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Making use of coherence and entanglement as metrological quantum resources allows us to improve the
measurement precision from the shot-noise or quantum limit to the Heisenberg limit. Quantum metrology then
relies on the availability of quantum engineered systems that involve controllable quantum degrees of freedom
which are sensitive to the measured quantity. Sensors operating in the qubit mode and exploiting their coherence in
a phase-sensitive measurement have been shown to approach the Heisenberg scaling in precision. Here, we show
that this result can be further improved by operating the quantum sensor in the qudit mode, i.e., by exploiting d

rather than two levels. Specifically, we describe the metrological algorithm for using a superconducting transmon
device operating in a qutrit mode as a magnetometer. The algorithm is based on the base-3 semiquantum Fourier
transformation and enhances the quantum theoretical performance of the sensor by a factor of 2. Even more, the
practical gain of our qutrit implementation is found in a reduction of the number of iteration steps of the quantum
Fourier transformation by the factor ln(2)/ ln(3) ≈ 0.63 compared to the qubit mode. We show that a two-tone
capacitively coupled radio-frequency signal is sufficient for implementation of the algorithm.
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I. INTRODUCTION

The idea of boosting metrological precision with the help
of quantum resources has undergone impressive development
during recent years [1,2]. Both types of quantum resources,
coherence and entanglement, are used in either sequential
or parallel strategies, respectively [3]. A key role in this
endeavor is played by novel quantum algorithms, in particular,
Kitaev’s phase estimation [4,5] and the quantum Fourier
transformation (QFT) and its semiclassical variant [6], both
exploiting phase coherence as their quantum resource and
thus following the sequential strategy. Previous theoretical and
experimental work in this direction has all been rooted in a
base-2 computational scheme that exploits qubits as measuring
devices. In this paper, we demonstrate that a superconducting
transmon device [7] operated in a qutrit (or base-3) mode
offers an enhanced performance as a magnetic-field sensor;
we present a specific algorithm exploiting the semiclassical
quantum Fourier transform as well as the required radio-
frequency (rf) voltage pulses for its implementation.

The use of entanglement-free protocols in metrology has
been developed in several steps, first the problem of measuring
the magnitude of classical fields was addressed [8], followed
by a suggestion to quantify the mesoscopic magnetic field
generated by an assembly of nuclear magnetic moments [9]
and a proposal to use nitrogen–vacancy (NV) centers in
diamond for nanoscale magnetometry [10]. The basic concept
of this type of measurement was first used in the measurement
of an optical phase through interferometry [11] and followed
by the implementation of a high-dynamic-range magnetic-field

*lebedev@itp.phys.ethz.ch

sensor in the form of an NV center [12]. An alternative route
has been taken by starting from the statistical counting of
charges in mesoscopic transport [13], which requires inclusion
of the measurement apparatus in the analysis. Originally, the
latter was described by a spin that interacts with the charge-
transporting lead within a Gedanken experiment. This idea was
later developed into a realistic setup with a measurement device
in the form of a charge or flux qubit [14,15]. Subsequently,
statistical counting has been refined to an algorithm that counts
the number of charges traversing the lead by making full
use of quantum engineering ideas in combination with the
semiclassical Fourier transform [16]. While all of the above
work is based on qubits or base-2 counting, the concept of
quantum counting [16] suggests a natural generalization of
such a scheme to qudits or base-d counting [17]. Here, we
propose an application of the qudit counting algorithm to a
metrological measurement scheme for a magnetometer that
makes use of a superconducting transmon device [7] operated
in a qutrit mode. Making efficient use of the larger Hilbert
space of a transmon qutrit and its specific linear energy level
dependence on the measured magnetic flux then allows for
faster acquisition of information and thereby more efficient
measurement.

The algorithmic use of quantum engineered devices requires
a nonlinear spectrum in order to address the quantum states
individually. Superconducting circuit devices with Josephson
junctions in loop geometries [18] can be viewed as artificial
atoms; they exhibit energy spectra with unequal level spacings
that can be designed on demand. Moreover, the position of
energy levels in such devices is sensitive to the magnetic flux
penetrating the SQUID loop of the artificial atom. In particular,
the ultrahigh sensitivity of the transition frequency of the flux
qubit [19] allows for its use as an ultrahighly sensitive magnetic
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flux sensor [20]. Unfortunately, the high sensitivity of flux
qubits to low-frequency noise [21] reduces their coherence
time, which makes them unfavorable for the implementation
of quantum metrological procedures. On the other hand, the
special design of the transmon atom [7] renders this device
insensitive to the background charge noise, resulting in longer
coherence times. Recently, Kitaev- and Fourier-like phase
estimation algorithms have been successfully implemented in
a dc magnetic-flux measurement with a transmon qubit [22],
resulting in an algorithmically improved sensitivity in the high
dynamic range.

The spectrum of a transmon atom is characterized by
a particularly simple form that corresponds to a harmonic
oscillator with a weak nonlinearity. Furthermore, the transmon
atom’s spectrum has a linear magnetic-flux dependence of the
excited states with respect to the ground state (to leading order
in the low ratio EC/EJ of the charge and Josephson energies
of the transmon atom). Such a linear flux dependence allows
one to exploit several excited levels of the transmon atom and
implement a Fourier phase-estimation algorithm operating in
the qudit regime. On the other hand, the charge degree of
freedom enters the spectrum in a nonlinear way, allowing for
the transmon’s manipulation via capacitively coupled rf fields.
Such coherent manipulation of a transmon atom operating
in a qutrit regime has been demonstrated recently in several
works [23,24]; below, we show how to exploit the combination
of these features in the effective operation of the transmon
as a magnetometer approaching Heisenberg scaling over the
coherence time of the device.

Operating the transmon in the Heisenberg limit, i.e., at-
taining a measurement precision that scales in the invested
resources R as 1/R rather than 1/

√
R, requires a suitable

metrological algorithm, in our case, the semiclassical Fourier
transform. The basic step in this algorithm is a Ramsey cycle of
duration τ that accumulates a phase φ = μHτ/h̄ involving the
magnetic field H to be measured; here, the magnetic moment
μ plays the role of a coupling constant. Subsequent Ramsey
cycles with incrementally reduced times τ , readout, and use of
the result in the next step allow us to implement the quantum
Fourier transformation, which boosts the device performance
to make it attain the Heisenberg limit. This QFT is usually
implemented in a binary system exploiting qubit devices. The
implementation of this algorithm in a ternary system with
qutrits improves the performance by a factor of 2, i.e., using
half the resources, one arrives at the same precision as with
the binary implementation. This information-theoretical result
is further improved when considering the number of steps
required for the same precision. Such a performance criterion
makes sense, as most of the time required for the measurement
is invested in the preparation and readout of the transmon,
which has to be repeated at every step. It turns out that the
number of steps is reduced by a factor of ln(2)/ ln(3) ≈ 0.63
when replacing the qubit mode with a qutrit implementation,
a considerable speedup of the measurement.

In the following, we briefly recapitulate the binary metro-
logical algorithm (Sec. II) and then extend the discussion
to the ternary system, which exploits qutrits (Sec. III). The
comparison between the two procedures in Sec. IV leads us to
the performance results discussed above. In Sec. V, we discuss
the spectral properties of the transmon device and find the

specific rf pulses that prepare the qutrit for measurement and
for readout: Essentially, these pulses generate a basis change
(and back) from the computational basis (where the qutrit
is operated) to the ‘counting’ or measurement basis, where
the field imposes its characteristic ‘rotation’ of the qutrit that
encodes the unknown magnitude of the field. It turns out that a
two-tone pulse addressing the first and second excited states is
sufficient to perform this task. In Sec. VI, we summarize and
conclude our discussion.

II. QUBIT METROLOGICAL PROCEDURE

We start with a brief summary of the standard qubit-based
metrological procedure for the measurement of a constant
magnetic field. The elementary step in this measurement
scheme is a Ramsey interference experiment where the qubit
(or, equivalently, a spin-1/2) is prepared in an equally weighted
(or balanced) superposition of its z-polarized states |↓〉 and
|↑〉, |ψ0〉 = (|↓〉 + |↑〉)/√2. The state |ψ0〉 is located in the
equatorial xy plane of the Bloch sphere and can be prepared
by performing a π/2 rotation of the |↓〉 state around a y axis,
|ψ0〉 = Ûy(π/2)|↓〉. Next, the state |ψ0〉 is exposed during
a time interval τ to a magnetic field H directed along the
z axis, |ψ0〉 → exp(−iσ̂zφ/2)|ψ0〉 ≡ |ψφ〉, with φ = μHτ/h̄

and μ the magnetic moment of the spin. As a result, the
initial state |ψ0〉 picks up the additional field-sensitive relative
phase φ, |ψφ〉 = (e−iφ/2|↓〉 + eiφ/2|↑〉)/√2. The last step in
the Ramsey interference experiment is the readout procedure,
where the information about the value of the magnetic field
encoded in the qubit state is extracted through a projective
measurement of the spin polarization along the z axis. In
order to make the outcome probabilities P↑,↓ depend on the
magnetic field H , the state |ψφ〉 is first transformed by applying
a unitary readout operation, which coincides with that for
the preparation in the qubit case, |ψout〉 = Ûy(π/2)|ψφ〉 =
−i sin(φ/2)|↓〉 + cos(φ/2)|↑〉. Repeating this Ramsey cycle
several times, one can accumulate enough statistics and extract
the value of the field H (see Refs. [15,17]).

Quite importantly, for the specific situation where the mag-
netic field H can assume only two values, H = 0 and H = h,
one can unambiguously distinguish these two possibilities
during a single Ramsey cycle, i.e., a single-shot measurement.
Indeed, adjusting the time delay τ such that φ = μhτ/h̄ = π ,
one has that either |ψφ〉 = |ψ0〉 or |ψφ〉 = |ψ1〉 = (|〈↓〉 −
|↑〉)/√2 and, hence, |ψout〉 = |↑〉 or |ψout〉 = |↓〉. This results
in the probabilities P↑ = 1 and P↓ = 0 for H = 0 and P↑ = 0
and P↓ = 1 for H = h, allowing for a single-shot distinction
between the two field values. The basis states |↑〉 and |↓〉 then
define the so-called computational basis, while the states |ψ0〉
and |ψ1〉 form the counting basis.

The above remarkable fact can be further exploited to
distinguish between 2K discrete magnetic-field values with
only K Ramsey experiments: Let the magnetic field H ∈
[0,2h0] assume only discrete values that correspond to an exact
K-bit fractional binary representation of the form

H = h0

(
b0

20
+ b1

21
+ b2

22
+ · · · + bK−1

2K−1

)
, (1)

where the amplitudes bn, n = 0, . . . ,K − 1, take binary values
0 and 1. Let us also choose an elementary time delay τ0 such
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that μh0τ0/h̄ = π . A Ramsey measurement with an enhanced
time delay τK−1 = 2K−1τ0 then accumulates a phase φK−1 =
πbK−1 + 2πn, where the integer n = 2K−1b0 + · · · + 2bK−2

is given by the previous bits bn, n = 0, . . . ,K − 2. Although
this first Ramsey experiment provides the phase φK−1 only
modulo 2π , the even or odd outcome for this modulo-2π phase
allows for the unambiguous identification of the last binary
digit bK−1.

In the next step, the time delay in the Ramsey exper-
iment is twice reduced, τK−2 = 2K−2τ0. The accumulated
field-sensitive phase is now given by φK−2 = π (bK−2 +
bK−1/2) mod 2π . Since we have learned the value of the
bit bK−1 in the previous measurement, we can apply an
additional rotation, Ûz(−πbK−1/2), prior to the readout oper-
ation in order to compensate for the residual phase πbK−1/2.
The subsequent readout operation and measurement along
z provide the next bit, bK−2, in a deterministic way. Pro-
ceeding analogously with gradually decreased time delays
2K−3τ0,2K−4τ0, . . . ,τ0 allows for the unambiguous determina-
tion of all bits bK−1,bK−2, . . . ,b0 in the binary representation
of the magnetic field H and thus its precise selection out of the
2K discrete allowed values [see Eq. (1)].

III. QUTRIT METROLOGY

Next, we consider the generalization of the above qubit-
based metrological scheme to a qutrit, i.e., a quantum system
that is endowed with a three-dimensional Hilbert space. Let
the quantum system in question be a spin-1 system with
(computational) basis states |0〉, |1〉, and |2〉 corresponding to
the mz = −1, 0, and 1 angular-momentum polarizations along
the z axis. As in the qubit case, we prepare the qutrit in a
balanced state, |ψ0〉 = (|0〉 + |1〉 + |2〉)/√3, and expose it to
a constant magnetic field H directed along the z axis during
the time τ . As a result, the information about the value of the
field is encoded into the relative phases of the qutrit state,

|ψφ〉 = 1√
3

(
|0〉 + eiφ|1〉 + e2iφ|2〉

)
, (2)

where φ = μHτ/h̄ and we have omitted the overall phase
factor e−iφ .

To start with, we consider a situation where the magnetic
field assumes only one of three values, H ∈ {0,h,2h}, h > 0;
the task then is to unambiguously distinguish these three
alternatives via a single-shot measurement of the state, (2);
such a one-shot discrimination is indeed possible as shown
in Ref. [17] within the context of the quantum counting
problem. We expose the initial balanced state |ψ0〉 during
a specific time interval τ0 to the field such that the phase
φ = μhτ0/h̄ assumes the value φ = 2π/3. As a result, the
qutrit ends up in one of the counting states, |ψφ〉 = |ψ0〉,
|ψφ〉 = |ψ1〉 = (|0〉 + e2π i/3|1〉 + e−2π i/3|2〉)/√3, or |ψφ〉 =
|ψ2〉 = (|0〉 + e−2π i/3|1〉 + e2π i/3|2〉)/√3, depending on the
discrete field value, 0, h, or 2h. Applying a base-d quantum
inverse Fourier transformation, F̂−1

d ,

F̂−1
d |n〉 = 1√

d

d−1∑
k=0

e−2πink/d |k〉, (3)

with d = 3, to these counting states, one can check that the
resulting state |ψout〉 = F̂−1

3 |ψφ〉 coincides with one of the
computational states, |0〉, |1〉, or |2〉, depending on the magnetic
field H taking the value 0, h, or 2h, respectively. Therefore,
measuring the polarization of the resulting state |ψout〉 along
the z axis allows for the unambiguous distinction between the
three possible values of the magnetic field.

Next, consider the situation where the magnetic field H has
an exact ternary representation

H = h0

(
t0

30
+ t1

31
+ · · · + tK−1

3K−1

)
, (4)

where the amplitudes (or trits) tn, n = 0, . . . ,K − 1, can take
only three discrete values: 0, 1, and 2. Then, similarly to the
qubit case, one can successively determine all K trinary digits
starting from the least significant digit tK−1 within K separate
preparation-exposure-readout steps. Indeed, in the first step,
we prepare the qutrit in the balanced state |ψ0〉 and expose it to
the magnetic field H during the time interval τK−1 = 3K−1τ0,
where τ0 is chosen to satisfy the relation μh0τ0/h̄ = 2π/3.
Then the magnetic-field-dependent phase φK−1 = (2π/3) tK−1

mod 2π can only take the three values 0, 2π/3, and 4π/3,
which can be unambiguously distinguished by the inverse
Fourier transform in the readout step described above. Next,
the digit tK−2 is determined by reducing the exposure time by
one-third, τK−2 = 3K−2 τ0, which provides the field-dependent
phase φK−2 = (2π/3)(tK−2 + tK−1/3). Making use of the digit
tK−1 found in the previous step, the residual phase 2πtK−1/9 is
compensated before readout through projection along z, which
leads to the next trinary digit or trit tK−2, and so on.

In the most general situation, the magnetic field H assumes
continuous values and has no exact finite representation as in
Eq. (1) or (4). Hence, the number of trinary (or binary) digits
needed to describe it is infinite and one cannot measure the
field H exactly with a finite number of preparation-exposure-
readout steps. Still, we can find the approximate value of
the field by detecting the first K digits of its numerical
representation. For example, using a base-3 representation with
qutrits and applying the magnetic field H during the time
interval τK−1 to the balanced state |ψ0〉, the magnetic field
induces the phase φK−1 = (2π/3)tK−1 + 3K−1δφ, where the
residual phase δφ ∈ [0,π/3K ] as given by

δφ = 2π

3

(
tK

3K
+ tK+1

3K+1
+ · · ·

)
(5)

is unknown and can no longer be compensated. As a con-
sequence, rather than definitive outcomes, we have to find
the probabilities Pk of observing the qutrit in the states |k〉,
k = 0,1,2. Applying the inverse Fourier transform and ana-
lyzing the result, we find that the probabilities

P0 = 1
9 [1 + 2 cos(2π tK−1/3 + 3K−1δφ)]2,

P1 = 1
9 [1 + 2 cos (2π (tK−1 − 1)/3 + 3K−1δφ)]2,

P2 = 1
9 [1 + 2 cos (2π (tK−1 − 2)/3 + 3K−1δφ)]2 (6)

deviate from 0 and unity due to the unknown phase δφ,
hence, we can no longer distinguish different tK−1 values
unambiguously. Instead, we must resort to a statistical analysis
and select between the three alternatives tK−1 = 0, 1, and 2 by
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finding the maximum probability Pk , k = 0,1,2. In practice,
the weights of the three probabilities in Eq. (6) are disjoint
and a single measurement is sufficient to determine the trit’s
value with good confidence; the overall success probabilities
for the measurement schemes discussed below are calculated
on the basis of this assumption. Repeating the procedure
for the remaining K − 1 trits including the required phase
compensation prior to the readout, one arrives at a set of
K trinary digits �t ≡ t0, . . . ,tK−1. The overall probability of
observing the trinary string �t , given some unknown magnetic
field H , is given by

P (�t |H ) =
K−1∏
k=0

1

9
{1 + 2 cos[3k(φ(H ) − φ̃�t )]}2, (7)

where the phase φ̃�t = (2π/3)
∑K−1

k=0 tk/3k relates to the string
�t and φ(H ) = μHτ0/h̄ is the true field-induced phase; for the
exact trinary value of H and its associated string �t , we have
P (�t |H ) = 1.

In the next step, we make use of Bayes’ theorem and infer
the probability P (φ(H )|�t ) for the accumulated phase φ(H ),
provided we have observed a string �t , P (φ(H )|�t ) ∝ P (�t |H ).
Making use of the trigonometric identity sin(3α) = sin(α)
[3 − 4 sin2(α)], one finds that

P (φ(H )|�t) = 1

2π

sin2[3K (φ(H ) − φ̃�t )/2]

3K sin2[(φ(h) − φ�t )/2]
. (8)

A similar analysis provides the result

P (φ(H )|�b) = 1

2π

sin2[2K (φ(H ) − φ̃�b)/2]

2K sin2[(φ(H ) − φ�b)/2]
(9)

for the qubit-based protocol, where �b is the K-bit string
learned during the K-step measurement process and φ̃�b =
π

∑K−1
k=0 bk/2k .

The above qubit and qutrit Fourier metrological schemes
can be generalized to a setup with qudits that are endowed with
a d-dimensional Hilbert space. The qudit then is prepared in
the balanced state |ψ0〉 = (1/

√
d)

∑d−1
j=0 |j 〉 and subsequently

experiences a magnetic-phase accumulation, |ψ0〉 → |ψφ〉 =
(1/

√
d)

∑d−1
j=0 eijφ|j 〉, followed by a d-base inverse Fourier

readout measurement. The posterior probability density for the
measured phase φ(H ) is given by

P (φ(H )|�x) = 1

2π

sin2[dK (φ(H ) − φ̃�x)/2]

dK sin2[(φ(H ) − φ�x)/2]
, (10)

where �x is a string of K base-d digits. Using the relation
limγ→∞[sin2(γ x)/πγ x2] = δ(x) one easily checks that both
results approach the limit of the δ function P (φ(H )|�x ) →
δ(φ(H ) − φ̃�x) when K → ∞.

Next, we discuss the impact of a false digit assignment on
the measurement outcome of the Fourier metrological scheme.
This follows from the probability density plot P (φ|�x ) ≡
P (δφ) evaluated as a function of the estimation error δφ =
φ − φ̃�x , which is shown in Fig. 1 for the qubit- and qutrit-based
algorithms.

Both plots show a sharp central peak, δφ ∈ [−2π/dK,

2π/dK ], d = 2 or 3, and a number of decaying satellite peaks.
These satellite peaks derive from the incorrect assignment of

FIG. 1. Probability density plots P (φ − φ̃�x) for the K = 3 step
Fourier metrological procedure operated in the qutrit (thick line) and
qubit (thin line) regimes.

the binary bi or trinary ti digit during the measurement run. The
first satellites correspond to the false assignment of the least
significant digit in the first step of the procedure, while the far
weaker satellites farther out correspond to assignment errors
of subsequent readouts. This analysis shows that the Fourier
metrological procedure is stable with respect to the assignment
errors: the probability of determining a false digit decreases
for each step in the procedure, resulting in a confidence level
that is highest for the most significant digits and decreases for
the measurement of the less significant digits. The probability
that the observed value of the phase φ lies within the region
of the central peak, and hence no error has been made in the
assignment of digits, is given by

P

(
δφ ∈

[
−2π

dK
,
2π

dK

])
≈ 1

π

∫ π

−π

dy
sin2 y

y2
≈ 0.903, (11)

where we have assumed a large K: the error probability
saturates and does not depend on the number of steps K (or,
equivalently, the number of digits), manifesting the stability of
the Fourier procedure.

IV. COMPARING THE QUBIT AND QUTRIT PROCEDURES

The posterior distribution functions for the phase φ(H ) in
the qutrit and qubit metrological procedures [see Eqs. (8) and
(9)] allows us to compare the efficiencies of the two schemes
quantitatively and reveal the advantage of using a higher-
dimensional quantum system for metrological purposes. Let
the unknown magnetic field H be located somewhere within
the continuous interval H ∈ [0,H0]. Then, as follows from
Eqs. (1) and (4), the field scales for the qubit- and qutrit-
based metrology are chosen as h

qb
0 = H0/2 and h

qt
0 = H0/3

and the corresponding minimal Ramsey delays are given by
τ0 = 2πh̄/μH0. During the K steps, the qubit and qutrit
metrological procedures learn about the magnetic field to a
precision (δH )qb = H0/2K and (δH )qt = H0/3K . These K-
step precision boundaries have to be related to the amount
of quantum resources required to achieve them. The quantum
resource exploited in our metrological procedures is the co-
herence of the quantum devices, which can be quantified by
the net coherence (or phase accumulation) time accumulated
during the K steps [25]. For each of the two protocols, this
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time is given by

Tqb = τ0

K−1∑
k=0

2k ≈ 2πh̄

μH0
2K, (12)

Tqt = τ0

K−1∑
k=0

3k ≈ 2πh̄

μH0

3K

2
. (13)

Expressing the K-step precisions δH through the net coher-
ence time,

(δH )qb = 2πh̄

μ

1

Tqb
, (δH )qt = πh̄

μ

1

Tqt
, (14)

one notes that both procedures attain the Heisenberg limit, with
the precision δH scaling as the inverse of the total coherence
time, but the qutrit procedure has a twice better prefactor. For
the general qudit metrological scheme, the combination of
(δH )qd = H0/d

K , Tqd = τ0d
K/(d − 1), and τ0 = 2πh̄/μH0

produces the sensitivity,

(δH )qd = 2πh̄

μ

1

(d − 1)Tqd
. (15)

In practice, however, the phase accumulation time is the
minimal time used in a Ramsey experiment. Most of the
overall measurement time is spent on the measurement and
reinitialization of the quantum devices. Hence, in practice, the
speed of the metrological procedure is mostly defined by the
number K of steps required to achieve a given precision. Here,
the qutrit-based procedure has a clear advantage: in order to
achieve a relative precision δH/H0 it requires approximately
K ∼ − log3(δH/H0) steps, that is, ln(2)/ ln(3) ≈ 0.63 fewer
than the number of steps K ∼ − log2(δH/H0) needed for the
qubit-based scheme.

V. METROLOGY WITH A TRANSMON DEVICE

The working principle of a transmon qubit as a magnetic-
flux sensor has been recently demonstrated in Ref. [22];
here, we describe how the qutrit metrological protocol can
be realized with a transmon device. The superconducting
transmon [7] involves a capacitively shunted SQUID loop
and constitutes an excellent candidate to implement qudit
metrological algorithms. Its dynamics is described by the
Hamiltonian

Ĥ = 4EC(n̂ − ng)2 − EJ(
) cos(ϕ̂), (16)

where n̂ is the number of Cooper pairs transmitted between
superconducting islands with a charging energy EC and relative
phase ϕ̂ and ng is the charge bias. The Josephson energy EJ(
)
of the SQUID loop depends on the flux 
 through the loop,

EJ(
) = EJ�

√
cos2(π
/
0) + a2 sin2(π
/
0). (17)

Here, EJ� = EJ1 + EJ2 is the total energy of the two Josephson
junctions in the SQUID loop, a = (EJ1 − EJ2)/EJ� is the
junctions’ asymmetry, and 
0 is the magnetic flux quantum.

The transmon atom is operated in the limit where EJ/EC ∼
80−200. Its energy spectrum comprises a discrete set of
nonequidistant energy levels with positions that depend on the
magnetic flux 
 penetrating the SQUID loop of the device.

Expanding the cos(ϕ̂) term in the Hamiltonian, Eq. (16), and
treating the term quartic in ϕ̂ as a perturbation, we obtain (to
leading order) the transmon’s energy spectrum in the form

En ≈
√

8ECEJ(
)

(
n + 1

2

)
− EJ(
) − EC

12
(6n2 + 6n + 3),

(18)

The nonlinearity of the spectrum En+1 − En = −EC(n + 1) +√
8ECEJ(
) allows for the individual addressing of the trans-

mon’s quantum states through application of pulses of elec-
tromagnetic radiation with specific frequencies. On the other
hand, to leading order, the dependence of the spectrum on the
magnetic flux 
 is linear in n; while second-order corrections
∝ EC(EJ/EC)−1/2 do modify this result, these corrections are
small and we neglect them in the following.

In order to manipulate the first two excited states of our
transmon atom, we consider a two-tone rf pulse that generates
a time-varying electric potential difference of the form

V (t) = (t)(V1 cos(ω1t) + V2 cos(ω2t)) (19)

at the transmon’s capacitor, where (t) is the pulse envelope
and V1(2) are the amplitudes of the pulse components with tone
frequencies ω1(2). The transmon evolution under the pulse V (t)
then is described by the Hamiltonian

Ĥ =
∞∑

n=0

En|n〉〈n| + (h̄gn,n+1(t)|n〉〈n + 1| + H.c.), (20)

with the transition amplitudes h̄gn,n+1(t) = 2βeV (t) 〈n|N̂ |n +
1〉; here, N̂ is the number operator of Cooper pairs transferred
between the transmon’s capacitor plates and β is a geometrical
factor which quantifies the coupling between the transmon’s
capacitor and the rf field (see Ref. [7]).

Let the tone frequencies ω1 and ω2 be near the transition
frequencies ω01 = (E1 − E0)/h̄ and ω12 = (E2 − E1)/h̄ of
the first two pairs of levels, such that only the three lowest
energy levels are affected by the rf field. We work in the rotating
frame (or interaction representation) with respect to the ‘free’
Hamiltonian Ĥ0 = h̄ω1|1〉〈1| + h̄(ω1 + ω2)|2〉〈2|. A quantum
state of this effective three-level system can be represented as
|�(t)〉 = a0(t)|0〉 + a1(t)|1〉 + a2(t)|2〉. The time-dependent
amplitudes �a(t) = [a0(t),a1(t),a2(t)] obey the Schrödinger
equation ih̄∂t �a(t) = Ĥ (t)�a(t), with the Hamiltonian assuming
the following form in the rotating-wave approximation:

Ĥ (t) = h̄

⎡
⎢⎣

0 (t)�1 0

(t)�1 ω01 − ω1 (t)�2

0 (t)�2 ω01 + ω12 − ω1 − ω2

⎤
⎥⎦,

(21)

where �1 = βeV1〈0|N̂ |1〉/h̄ and �2 = βeV2〈1|N̂ |2〉/h̄ are
effective transition amplitudes.

A. Qutrit metrological protocol

Our qutrit metrological scheme involves three steps that
have to be implemented with the help of proper manipulation
signals V (t). In the first step, we prepare the transmon in a
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balanced superposition of the form

|�0〉 = 1√
3

(eiϕ0 |0〉 + eiϕ1 |1〉 + eiϕ2 |2〉) ≡ 1√
3

⎡
⎢⎣

eiϕ1

eiϕ2

eiϕ3

⎤
⎥⎦. (22)

In the second step, the free evolution Û (
) of the trans-
mon generates the additional phase factors |1〉 → eiφ|1〉 and
|2〉 → eiφ′ |2〉 with φ = [ω01(
) − ω1]τ and φ′ = [ω01(
) +
ω12(
) − ω1 − ω2]τ . The remarkable property of the trans-
mon is that its level separations scale equally in magnetic flux
[see Eq. (18)]. Starting from the reference magnetic flux 
c,
we set the frequencies ω1 = ω01(
c) and ω2 = ω12(
c). Then
φ′ = 2φ ≡ 2[ω01(
) − ω01(
c)]τ and the state |�0〉 evolves
to the new balanced state

|�φ〉 = 1√
3

⎡
⎢⎣

eiϕ0

eiϕ1+iφ

eiϕ2+2iφ

⎤
⎥⎦. (23)

Finally, in the third step of our qutrit metrological procedure,
we need to construct a unitary readout operator of the form

Ûr = 1√
3

⎡
⎢⎣

eiχ0 0 0

0 eiχ1 0

0 0 eiχ2

⎤
⎥⎦

⎡
⎢⎣

1 1 1

1 e−2πi/3 e+2πi/3

1 e2πi/3 e−2πi/3

⎤
⎥⎦

×

⎡
⎢⎣

e−iϕ0 0 0

0 e−iϕ1 0

0 0 e−iϕ2

⎤
⎥⎦, (24)

which represents a generalized base-3 inverse Fourier trans-
form.

For the specific situation where the accumulated phaseφ can
only assume the three values 0, 2π/3, and 4π/3 ↔ −2π/3,
this measurement scheme is deterministic and the transmon
will always be found in one of the pure states |0〉, |1〉, or |2〉.
Indeed, for φ = 2π/3 or φ = 4π/3, the state |�0〉 transforms
into states

|�1〉 = 1√
3

⎡
⎢⎣

eiϕ0

eiϕ1+i 2π
3

eiϕ2+i 4π
3

⎤
⎥⎦, |�2〉 = 1√

3

⎡
⎢⎣

eiϕ0

eiϕ1+i 4π
3

eiϕ2+i 2π
3

⎤
⎥⎦, (25)

which together with |�0〉 form the (orthonormal) compu-
tational basis. Then the readout operation Ûr provides a
deterministic outcome,

Ûr |�j 〉 = eiχj |j 〉, j = 0,1,2. (26)

For an arbitrary accumulated phase, the scheme is proba-
bilistic and provides the probabilities

Pj (φ) = |〈j |Ûr Û (
)Ûp|0〉|2
= 1

9 [1 + 2 cos(φ(
) − 2π j/3)]2, j = 0,1,2, (27)

of observing the transmon in state |j 〉. The possible phase val-
ues φ then are divided into the three sectors S0 = [−π/3,π/3],
S1 = [π/3,π ], and S2 = [π,5π/3] with the maximal probabil-
ity Pj indicating that φ ∈ Sj .

B. Radio-frequency pulses for the metrological protocol

In order to implement our metrological protocol, we have
to find appropriate rf pulses Vp(t) and Vr (t) that prepare the
transmon in a balanced state and read out the state after its free
evolution in the magnetic field to be measured. It turns out to
be convenient to reverse the order and find the readout pulse
first.

Hence, our next goal is to find an rf pulse Vr (t) that generates
a unitary readout operation of the form (24), a task that we
tackle in three steps: (i) We show that any 3×3 unitary with
equal-modulus matrix elements |Ûij | = 1/

√
3 is of the form

either Ûr or Û−1
r . (ii) We find the unitary associated with a

rectangular two-tone rf pulse of finite duration τp. (iii) We
determine the constraints on the rf pulse required for the
readout action.

Starting with (i), we consider an arbitrary 3×3 unitary
matrix Û with all matrix elements of modulus 1/

√
3. After

multiplication with suitable diagonal phase matrices from the
left and right, we can arrive at the form

Û → Û ′ = 1√
3

⎡
⎢⎣

1 1 1

1 eiα1 eiβ1

1 eiα2 eiβ2

⎤
⎥⎦, (28)

where the remaining four phases have to satisfy the orthogo-
nality constraints between columns, 1 + eiα1 + eiα2 = 0, 1 +
eiβ1 + eiβ2 = 0, and 1 + ei(α1−β1) + ei(α2−β2) = 0. It follows
that the solutions of these constraints define either the Fourier
transform Û ′ = F̂3 or its inverse Û ′ = F̂−1

3 [see Eq. (3)], which
proves our statement.

Next, in step (ii), we consider a two-tone rf pulse with a rect-
angular shape of duration τp and frequencies ω1 = ω01(
c) −
2δω andω2 = ω12(
c) + 2δω. Such a pulse generates a unitary
rotation of the qutrit Û = exp(−iĤ τp/h̄) ≡ exp(−iK̂), where

K̂ =

⎡
⎢⎣

0 �1 0

�1 2ε �2

0 �2 0

⎤
⎥⎦, ε = δω τp, (29)

and �1,2 are effective transition amplitudes [see Eq. (21)]. The
resulting unitary transformation has the form

Û =

⎡
⎢⎢⎣

�2
2

�2
1+�2

2
0 − �1�2

�2
1+�2

2

0 0 0

− �1�2

�2
1+�2

2
0 �2

1

�2
1+�2

2

⎤
⎥⎥⎦

+ e−iε cos(ξ )

⎡
⎢⎢⎣

�2
1

�2
1+�2

2
0 �1�2

�2
1+�2

2

0 1 0
�1�2

�2
1+�2

2
0 �2

2

�2
1+�2

2

⎤
⎥⎥⎦

+ ie−iε sin(ξ )

ξ

⎡
⎢⎢⎣

ε�2
1

�2
1+�2

2
−�1

ε�1�2

�2
1+�2

2

−�1 −ε −�2

ε�1�2

�2
1+�2

2
−�2

ε�2
2

�2
1+�2

2

⎤
⎥⎥⎦, (30)

where ξ =
√

ε2 + �2
1 + �2

2.
Let us then, (iii), determine the parameters that generate

the readout matrix Ûr . Following (i), we have to require that
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|[Ur ]ij |2 = 1/3. The conditions |U12|2 = |U21|2 = 1/3 and
|U23|2 = |U32|2 = 1/3 imply that

sin2(ξ )

ξ 2
�2

1 = 1

3
,

sin2(ξ )

ξ 2
�2

2 = 1

3
, (31)

which gives �2
1 = �2

2 ≡ �2. Accounting for the remain-
ing conditions |U11|2 = |U13|2 = 1/3 and using the relation
2�2 = ξ 2 − ε2, we arrive at the following system of transcen-
dental equations:

ε2 = ξ 2

(
1 − 2

3 sin2(ξ )

)
, (32)

cos(ε) cos(ξ ) + ε

ξ
sin(ε) sin(ξ ) = 0. (33)

Among its solutions, we choose the one with the minimal ε, as
it corresponds to the shortest rf pulse for a given detuning δω,
and find the numerical values ε0 ≈ 0.8525, ξ0 ≈ 2.0205, and
hence �0 ≈ 1.2953. We note that the system of Eqs. (32) and
(33) remains unchanged under a sign change of the parameters
ε, �1, and �2 characterizing the Hamiltonian.

Let us consider the specific solution with ε = −ε0 and �1 =
�2 = �0. The corresponding pulse then generates the readout
unitary transformation

Ûr = 1√
3

⎡
⎢⎣

e−i π
6 −ieiε0 e−i 5π

6

−ieiε0 iei2ε0 −ieiε0

e−i 5π
6 −ieiε0 e−i π

6

⎤
⎥⎦

≡

⎡
⎢⎣

1 0 0

0 eiε0+i 5π
6 0

0 0 ei 4π
3

⎤
⎥⎦F̂−1

3

⎡
⎢⎣

e−i π
6 0 0

0 −ieiε0 0

0 0 e−i 5π
6

⎤
⎥⎦,

(34)

which provides the desired inverse generalized Fourier trans-
form.

As a preparation operator Ûp, we choose a unitary rotation
generated by an rf pulse with ε = +ε0 and �1 = �2 = −�0;
i.e., the preparation pulse generates the inverse of the readout
operator, Ûp = Û

†
r .

The sign change in ε is trivially realized by inverting the
detuning δω → −δω. In order to change the sign (or, more
generally, the phase) of the effective transition amplitudes
�1,2, one can proceed with an appropriate modulation of
the voltage signal V (t). Making use of a standard IQ (in-
phase and quadrature) mixing scheme, an incoming high-
frequency signal cos(ωLOt) with the (local oscillator) frequency
ωLO = 1

2 [ω01(
c) + ω12(
c)] is first physically split (and
partly phase shifted) into two separate signals, cos(ωLOt) →
1
2 [cos(ωLOt) + sin(ωLOt)]. These are independently mixed with
the intermediate-frequency signals A1(t) cos(ωIFt + ϕ) and
A2(t) sin(ωIFt + ϕ) generated by an arbitrary-waveform gen-
erator. Finally, the signals are recombined and the resulting
output signal sent to the transmon is given by

V (t) = (t)

4
[(A1 − A2) cos[(ωLO + ωIF)t + ϕ]

+ (A1 + A2) cos[(ωLO − ωIF)t − ϕ]]. (35)

Choosing amplitudes A1 = 2(V1 + V2) and A2 = 2(V2 − V1),
frequency ωIF = 1

2 [ω01(
c) − ω12(
c)] − 2δω, and phase
ϕ = 0, one can generate the readout pulse. On the other hand,
choosing the frequency ωIF = 1

2 [ω01(
c) − ω12(
c)] + 2δω

and the phase ϕ = π together with the sign inversion of the
detuning δω reverses the sign of all three parameters ε, �1,
and �2 and hence produces the preparation pulse.

C. Optimizing the transmon sensitivity

As follows from Eq. (15), the measurement precision that
can be attained by the qudit metrological protocol depends on
two factors, the magnetic moment μ of the transmon device
and the longest phase coherence time dK−1τ0 required for
the longest run of the metrological protocol. The magnetic
moment of the transmon can be obtained via the curvature of
its transition frequency,

μ = h̄A
∂ω01(
c)

∂

, (36)

where A is the area of the SQUID loop. Indeed, the relative
phase φ = [ω01(
) − ω01(
c)]τ accumulated by the trans-
mon’s wave function is given by

φ ≈ τ
∂ω01(
c)

∂

(
 − 
c) = μδHτ

h̄
, (37)

where δH = H − Hc is the magnetic field measured relative to
the reference magnetic field Hc, 
c = AHc. In order to attain
a better sensitivity, one has to deviate from the ‘sweet spot,’
the upper maximum of the transmon spectrum ω01(
) where
μ = 0, and take the device to a (locally) linear regime with a
lower transition frequency. In the limit of an almost-symmetric
Josephson junction loop with a → 0, the maximal value of
the transmon’s magnetic moment is given by [see Eqs. (18)
and (17)]

μ = π
A


0

√
8ECEJ�

a
, (38)

which occurs near the bottom of the transmon spectrum where
tan2(π
c/
0) = 1/a. The result, Eq. (38), applies to the
transmon limit EJ � EC; for a symmetric device a → 0, the
largest moment μ appears near the point of maximal frustration

c = 
0/2 where EJ becomes small and the approximation
breaks down.

In our discussion above, we have implicitly assumed that
the entire preparation–phase accumulation–readout sequence
involves a total time that is much below the coherence (T2)
and relaxation (T1) times of the transmon device. In a realistic
situation, when operating the transmon away from the sweet
spot the T2 time is reduced and so is the number K of
available steps for the metrological procedure. For a given
qudit coherence time T2, the delay time of the longest Ramsey
sequence cannot exceed the T2 time. Hence, the maximum
number of steps in the Fourier procedure is limited by the
condition τ0d

K−1 = T2, which gives K = 1 + logd (T2/τ0)
steps, where τ0 is the minimum duration of a Ramsey sequence.
Thus, the total amount of coherence time spent for the sig-
nal sensing is given by Tqd = τ0

∑K−1
k=0 dk = τ0(dK−1 − 1)/

(d − 1) ≈ [d/(d − 1)]T2 for K � 1. Then, according to
Eq. (15), the best attainable field resolution can be estimated
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as

[δH ]T2 ≈ 2πh̄

μ d T2
. (39)

Hence, we have to optimize the product μ(
c)T2(
c) for the
best flux bias 
c, compromising between two opposing trends,
the magnetic moment μ(
c) increasing and the coherence time
T2(
c) decreasing away from the sweet spot. The magnetic
moment of a transmon atom can attain a value of 105μB (see
Ref. [22]). Assuming a coherence time T2 ∼ 1 μs, one can
estimate that a magnetic-field precision of order δH ∼ 0.1 nT
can be achieved.

A further improvement of the field resolution is possible
only within a standard statistical measurement scheme [26] by
repeating the longest Ramsey measurement with τ ∼ T2 a large
number, N � 1, of times. This leads to a standard scaling of the
further field resolution with time duration t of the experiment:
with N = t/T2 we obtain a precision

[δH ]t�T2 ≈ 2πh̄

μ d T2
√

t/T2
= 2πh̄

μ d
√

T2t
. (40)

Therefore, the Heisenberg scaling is limited to measurement
times shorter then the coherence time T2 of the device,
with the standard quantum limit restored for larger measure-
ment times. The standard scaling, Eq. (40), can be achieved
by a conventional scheme where one always measures the
transmon state at the longest possible delay T2 of the Ramsey
sequence. However, such a conventional scheme has a limited
measurement range �H for the field H that results from
the 2π periodicity of the accumulated phase φ ∼ μ�HT2/h̄,
i.e., �H ∼ 2πh̄/μT2. In contrast, the quantum procedure
does not suffer from this limitation: its measurement range
is defined only by the minimal time duration τ0 of the Ramsey
sequence, which is limited in practice by the time duration of
the controlling rf pulses.

Making use of the above ideas in an experiment, a further
practical restriction has to be considered besides the finite
coherence time of the transmon device. First, the total duration
of the experiment has to include the additional time spent for
the measurement and reset of the transmon state. In fact, in the
sensing experiment in Ref. [22] using the transmon qubit mode,
most of the time of a single Ramsey measurement Trep has been
spent on the measurement and reset of the qubit Trep � T2. In
this limit, the long-time sensitivity of the sensor is reduced and
given by

[δH ]t�Trep�T2 ≈ 2πh̄

μ d T2
√

t/Trep
. (41)

Second, the higher-excited states of the transmon have larger
dipole matrix elements and hence are more sensitive to the ex-
ternal electromagnetic environment [7]. Therefore, a transmon
atom has specific T1 and T2 times for each excited state and
the number of levels which can be used is naturally limited
by the coherence time of the highest-energy state involved. In
practice, one can start the Fourier metrological procedure in
a qubit measurement mode at Ramsey delays corresponding
to the largest T2 time belonging to the first excited level and
then continue in a qutrit mode when the Ramsey delays have
dropped below the T2 time of the second excited level. Finally,
operating a transmon atom in a qudit regime requires a more

involved characterization of its spectrum and calibration of the
corresponding rf control pulses. At the same time, operating a
transmon in the qutrit regime is a well-established experimental
procedure [23,24], which motivates work directed at the exper-
imental implementation of our qutrit metrological procedure.

VI. SUMMARY AND CONCLUSION

We have presented a variant of the standard quantum Fourier
metrological procedure that replaces the usual qubit elements
with qutrits and, more generally, with qudits. While all of these
algorithms exploit phase coherence as their quantum resource,
allowing them to reach the Heisenberg precision scaling, the
use of higher-dimensional Hilbert spaces in the qutrit and qudit
versions improves the prefactor of this scaling. Even more,
going to qudit devices reduces the number of iteration steps in
the Fourier procedure, thus providing a marked improvement
in the measurement algorithm. As a specific example, we
have discussed the use of a superconducting transmon device
operated in the qutrit mode, which serves as an ideal resource
for the measurement of dc and low-frequency magnetic fields,
a consequence of the linear field dependence of the transmon’s
spectrum. It turns out, that a simple two-tone rf voltage signal
in combination with a standard IQ mixing scheme suffices to
produce the appropriate preparation and readout pulses for the
Fourier metrological algorithm.

The scheme presented in this paper relies on the assumption
that the longest measurement providing the least relevant but
precision-limiting digit can be performed within the coherence
or T2 time of the transmon device; a further increase in
precision proceeds via a conventional measurement procedure
and follows the standard (shot-noise- or quantum-limited)
scaling in precision. Furthermore, given a finite coherence time
T2, the algorithm can be further optimized to deal with this
situation: Besides properly tuning the qutrit’s reference flux or
working point 
c as discussed above, other elements of the
algorithm can be improved: e.g., a finite T2 time may require
more than a single Ramsey measurement at each time delay
τk , k = 1, . . . K , which modifies the probability, Eq. (10),
of arriving at the correct sequence �x of digits. In addition,
the time delays τk appearing in the metrological protocol are
subject to optimization, i.e., they must be chosen differently
from the ideal case. The situation with finite T1 and T2 times
then requires a separate study that will be the topic of a future
analysis.
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