatic or
thermal transitions.
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APPENDIX A: ERROR ESTIMATES

Let us assume that the system is in a pure state at time
t , i.e., ρS(t) = |ψ(t)〉〈ψ(t)|, and let us consider a single time
step. In a single trajectory, the evolution of |ψ(t)〉 involves
two possibilities: no jump or a jump. The ensemble average of
trajectories after one finite time step mainly involves two kinds
of errors: the error associated with the norm of the state vector
(Appendix A 1), and the error associated with the probability
elements in a finite time step (Appendix A 2).

1. Error associated with the norm squared
of a no-jump trajectory

The Schrödinger equation of the effective Hamiltonian in
the case of a no-jump trajectory is given by

d |ψ(t)〉
dt

= −iHeff(t) |ψ(t)〉 . (A1)

The resulting state after one time step �t is

|ψ̃(t + �t)〉 = Veff(t + �t,t) |ψ(t)〉 , (A2)
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where

Veff(t + �t,t) = T exp

[
−i

∫ t+�t

t

Heff(t
′)dt ′

]
(A3)

is a nonunitary contractive evolution operator [‖Veff

(t + �t,t)‖ � 1 for every induced norm] and |ψ̃(t + �t)〉 is
unnormalized since Heff(t) is not Hermitian. We can expand
the time-ordered exponential for Veff(t + �t,t) as

T exp

[
−i

∫ t+�t

t

Heff(t
′)dt ′

]

= 1 − i

∫ t + �t

t

dt ′Heff(t
′)+(−i)2 1

2!
T

(∫ t+�t

t

dt ′Heff(t
′)
)2

+ (−i)3 1

3!
T

((∫ t+�t

t

dt ′Heff(t
′)
)3

)
· · · . (A4)

For any Heff(t) that is CK on an open interval containing [0,tf ]
[H (k)

eff (t) is continuous and bounded for 1 � k � K]

∫ t+�t

t

dt ′Heff(t
′) =

K−1∑
k=0

H
(k)
eff (t)

(k + 1)!
(�t)k+1 + O((�t)K+1),

(A5)

as �t → 0. Assume Heff(t) is CK and K � 2. Let Ḣeff (t) ≡
H

(1)
eff (t) denote the time derivative of Heff (t). We have

∫ t+�t

t

dt ′Heff(t
′)

= Heff(t)�t + 1

2!
Ḣeff(t)(�t)2 + O((�t)3), (A6a)

T
(∫ t+�t

t

dt ′Heff(t
′)
)2

= 2
∫ t+�t

t

dt ′Heff(t
′)

∫ t ′

t

dt ′′Heff(t
′′)

= Heff(t)
2(�t)2 + 1

2
Heff(t)Ḣeff(t)(�t)3

+ 1

2
Ḣeff(t)Heff(t)(�t)3 + O((�t)4), (A6b)

T
(∫ t+�t

t

dt ′Heff(t
′)
)3

= Heff(t)
3(�t)3 + O((�t)4). (A6c)

Therefore, we have, to second order in �t ,

Veff(t + �t,t) = 1 − i

(
Heff(t)�t + 1

2!
Ḣeff(t)(�t)2

)

+ (−i)2 1

2!
Heff(t)

2(�t)2 + O((�t)3),

(A7)

so that
V

†
eff(t + �t,t)Veff(t + �t,t)

= 1+i�t(H †
eff(t)−Heff(t))+ 1

2!
(�t)2

[
iḢ

†
eff(t)−iḢeff(t)

− (
H

†2
eff(t) + H 2

eff(t)
)] + O((�t)3). (A8)

We approximate N (t,�t) ≡ ‖ |ψ̃(t + �t)〉 ‖2 by

N (t,�t) = 〈ψ̃(t + �t)|ψ̃(t + �t)〉
≈ 〈ψ(t)| (1 + i�t(H †

eff(t) − Heff(t))) |ψ(t)〉
≡ E(t,�t). (A9)

The approximation error is given by

δ(t,�t) ≡ N (t,�t) − E(t,�t) (A10a)

= 1

2
(�t)2 〈ψ(t)| [iḢ †

eff(t) − iḢeff(t) − (
H

†2
eff(t)

+H 2
eff(t)

)] |ψ(t)〉 + O((�t)3) (A10b)

� (�t)2

2

∥∥i(Ḣ †
eff(t) − Ḣeff(t)) − (

H
†2
eff(t)

+H 2
eff(t)

)∥∥ + ‖O((�t)3)‖, (A10c)

where ‖ · ‖ is the operator norm (largest singular value).
Equation (A10c) gives the relation between the error of

the norm square approximation and the time step. It is also
helpful to consider the sources of error here as they will be
used later. This error mainly arises from two sources during
the truncations of Taylor expansion.

(1) The truncation of the Taylor expansion of the integral
[Eq. (A6a)] to keep only Heff(t)�t . This turns Eq. (A4) into
exp (−iHeff(t)�t). For this to hold, we require∥∥ 1

2 Ḣeff(t)(�t)2 + O((�t)3)
∥∥ 	 ‖Heff(t)�t‖, (A11)

implying

�t 	 2
‖Heff(t)‖
‖Ḣeff(t)‖

, (A12)

assuming Ḣeff(t) �= 0; if it is then the condition becomes �t 	
( K!‖Heff(t)‖

‖H (K)
eff (t)‖ )

1/K
for the lowest value of K such that H (K)

eff (t) �= 0,

where the superscript denotes the Kth derivative.
(2) Keeping only the first-order term in Eq. (A7) afterwards,

i.e., 1 − iHeff(t). This requires, in addition to Eq. (A12),∥∥ 1
2H 2

eff(t)(�t)2 + O((�t)3)
∥∥ 	 ‖Heff(t)�t‖, (A13)

implying, for all t such that the denominators do not vanish,

�t 	 min

{
2‖Heff(t)‖
‖Ḣeff(t)‖

,
1

‖Heff(t)‖
}
. (A14)

This justifies the first and second terms in the RHS of Eq. (25)
in the main text. In conclusion, the norm after one time step is
related to the jump probabilities as

N (t,�t) = 〈ψ(t)| (1 + i(�t)(H †
eff(t) − Heff)) |ψ(t)〉

+ δ(t,�t) (A15a)

= 1 − �t
∑

i

〈A†
i (t)Ai(t)〉 + δ(t,�t) (A15b)

= 1 − �p(t) + δ(t,�t), (A15c)
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where we used Eq. (10) and defined the (approximate) jump
probabilities as

�p(t) =
∑

i

�pi(t), (A16a)

�pi(t) = �t 〈A†
i (t)Ai(t)〉 . (A16b)

This explains Eqs. (19) and (20).

2. Error associated with probability elements

We have defined the �pi(t) and �p(t) in a fixed time
step in Eq. (A16). Note that even in the time-independent
case, where both the Hamiltonian and Lindblad operators are
time independent, 1 − �p(t) is an approximation to the norm
squared of the state vector after one time step and �pi(t) is an
approximation to the jump probability inside the time step.

For a finite time step �t , with p0 the probability of having
no jump inside the interval [t,t + �t] and p1 the probability
of having one jump inside the interval [t,t + �t], we have

p0 = e− ∫ t+�t

t
λ(t ′)dt ′ = 1 − p1. (A17)

Note that as �t → 0, p0 = 1 − λ(t)�t + o(�t) and p1 �
λ(t)�t . We shall focus on the case where the time step is
sufficiently small such that the probability of two or more
jumps occurring within a single time step is negligible.4

First, we can expand the exponential as

p0 = 1 −
∫ t+�t

t

λ(t ′)dt ′ + 1

2

(∫ t+�t

t

λ(t ′)dt ′
)2

· · · .

During the time window from t to t + �t , |ψ(t ′)〉 [required to
calculate λ(t ′)] is obtained by solving the Schrödinger equation
with the effective Hamiltonians [Eq. (A1)] and renormalizing
the solution during the integration. As we show in Appendix C,
in any finite interval the norm squared of the unnormalized state
vector [Eq. (A9)] is equal to p0. This is the reason why we can
use the waiting time distribution (or Gillespie algorithm [28])
as our simulation method in the main text.

Second, since∫ t+�t

t

dt ′λ(t ′) =
∞∑

k=0

λ(k)(t)

(k + 1)!
(�t)k+1, (A18)

we have

p0 = 1 − λ(t)�t + ep, (A19)

where the error ep associated with the probability elements in
a fixed time step is

ep = −1

2

d

dt
λ(t)(�t)2 + 1

2
λ2(t)(�t)2 + O((�t)3). (A20)

4For example, the quantum jump can be described by a Poisson
process with a state-dependent inhomogeneous jump rate, with two or
more jumps as successive one and no-jump processes, and

∑
n�2 pn =

o(�t) as �t → 0.

This should be much smaller than the first-order term λ(t)�t .
Therefore, we need

�t 	
∣∣∣∣∣ λ(t)

λ2(t) − d
dt

λ(t)

∣∣∣∣∣. (A21)

This justifies the third term in the RHS of Eq. (25) in the main
text. In the time-independent case, this reduces to

�t 	 1

λ
. (A22)

APPENDIX B: PROOF OF EQUIVALENCE BETWEEN
THE MASTER EQUATION AND TRAJECTORIES

FORMULATIONS

Our goal in this section is to show how the master equation,
Eq. (9), can be recovered from the quantum trajectories formu-
lation, and to find a bound on the time step �t . This generalizes
the proof for the time-independent case found in [5].

1. To jump or not to jump

The probability elements �p(t) and �pi(t) are important
for determining whether a jump occurs and if a jump does
occur, which jump type occurs. In order to determine if a
jump occurs or not, we draw a random number ε, uniformly
distributed in [0,1]. If �p(t) < ε, which is almost always the
case since �p(t) is very small, no jump occurs. In the case of
no jump, |ψ(t)〉 evolves according to the effective Schrödinger
equation, Eq. (A1). At time t + �t we simply renormalize the
solution of Eq. (A2):

|ψ(t + �t)〉 = 1√
〈ψ̃(t + �t)|ψ̃(t + �t)〉

|ψ̃(t + �t)〉

(B1a)

(A15c)= 1√
1 − �p(t) + δ

|ψ̃(t + �t)〉 . (B1b)

If �p(t) > ε, the state undergoes an abrupt jump and we
choose the new wave function among the different states
Ai |ψ(t)〉 and renormalize:

|ψ(t + �t)〉 = Ai(t) |ψ(t)〉√
〈ψ(t)| A†

i (t)Ai(t) |ψ(t)〉
(B2a)

(A16b)=
√

�t

�pi(t)
Ai(t) |ψ(t)〉 . (B2b)

Which type of jumps occurs is determined according to the
probability

�i(t) = �pi(t)

�p(t)
= 〈ψ(t)|A†

i (t)Ai(t)|ψ(t)〉 �t∑
i

〈ψ(t)|A†
i (t)Ai(t)|ψ(t)〉�t

(B3a)

= 〈A†
i (t)Ai(t)〉
λ(t)

, (B3b)

where

λ(t) =
∑

i

〈A†
i (t)Ai(t)〉 (B4)

is the time-dependent jump rate.
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2. Averaging over trajectories

Let Heff(t) be CK with K � 2. We first express the mean
value σ̄S(t) as a sum over the non-Hermitian evolution [with
probability 1 − �p(t)] and the jump trajectories [with proba-
bility �p(t)], so that as �t → 0 we have

σ̄S(t + �t)

= [1 − �p(t)]
|ψ̃(t + �t)〉√
1 − �p(t) + δ

〈ψ̃(t + �t)|√
1 − �p(t) + δ

+�p(t)
∑

i

�i(t)

√
�t

�pi(t)
Ai(t) |ψ(t)〉

×
√

�t

�pi(t)
〈ψ(t)| A†

i (t) (B5a)

(B3b)= 1 − �p(t)

1 − �p(t) + δ
|ψ̃(t + �t)〉 〈ψ̃(t + �t)|

+�t
∑

i

Ai(t)σS(t)A†
i (t). (B5b)

Combining Eq. (A2) with Eq. (A7) we have

|ψ̃(t + �t)〉 =
[
1 − i

(
Heff(t)�t + 1

2!
Ḣeff(t)(�t)2

)

+ (−i)2 1

2!
Heff(t)

2(�t)2 + O((�t)3)
]

|ψ(t)〉 .

(B6)

Recall that in Eq. (A14) we gave conditions allowing us to
neglect the O((�t)2) terms. Thus

σ̄S(t + �t) = 1 − �p(t)

1 − �p(t) + δ
(1 − iHeff(t)�t + O((�t)2))

× σ̄S(t)(1 + iH
†
eff(t)�t + O((�t)2))

+�t
∑

i

Ai(t)σ̄S(t)A†
i (t), (B7)

where we have replaced σS(t) by σ̄S(t) after averaging over
many trajectories. Rearranging this expression into a form that
exposes the terms that will become the master equation, the
expression for the averaged state at t + �t becomes

σ̄S(t + �t) = σ̄S(t) + i�t(σ̄S(t)H †
eff(t) − Heff(t)σ̄S(t))

+�t
∑

i

Ai(t)σ̄S(t)A†
i (t) (B8a)

− δ

1 − �p(t) + δ
[σ̄S(t) + iσ̄S(t)(H †

eff(t)

−Heff(t))σ̄S(t)�t] + O((�t)2). (B8b)

Note that δ is O((�t)2) as �t → 0 [Eq. (A10c)], and �p(t) =
�t

∑
i 〈ψ(t)|A†

i (t)Ai(t)|ψ(t)〉 is O(�t) as �t → 0, so that

δ

1 − �p(t) + δ
= O((�t)2)

1 − O(�t) + O((�t)2)
(B9a)

= O((�t)2). (B9b)

Therefore, line (B8b) can be absorbed into O((�t)2), and we
are left with

σ̄S(t + �t) − σ̄S(t)

�t
= −i(Heff(t)σ̄S(t) − σ̄S(t)H †

eff(t))

+
∑

i

Ai(t)σ̄S(t)A†
i (t) + O(�t),

(B10)

which becomes the master equation, Eq. (9), in the �t → 0
limit.

3. Upper bound on �t

The above proof takes �t → 0. We would like to know
how small the time step �t should be in order for the
approximations made to be valid. In Eq. (B7), we expanded the
time-ordered exponential, and kept only the first-order terms.
This is equivalent to the criteria in Eqs. (A11) and (A13),
summarized as a single condition in Eq. (A14). As shown in
Appendix A 1, this also automatically makes the error in the
norm squared approximation δ small. We also need to satisfy
Eq. (A21), in order to accurately approximate the probability
elements. Taken together, therefore,

�t 	 min

{
2‖Heff(t)‖
‖Ḣeff(t)‖

,
1

‖Heff(t)‖ ,

∣∣∣∣ λ(t)

λ2(t) − λ̇(t)

∣∣∣∣
}
. (B11)

In practice, choosing a constant time step that satisfies
Eq. (B11) in the whole time span [0,tf ] is sufficient, though
one might prefer to implement an adaptive time step tailored
to the instantaneous value of the RHS.

APPENDIX C: ON THE VALIDITY OF WAITING TIMES
(QUANTUM TIME-DEPENDENT OPERATORS)

Here we show the validity of using the waiting time distri-
bution in the case of time-dependent operators. The argument
presented here is based on Ref. [2] and we extend it to the
time-dependent case.

Let us denote by |ψ(t)〉 and |ψ̃(t)〉 the normalized and
unnormalized state vectors, respectively, and let us assume they
are equal at time t . This can happen when t = 0 or any time
immediately after each jump. Let t+ ≡ t + τ , where τ can be
as large as is possible until the next jump occurs, and

Veff(t
+,t) = T exp

[
−i

∫ t+

t

Heff(t
′)dt ′

]
. (C1)

Then

|ψ̃(t+)〉 = Veff(t
+,t) |ψ(t)〉 , (C2a)

|ψ(t+)〉 = Veff(t+,t) |ψ(t)〉
‖Veff(t+,t) |ψ(t)〉 ‖ . (C2b)

Then, starting from t , for any future t+ > t , we have

d

dt+
‖ |ψ̃(t+)〉 ‖2

= d

dt+

∥∥∥∥∥T exp

[
−i

∫ t+

t

Heff(t
′)dt ′

]
|ψ(t)〉

∥∥∥∥∥
2

(C3a)

022116-12



QUANTUM TRAJECTORIES FOR TIME-DEPENDENT … PHYSICAL REVIEW A 97, 022116 (2018)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

En
er

gy
 (G

H
z)

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

In
st

an
ta

ne
ou

s G
S 

Po
pu

la
tio

n

QT
ME

10 2 10 3 10 4
0.4

0.5

0.6

(a) (b) (c)

No. 

FIG. 8. (a) Dotted lines: linear schedule; solid lines: D-Wave One schedule used in Fig. 3; (b) same as in Fig. 3 (the evolution of the
population in the instantaneous ground state for the 8-qubit problem), but with a linear schedule. Inset: the convergence of the ground-state
population towards the AME results. (c) A histogram of the net number of jumps to the instantaneous ground state (GS). It shares the same
pattern as in the nonlinear schedule case (the inset of Fig. 4), but the net number of jumps out of the ground state is smaller due to the smaller
energy scale in the linear schedule.

= d

dt+
〈ψ(t)| V †

eff (t
+,t)Veff (t

+,t) |ψ(t)〉 (C3b)

= 〈ψ(t)| V †
eff (t

+,t)(+i)H †
eff(t

+)Veff (t
+,t) |ψ(t)〉

+ 〈ψ(t)| V †
eff (t

+,t)(−i)Heff(t
+)Veff (t

+,t) |ψ(t)〉 (C3c)

= −〈ψ(t)| V †
eff (t

+,t)

(∑
i

A
†
i (t

+)Ai(t
+)

)
Veff (t

+,t) |ψ(t)〉

(C3d)

= −‖Veff(t
+,t) |ψ(t)〉 ‖2

∑
i

〈ψ(t+)| A†
i (t

+)Ai(t
+) |ψ(t+)〉 ,

(C3e)

where in the last equality we used Eq. (C2b).
Let N (t+) ≡ ‖ |ψ̃(t+)〉 ‖2, as in Eq. (A9). We have

d

dt+
N (t+) = −N (t+)λ(t+), (C4)

where λ is the time-dependent jump rate [Eq. (B4)]. The
solution to this differential equation with the initial condition
N (t) = 1 is

N (t+) = exp

(
−

∫ t+

t

λ(t ′)dt ′
)

= p0(t+), (C5)

where p0 is the probability of not having any jump inside the
interval [Eq. (A17)], which we have now shown to be equal
to the norm squared of the unnormalized state vector for any
finite interval [t,t + τ ].

No commutators of operators at different times appear in the
derivation. The use of the waiting time distribution is therefore
valid for time-dependent operators as long as the correlation
matrix is positive.

APPENDIX D: EFFECT OF THE ANNEALING SCHEDULE
ON THE 8-QUBIT CHAIN EXAMPLE

We provide the functional form for the (D-Wave One)
annealing schedule functions A(t) and B(t) used in Sec. V A
in Fig. 8(a). We compare this nonlinear schedule to a linear
annealing schedule with an overall energy scale chosen to
closely match the energy scale at which the first annealing

schedule curves cross. The dynamics associated with the linear
annealing schedule [shown in Fig. 8(b)] is somewhat different
than the nonlinear one. This can be attributed to the differences
between the two schedules. In order to ensure that the two sets
of schedules intersect at the same energy scale, this requires
the linear schedule to start from a significantly smaller energy
scale. This results in some important effects on the dynamics.
First, this energy scale is not large enough to ensure that
the thermal state at s = 0 has negligible weight on excited
states. Since we use the ground state as the initial state of the
simulation, which is now sufficiently different from the thermal
state at s = 0, the dissipative dynamics causes visible changes
in the state immediately, which can be seen as both the dip
in Fig. 8(a) near s = 0 and the large number of excitations at
the beginning of the anneal in Fig. 8(c). Second, even after
this initial dip, the lower-energy scale associated with the
linear schedule means that thermal depopulation of the ground
state occurs generally sooner relative to the nonlinear schedule
studied in the main text, although at a lower rate because
of the linear form of the schedule. Furthermore, because the
transverse field remains significant compared to the Ising term
for longer in the anneal than in the linear case, repopulation
of the ground state due to thermal relaxation occurs for a
longer period of time. However, ultimately, the ground-state
probability at the end of the anneal is not significantly different
than that shown in Fig. 3. The jump statistics are shown in
Fig. 8(c), and closely resemble the nonlinear case shown in the
inset of Fig. 4.

APPENDIX E: PROOF THAT EIGENSTATES OF HS

ARE MODIFIED ONLY UNDER JUMPS

Recall that the Lindblad operators are defined in Eq. (4) of
the main text as

Lα,ω(t) =
∑
a,b

δω,εb(t)−εa (t) 〈εa(t)| Aα |εb(t)〉 |εa(t)〉〈εb(t)|.

(E1)

After inverting Eq. (6) we have

Ai,ω(t) =
∑

α

u∗
i,α(ω)Lα,ω(t) (E2)
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for the new Lindblad operators corresponding to a diagonalized
γ matrix of decay rates.

Assume for simplicity that the γ matrix is already diagonal,
so that u is just an identity transformation and i is a relabeling
of α; then

Ai,ω(t) =
∑
a,b

δω,εb(t)−εa (t) 〈εa(t)| Aα |εb(t)〉 |εa(t)〉〈εb(t)|,

A
†
i,ω(t) =

∑
a,b

δω,εb(t)−εa (t) 〈εb(t)| Aα |εa(t)〉 |εb(t)〉〈εa(t)|.

(E3)

Consider the drift term

−1

2

∑
i

[A†
i (t)Ai(t) − 〈A†

i (t)Ai(t)〉] |ψ(t)〉 dt.

Since Ai(t) comes from the redefinition where the index i

includes the Bohr frequencies [Eq. (8)],
√

γ ′
i (ω)Ai,ω(t) →

Ai(t), the drift term becomes the following after we reintroduce
the Bohr frequencies:

−1

2

∑
i

∑
ω

γ ′
i (ω)[A†

i,ω(t)Ai,ω(t)

− 〈ψ(t)| A†
i,ω(t)Ai,ω(t) |ψ(t)〉] |ψ(t)〉 dt. (E4)

1. When |ψ(t)〉 is an eigenstate of HS(t)

If |ψ(t)〉 is an eigenstate of HS(t) [denoted as |εb(t)〉
here],

Ai,ω(t) |ψ(t)〉 = Ai,ω(t) |εb(t)〉 =
∑

a

δω,εb(t)−εa (t) 〈εa(t)| Aα |εb(t)〉 |εa(t)〉,

〈ψ(t)| A†
i,ω(t) = 〈εb(t)| A†

i,ω(t) =
∑

a

δω,εb(t)−εa (t) 〈εb(t)| Aα |εa(t)〉 〈εa(t)|. (E5)

Let us focus on the term of the parentheses inside each summation of Eq. (E4), i.e. on:

[A†
i,ω(t)Ai,ω(t) − 〈εb(t)| A†

i,ω(t)Ai,ω(t) |εb(t)〉] |εb(t)〉 . (E6)

The first term is

A
†
i,ω(t)Ai,ω(t) |εb(t)〉 =

(∑
a′,b′

δω,εb′ (t)−εa′ (t) 〈εb′ (t)| Aα |εa′(t)〉 |εb′ (t)〉〈εa′(t)|
)∑

a

δω,εb(t)−εa (t) 〈εa(t)| Aα |εb(t)〉 |εa(t)〉

=
∑
a,b′

δω,εb′ (t)−εa (t)δω,εb(t)−εa (t) 〈εb′ (t)| Aα |εa(t)〉 〈εa(t)| Aα |εb(t)〉 |εb′ (t)〉

=
∑
a,b′

δ0,εb′ (t)−εb(t)δω,εb(t)−εa (t) 〈εb′ (t)| Aα |εa(t)〉 〈εa(t)| Aα |εb(t)〉 |εb′ (t)〉, (E7)

where the sum over b′ denotes the sum over |εb′ 〉 sharing the same energy as |εb〉. The second term is

〈εb(t)| A†
i,ω(t)Ai,ω(t) |εb(t)〉 |εb(t)〉

=
(∑

a′
δω,εb(t)−εa′ (t) 〈εb(t)| Aα |εa′ (t)〉 〈εa′ (t)|

)(∑
a

δω,εb(t)−εa (t) 〈εa(t)| Aα |εb(t)〉 |εa(t)〉
)

|εb(t)〉

=
(∑

a

δω,εb(t)−εa (t) 〈εb(t)| Aα |εa(t)〉 〈εa(t)| Aα |εb(t)〉
)

|εb(t)〉 . (E8)

Subtracting Eq. (E8) from Eq. (E7) yields the drift term
[Eq. (E6)], which is not zero, but a linear combination of
degenerate eigenstates with the same energy εb(t). Before the
jump happens the environment leads to the redistribution of
|εb(t)〉 to other states in the same energy manifold. [The Lamb
shift HLS(t) = ∑

i,ω Si(ω)A†
i,ω(t)Ai,ω(t) also yields the same

effect.] Since they all share the same energy, this does not
affect the overlap with the ground state. If the evolution by
HS(t) is adiabatic, such a linear combination will stay in the
same energy manifold and this explains the square-pulse-like
behavior in the overlapping with the ground state in Fig. 4 of
the main text.

2. No degeneracy in εb(t)

If there are no degenerate states with energy εb(t) then:

A
†
i,ω(t)Ai,ω(t) |εb(t)〉
=

∑
a

δω,εb(t)−εa (t) 〈εb(t)| Aα |εa(t)〉 〈εa(t)| Aα |εb(t)〉 |εb(t)〉.

(E9)

This cancels with 〈εb(t)| A†
i,ω(t)Ai,ω(t) |εb(t)〉 |εb(t)〉

[Eq. (E8)] and the drift term [Eq. (E6)] becomes zero.
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APPENDIX F: DERIVATION OF EQ. (31)

When the state is |ψ1(t)〉, its jump rate λ1→0(t) to |ψ0(t)〉
comprises the summation of Lindblad terms responsible for
the 1 → 0 transition:

λ1→0(t) =
∑

α∈{1→0}
〈A†

α(t)Aα(t)〉 . (F1)

The summation is over the number of qubits n. Since each
qubit is coupled to its own environment with an independent
noise source, the γ matrix in Eq. (5) is already diagonal. From
Eq. (4) we know that

Lα,ω10 (t) =
∑
a,b

δω10,εb(t)−εa (t) 〈εa(t)| σ z
α |εb(t)〉 |εa(t)〉〈εb(t)|.

(F2)

Assume that Bohr frequency ω10(t) is due only to the
1 → 0 transition [even if it is not, the other terms would
be annihilated by the matrix element 〈ψ1(t)| . . . |ψ1(t)〉]. The
Lindblad operators Aα(t) have the form

Aα(t) =
√

γα(ω10)〈ψ0(t)|σ z
α |ψ1(t)〉|ψ0(t)〉〈ψ1(t)|. (F3)

Therefore,

λ1→0(t) =
∑

α

〈ψ1(t)|A†
α(t)Aα(t)|ψ1(t)〉

=
n∑

α=1

γα(ω10)|〈ψ0(t)|σ z
α |ψ1(t)〉|2. (F4)

Here γα(ω10) is evaluated with respect to the Ohmic spectral
density.
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