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Recently, a measure has been put forward which allows for the quantification of the degree of reality of an
observable for a given preparation [Bilobran and Angelo, Europhys. Lett. 112, 40005 (2015)]. Here we employ
this quantifier to establish, on formal grounds, relations among the concepts of measurement, information, and
physical reality. After introducing mathematical objects that unify weak and projective measurements, we study
scenarios showing that an arbitrary-intensity unrevealed measurement of a given observable generally leads to an
increase of its reality and also of its incompatible observables. We derive a complementarity relation connecting
an amount of information associated with the apparatus with the degree of irreality of the monitored observable.
Specifically for pure states, we show that the entanglement with the apparatus precisely determines the amount
by which the reality of the monitored observable increases. We also point out some mechanisms whereby the
irreality of an observable can be generated. Finally, using the aforementioned tools, we construct a consistent
picture to address the measurement problem.
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I. INTRODUCTION

At every instant of time we probe our surroundings through
a huge number of sequential projective measurements which
induce us to believe that everything is real. When, for instance,
we look at an object at rest on the ground, our eyes collect a
bunch of photons which bring us information about the object.
Because macroscopic objects are only slightly disturbed by
the scattered photons, such measurements can be repeated
many times, yielding always the same information about the
object. This process, along with the ubiquitous verification
of Newtonian behavior for macroscopic objects, feeds the
illusion of a Laplacian determinism, according to which the
physical properties of systems are well defined at all instants
of time regardless of any external monitoring. Equipped with
the superposition principle, quantum mechanics teaches us,
however, that this view cannot be generally maintained. In
fact, it has repeatedly been shown by experiments with isolated
microscopic systems that the classical notion of reality is
objectionable.

This apparent conflict between our fundamental theory
of nature and the preconception of an observer-independent
reality has always bothered the physical community and it
seems fair to say that it remains as one of the most intrigu-
ing problems of quantum mechanics. Among the historical
approaches to the issue, the criticism raised by Einstein,
Podolsky, and Rosen (EPR) against quantum theory [1] caused
a particularly great impact. Under the premise of locality, EPR
argued that incompatible observables could be simultaneously
real in scenarios involving entangled states. Since quantum
mechanics is not able to simultaneously describe such elements
of reality, it presumably is, according to EPR, an incomplete
theory. However, as has been seminally pointed out by Bell [2]
and recently confirmed by loophole-free experiments [4–6],
the correlations observed in isolated microscopic systems
cannot be described by theories supplemented with local-
causal hidden variables. On the other hand, as Bohm has shown

by explicit construction [3], it is perfectly viable to have a
realistic hidden-variable theory, but at the expense of local
causality.

In recent decades, conceptual advances concerning the
emergence of objective reality from the quantum substratum
have been obtained by use of mechanisms such as weak
measurements [7], decoherence [8], and quantum Darwinism
[9,10]. Impacting results have also been reported about the on-
tology of the wave function [11–20]. More recently, Bilobran
and Angelo (BA) put forward an operational scheme to assess
elements of reality [21]. In a protocol involving preparation,
unrevealed measurements, and quantum state tomography,
they introduced a quantifier for the degree of irreality of an
observable for a given state preparation. Among its many
interesting properties, this measure has proven relevant in
scenarios involving coherence [22] and nonlocality [23].

Despite all these efforts towards a profound understanding
of the physical reality, too little (if any) has been achieved
with regard to formal connections between elements of reality
and fundamental concepts such as information and quantum
correlations. The situation is no better when we try to under-
stand the emergence of reality from the measurement process,
which is a major conundrum of quantum theory. Contributing
to filling this gap is the goal of this work. In contexts involving
measurements of generic intensity, with outcomes revealed or
not, we aim at deriving formal relations between BA’s irreality
and quantifiers of information, such as the mutual information
and the von Neumann entropy. In particular, we want to learn
what type of physical mechanisms can produce alterations
in the degree of reality of observables and also shed some
light on the drama originally proposed by Everett concerning
a quantum measurement as seen from the perspective of two
distinct observers [24].

This paper is structured as follows. Section II starts with
a review of BA’s measure of irreality and of some well-
known objects of quantum information theory. In Secs. II C
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and II D we then introduce, as our first contribution, a map
that conveniently interpolates between a weak and a projective
measurement and a second map, defining a procedure that we
call monitoring, that extends the first one to the context of
unrevealed measurements. In Sec. III we present our main
contributions. We show that dynamics involving arbitrary-
intensity interactions and some type of discard invariably lead
to an increase of reality. On the other hand, we find that local
irreality can be created through both revealed measurements
of arbitrary intensities and unitary dynamics marked by an
effective violation of some conservation law. Remarkably, we
derive a complementarity relation between the information
acquired by the detection system and the degree of irreality of
the probed observable. Finally, using this information-reality
duality, we move to the two-observer drama proposed by
Everett to discuss several aspects of the measurement problem,
including the objectivity of reality, the classicality of the
apparatus, the role of the reference frame, and the irreversibility
of the measurement. Our approach addresses the measurement
problem without invoking an external reservoir, that is, it uses
only internal mechanisms of decoherence. We then close this
work in Sec. IV with our concluding remarks.

II. PRELIMINARIES

A. Elements of reality

There is not a unique view of physical reality, but it seems
that in all of them the notion is related to the definiteness of
physical quantities. In their celebrated work [1], EPR introduce
what they call a sufficient condition for the existence of an
element of reality: “If, without disturbing the system in any
way, we can predict with certainty (that is, with a probability
equal to unity) the value of a physical quantity, then there is
an element of physical reality corresponding to this physical
quantity.” For uncorrelated systems, this criterion makes clear
reference to eigenstates.

In his reply to EPR, Bohr [25] argues in terms of his comple-
mentarity principle, according to which the elements of reality
of incompatible observables cannot be established in the same
experiment, but only through mutually excluding experimental
arrangements. Thus, one cannot claim simultaneous reality
for incompatible observables within the same experimental
instance, even when entangled states are involved. In addition,
for Bohr one cannot speak of the nature of microscopic
systems before making a measurement. This perspective re-
futes EPR’s rationale and elects the correlations generated in
the experimental setup as the mechanism responsible for the
establishment of physical reality (see Refs. [21,22] for related
discussions). In the same year, Ruark pointed out that EPR’s
conclusion derived from the adoption of a criterion that “is
directly opposed to the view held by many theoreticians, that
a physical property of a given system has reality only when it
is actually measured” [26].

Inspired by EPR’s criterion, Redhead proposes the follow-
ing [27]: “If we can predict with certainty, or at any rate with
probability one, the result of measuring a physical quantity
at time t , then, at time t , there exists an element of reality
corresponding to this physical quantity and having value equal
to the predicted measurement result.” Although apparently

similar to EPR’s definition, this one is intended to soften the
condition on the relativistic causality hypothesis.

Realizing that a point common to all of these definitions
is the relation with actual results of quantum measurements,
Vaidman then proposes that “for any definite result of a
measurement there is a corresponding element of reality”
[7]. Regarding “definitive result” as the definite shift of the
probability distribution of the pointer variable, he suggests the
following definition of elements of reality: “If we are certain
that a procedure for measuring a certain variable will lead to a
definite shift of the unchanged probability distribution of the
pointer, then there is an element of reality: the variable equal
to this shift.” With that, Vaidman extends the discussion of
physical reality to the context of weak measurements.

Other works have argued that a better understanding of
the physical nature can be achieved through the concept of
information. Bruckner and Zeilinger defend that quantum
physics is an elementary theory of information [28,29] and that
even though information should not be taken as replacing the
notion of reality, in their approach “the notions of reality and of
information are on equal footing” [30], which suggests some
ontological status for information. Quantum Bayesianism, on
the other hand, is a reconstruction of quantum mechanics that
mixes subjective elements, associated with the probabilistic
information that an agent has about the world, with objective
elements, which are identified as the Hilbert space dimension
of the quantum systems: “Dimension is something a body holds
by itself, regardless of what an agent thinks of it” [31]. For a
recent overview of conceptions of reality in physics we refer
the reader to Ref. [32].

Throughout the present paper, we employ a notion of
reality that has recently been introduced by BA [21]. Its main
advantage is that it is quantitative and operational. Bilobran and
Angelo consider a preparation ρ ∈ HA ⊗HB submitted to a
protocol of unrevealed measurements of a generic observable
A = ∑

a aAa , with projectors Aa = |a〉〈a|, acting on HA.
Since the outcome of the measurement is kept secret, the
resulting state reads

�A(ρ) :=
∑

a

(Aa ⊗ 1B)ρ(Aa ⊗ 1B) =
∑

a

paAa ⊗ ρB|a,

(1)

where ρB|a = 〈a|ρ|a〉/pa and pa = Tr[(Aa ⊗ 1B)ρ]. Under
the premise that a measurement establishes the reality of an
observable, BA propose to take �A(ρ) as a state of reality for
A and ρ = �A(ρ) as a formal criterion of reality. With that we
can compute the degree of irreality of the observable A given
the preparation ρ as

I(A|ρ) := S(�A(ρ)) − S(ρ), (2)

where S(ρ) = −Tr(ρ ln ρ) stands for the von Neumann en-
tropy. The above formula can be viewed as an entropic distance
between the state ρ under scrutiny and the state of reality
�A(ρ). This quantifier is non-negative and vanishes if and
only if ρ = �A(ρ). Also, it can be shown that the following
decomposition holds:

I(A|ρ) = I(A|ρA) + DA(ρ), (3)
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where DA(ρ) = IA:B(ρ) − IA:B(�A(ρ)) stands for the non-
minimized version of the one-way quantum discord (see
Ref. [21] for further details). In this formulation, it is noticeable
that the irreality of A is the sum of the local irreality (that is,
the irreality of A given the reduced state ρA) with quantum
correlations associated with measurements of A.

B. Information

The von Neumann entropy S(ρ) is the quantum-mechanical
object widely used to deal with the amount of information
associated with the quantum state ρ. Here, however, we follow
the approach of Ref. [33] and define the amount of information
associated with a generic quantum state ρ in a Hilbert space
H of dimension d as

I (ρ) := ln d − S(ρ). (4)

We interpret this as the amount of information available in
the reference frame where ρ has been prepared. Clearly, I

is maximum (minimum) for a pure (totally mixed) state. In
the present approach, therefore, S(ρ) quantifies the ignorance
about the state ρ.

Consider now a bipartition such that H = HA ⊗HB and
d = dAdB = dimH. It is straightforward to show that

I (ρ) = I (ρA) + I (ρB) + IA:B(ρ), (5)

where I (ρA(B)) is the information related to the subsystem
A(B), IA:B(ρ) = S(ρA) + S(ρB) − S(ρ) is the mutual infor-
mation, and ρA(B) = TrB(A)ρ is the reduced state. The above
relation shows that the total information is the sum of local
and nonlocal terms, that is, part of the total information is
related to the individual subsystems and part is shared by
them. The latter term (IA:B), which is also a measure of the
total correlations betweenA andB, quantifies the information
that A has about B and vice versa. Most importantly, we can
check, via unitary invariance of the von Neumann entropy, that
in closed systems the total available information is constant,
that is, �I = 0. As shown in Ref. [33], this conservation
law allows us to speak of an information flow. For example,
when a two-qubit state |ψ0〉 = |a0〉(|b1〉 + |b2〉)/

√
2 evolves

to |ψt 〉 = (|a1〉|b1〉 + |a2〉|b2〉)/
√

2, with 〈ai |aj 〉 = 〈bi |bj 〉 =
δij , the total information I = 2 ln 2, which initially manifested
exclusively as local information, is fully transformed into
shared information (in this case, entanglement).

Taking SA|B(ρ) = S(ρ) − S(ρB) as the definition for the
conditional quantum entropy (the entropy ofA given informa-
tion about B) and introducing IA|B(ρ) = ln dA − SA|B(ρ) as
the conditional information, we can rewrite Eq. (5) in the form

I (ρ) = I (ρB) + IA|B(ρ), (6)

which is particularly interesting for instances where only the
part B can be accessed.

C. Strong and weak measurements

One of the basic postulates of quantum mechanics is the
state reduction (collapse). It clearly is an effective theoretical
tool, a prescription for obtaining the state resulting from a
measurement without in any way accounting for the details of
the physical interaction with the measurement apparatus. As

such, there is no reason a priori to view the collapse as a real
physical phenomenon emerging from the dynamics between
the system and the apparatus. In this section we employ
this formal perspective. Consider a preparation ρ ∈ HA ⊗HB
(dimHA,B = dA,B). According to the quantum axioms, if
an operator A = ∑

a aAa , with projectors Aa = |a〉〈a|, is
measured in a given run of the experiment and a result a is
obtained, then the resulting state is given by

Ca|A(ρ) := (Aa ⊗ 1B)ρ(Aa ⊗ 1B)

Tr[(Aa ⊗ 1B)ρ(Aa ⊗ 1B)]
= Aa ⊗ ρB|a. (7)

Here Ca|A is a linear map that formally describes the collapse
of the state vector. After a projective measurement of this
type, the observer is granted with full information about the
reduced state (ρA = Aa) of the system. In fact, after the
measurement the information about the subsystem A reaches
its maximum value IA = ln dA. Notice thatCn

a|A(ρ) = Ca|A(ρ)
for n � 1 ∈ Z, which correctly implements the condition
of repeatability of projective measurements. In addition, we
have that Ca′|ACa|A(ρ) = 0 and Ca′|A′Ca|A(ρ) = Ca′ |A′(ρ) for
generic (eventually incompatible) observables A and A′ acting
onHA.

We now devise a map that allows us to effectively interpolate
between weak and projective measurements. We assume that
under the probing process the state ρ is led to

Cε
a|A(ρ) := (1 − ε)ρ + εCa|A(ρ), (8)

with ε ∈ (0,1). It is clear thatCε
a|A represents a strong projective

measurement for ε → 1 and no measurement at all for ε → 0.
For small ε the map implies just a slightly change in the
preparation ρ, thus suitably simulating the notion of a weak
measurement. Several properties can be derived for the map
(8). First, for {A,A′} acting on HA and B acting on HB one
has that [Cε

a|A(ρ),Cδ
a′ |A′(ρ)] 	= 0 and [Cε

a|A(ρ),Cδ
b|B(ρ)] = 0.

Second, for successive measurements it holds the composition
property

Cε
a|ACδ

a|A = Cε+δ−εδ
a|A . (9)

This allows one to show that [Cε
a|A]n = (1 − ε)[Cε

a|A]n−1 +
εCa|A for n � 1 ∈ Z. Then, via recursion one can prove that[

Cε
a|A

]n
(ρ) = (1 − ε)nρ + [1 − (1 − ε)n]Ca|A(ρ)

= C1−(1−ε)n

a|A (ρ),

which shows that n successive measurements of intensity ε

equal a single measurement of intensity 1 − (1 − ε)n. Third,
from the above relation we obtain

lim
n→∞

[
Cε

a|A
]n = Ca|A, (10)

meaning that the action of infinitely many weak measurements
is equivalent to a projective measurement. Finally, the relation

Cε
a|A(ρ) − Cδ

a|A(ρ) = (ε − δ)[Ca|A(ρ) − ρ] (11)

provides information about the distance imposed by the ap-
plication of two measurements of distinct intensities with the
same outcome a.
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D. Monitoring

In Sec. II A we used the map�A as a model for an unrevealed
projective measurement. Now we introduce a model that has
the capability of interpolating between weak and projective
unrevealed measurements. Let us consider a system S with a
preparation ρ ∈ HS = HA ⊗HB. In terms of the eigenbasis
{a,Aa} of a generic observable A = ∑

a aAa acting on HA,
with AaAa′ = δaa′Aa and Aa = |a〉〈a|, we can write

ρ =
∑
a,a′

〈a′|ρ|a〉 ⊗ |a′〉〈a| =
∑
a,a′

paa′ |a′〉〈a| ⊗ ρB|aa′ . (12)

Now consider a von Neumann premeasurement induced by
the coupling H (t) = εg(t)A ⊗ 1B ⊗ PX , where X stands for
an extra degree of freedom (an ancilla) that will encode the
information about A, PX is the momentum operator acting
on HX , and

∫ t

0 g(t ′)dt ′ = 1. By the application of the time-
evolution operator U (t) = exp [− i

h̄

∫ t

0 dt ′H (t ′)] on the initial
state ρ ⊗ |x0〉〈x0| we get the following joint state inHS ⊗HX :

ρSX (t) =
∑
a,a′

paa′ |a′〉〈a| ⊗ |x0 + εa′〉〈x0 + εa| ⊗ ρB|aa′ .

(13)
Tracing the ancilla gives

ρS (t) = TrX [ρSX (t)] =
∑
a,a′

γaa′ (ε)|a′〉〈a| ⊗ ρB|aa′ , (14)

where γaa′ (ε) = 〈x0 + εa|x0 + εa′〉. This term may or may not
be small; it depends on the magnitude of the ratio between the
distance ε(a − a′) and the width of the wave function associ-
ated with |x0〉. We then consider the model γaa′ (ε) = (1 − ε) +
εδaa′ [for ε ∈ (0,1)], which continuously connects a scenario
of no interaction (ε → 0) with a maximally entangling one
(ε → 1). With that, we obtain ρS (t) = (1 − ε)ρ + ε�A(ρ).
This result leads us to introduce the linear map

Mε
A(ρ) := (1 − ε)ρ + ε�A(ρ), (15)

with ε ∈ (0,1) and �A given by Eq. (1). We refer to Mε
A as a

monitoring with intensity ε of A by X . [Actually, the relation
TrXρSX (t) = Mε

A(ρ) is a mere expression of Stinespring’s
dilation theorem [34].] Notice that Mε→1

A (ρ) = �A(ρ). Also,
we can write Mε

A(ρ) = ρ − ε[ρ − �A(ρ)], which clearly
expresses a degradation of the off-diagonal terms of ρ. This is
expected sinceMε

A represents a quantum-noise channel. To see
this one can set K0 = √

1 − ε1 and Ka = √
εAa and then write

Mε
A(ρ) = ∑

a KaρK
†
a with

∑
a K

†
aKa + K

†
0K0 = 1, which

reveal the operator-sum representation typical of quantum
operations [34]. As such, it is clear that Mε

A is a completely
positive trace-preserving (CPTP) map. It is also easy to check
that Mε

AMδ
B = Mδ

BMε
A for arbitrary observables A and B

and therefore

Mε
A�A = �AMε

A = �A. (16)

Now we are in position to formally link measurement with
monitoring. When an observer knows that a measurement of
A of generic intensity ε has been performed on a preparation
ρ but is not informed about the outcome a in a given run of
the experiment, the only prediction that can be made by this
observer is that the state reduced to Cε

a|A(ρ) with probability
pa = Tr[(Aa ⊗ 1B)ρ]. Without information about the specific

outcome a, it follows from the definition (8) that the better
prediction the observer can make is∑

a

paCε
a|A(ρ) = Mε

A(ρ). (17)

Conceptually, there is an important point to make, namely, that
monitoring is indistinguishable from an unrevealed measure-
ment. The left-hand side of the above relation was constructed
with the basis on a measurement [eventually a collapsing one
(for ε → 1)] that has been secretly conducted. The right-hand
side, in its turn, was derived via an entangling dynamics with
an ancilla, without any a priori link with the state reduction.
This points out that unrevealed collapse is formally equivalent
to entanglement plus discard, which suggests that the state
vector reduction can be interpreted as information updating
rather than as a physical reduction of the state vector. We will
return to this point later within an informational perspective.

We now derive the mathematical properties of Mε
A. Con-

cerning successive applications of the map, one shows from
(15) and (16) that [Mε

A]n(ρ) = (1 − ε)[Mε
A]n−1(ρ) + ε�A(ρ)

for n � 1 ∈ Z. By recursion one obtains that[
Mε

A

]n
(ρ) = (1 − ε)nρ + [1 − (1 − ε)n]�A(ρ). (18)

Notice that [Mε→1
A ]n(ρ) = �A(ρ), as expected. Also, one has

that [Mε
A]n(ρ) = M1−(1−ε)n

A (ρ), which shows that n moni-
torings of intensity ε is equivalent to a single monitoring of
intensity 1 − (1 − ε)n. Finally,

lim
n→∞

[
Mε

A

]n = �A, (19)

which means that infinitely many weak monitorings, executed
either sequentially or simultaneously, establish the reality
of the monitored observable for any state. From the above
relations, further composition properties can be derived:

lim
n→∞

[
Mε/n

A

]n = M1−e−ε

A , (20a)

Mδ
AMε

A = Mδ+ε−δε
A (20b)

for {ε,δ} ∈ (0,1] and n � 1 ∈ Z. Also, by noticing that
Mε

A(ρ) − ρ = ε[�A(ρ) − ρ], one shows that

Mε
A(ρ) − Mδ

A(ρ) = (ε − δ)[�A(ρ) − ρ]. (21)

III. MEASUREMENT, INFORMATION, AND REALITY

We are now ready to present the main contribution of this paper,
namely, the formal development of connections between the
notion of reality, measurement, and information. In our view,
such a task has not been accomplished so far due to the lack of
a formal quantifier of reality, which is now available (see Sec.
II A and Ref. [21]).

A. Monitoring increases reality

Consider a preparation ρ ∈ HA ⊗HB. For this state, the
degree of irreality of a generic observable A is given byI(A|ρ).
Under a monitoringMε

A of arbitrary intensity ε, the irreality of
A changes to I(A|Mε

A(ρ)). Although a quantifier R of reality
itself has not been defined, it is clear that this concept should
be dual to irreality, that is, �I(A) + �R(A) = 0. Then, under
the monitoring Mε

A on ρ, the reality of A changes as

�R(A) := −�I(A) = I(A|ρ) − I(A|Mε
A(ρ)

)
. (22)
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Using the definition of irreality (2) and the hierarchy (16), it
follows that

�R(A) = S
(
Mε

A(ρ)
) − S(ρ), (23)

which is a non-negative quantity. If ρ = �A(ρ), then �R =
0, since in this case the preparation ρ is already a state of
reality for A. If ε → 1, then the reality change saturates to its
maximum value�Rmax(A) = I(A|ρ), meaning that the reality
increases precisely by the value that defined the amount by
which the observable was unreal. From the concavity of the
von Neumann entropy and the non-negativity of irreality we
obtain

�R(A) � εI(A|ρ), (24)

with the equality holding for ε → 1. [Actually, the equality
also holds for ε → 0 andρ = �A(ρ), but in these cases both the
left-hand-side and right-hand-side terms vanish.] Hence, apart
from extremal instances, the reality of an observable increases
under monitoring. Furthermore, one shows that under monitor-
ing the reality increase is bounded from above. Take Fannes’
inequality |S(ρ) − S(σ )| � T ln (d − 1) + H (T ) [35], where
T (ρ,σ ) = 1

2 Tr‖ρ − σ‖1 ∈ [0,1] is the trace norm, H (T ) =
−T ln T − (1 − T ) ln (1 − T ) is the Shannon entropy, ‖
‖1 =
(
†
)1/2 is the Schatten 1-norm, and d = dimH. Using the
relation (21), one shows that T (Mε

A(ρ),ρ) = ετ , with τ ≡
T (�A(ρ),ρ). We then arrive at

�R(A) � ετ ln (d − 1) + H (ετ ). (25)

It can be checked for τ > 0 that the above upper bound
can never reach the value d

√
ετ/e, which can therefore be

taken as a simpler estimate for the �R(A) upper bound. The
inequalities (24) and (25) define our first result: A monitoring
of intensity ε, which can be interpreted either as an unrevealed
measurement or as an operation involving entanglement plus
discard, implies a finite increase not less than εI(A|ρ) in the
reality of the monitored observable. Notice that the increment
in the reality, whose upper bound is regulated by the monitoring
intensity ε, can be made to be infinitesimal.

B. Monitoring increases the reality of incompatible observables

After measuring σz for a spin- 1
2 particle prepared in a

generic state ρ and announcing the result, the state of the sys-
tem collapses to one of the states |±z〉 = (|+x〉 ± |−x〉)/√2.
Thus, while the reality of σz increases in the process, the
irreality of an incompatible observable, say, σx , reaches its
maximum value, so its reality decreases. As we show now, the
situation is rather different as a monitoring is involved.

Let A and A′ be incompatible observables acting onHA. We
want to see how the reality of A′ changes when a monitoring
Mε

A of A is performed on ρ ∈ HS . Via the relations (2) and
(22), the reality change �R(A′) = I(A′|ρ) − I(A′|Mε

A(ρ))
can be written in the form

�R(A′) = S
(
�A′(ρ)

) + S
(
Mε

A(ρ)
) − S(ρ)

− S
(
�A′Mε

A(ρ)
)
. (26)

To infer the behavior of this quantity, we consider an extended
spaceHS ⊗HX ⊗HY, withHS = HA ⊗HB, and write

ρSXY = USXUSY(ρ ⊗ |x0〉〈x0| ⊗ |y0〉〈y0|)U †
SYU

†
SX, (27)

with unitary transformations such that

USX = e−(iε/h̄)A⊗1B⊗PX , USY = e−(iδ/h̄)A′⊗1B⊗PY , (28)

and [USX ,USY] 	= 0. These operators refer to von Neumann
premeasurements of the observables A and A′, with intensities
ε and δ, via ancillary systems X and Y , respectively. From
the relations above and the Stinespring dilation theorem [see
also Eq. (15)] one may directly obtain the reduced state ρSX =
USX (Mδ

A′(ρ) ⊗ |x0〉〈x0|)U †
SX , which by unitary invariance of

the von Neumann entropy implies that S(ρSX ) = S(Mδ
A′(ρ)).

For the same reason, S(ρSXY) = S(ρ). To compute the reduc-
tion ρSY we first note that

USXUSY = USX(e−(iδ/h̄)A′⊗1B⊗PY )U †
SXUSX

= e−(iδ/h̄)Ã′⊗1B⊗PYUSX,

where Ã′ ⊗ 1B = USX(A′ ⊗ 1B)U †
SX. Because Ã′ is Hermi-

tian, we have thus shown that USXUSY = ŨSYUSX, with a
new unitary operator ŨSY. With this result, we can turn to
Eq. (27) to show that ρSY = ŨSY(Mε

A(ρ) ⊗ |y0〉〈y0|)Ũ †
SY.

It thus follows that S(ρSY) = S(Mε
A(ρ)). From all this, it

also emerges that ρS = Mε
AMδ

A′(ρ) = Mδ
A′Mε

A(ρ). Then,
from the strong subadditivity of the von Neumann entropy
[S(ρSXY) + S(ρS ) � S(ρSX) + S(ρSY)] we arrive at

S(ρ) + S
(
Mδ

A′Mε
A(ρ)

)
� S

(
Mδ

A′(ρ)
) + S

(
Mε

A(ρ)
)
. (29)

Given that Mδ→1
A′ = �A′ , we return to Eq. (26) to obtain

�R(A′) � 0, (30)

with equality holding for {ε,δ} → 0,1 and ρ = �A(A′)(ρ). This
result is surprising, as it shows that under monitoring of A the
reality of A′ will also increase in general. In fact, along with the
inequality (24), this shows that a monitoring typically increases
the global reality of a system.

It is worth mentioning that the inequalities (24) and (30),
along with some results reported in Ref. [21], prove the
monotonicity of BA’s irreality under monitoring (a CPTP
map), that is, I(A|ρ) � I(A|Mε

O(ρ)) for ρ ∈ HA ⊗ HB and
O being a generic Hermitian operator acting on HA or HB
and A a Hermitian operator acting onHA. This means that the
irreality never increases under monitoring. This observation
naturally raises the following question: Is there any scenario
in which the irreality of an observable can increase? Next we
address this question.

C. Generation of irreality

Consider two maximally incompatible observables A and
A′ acting on HA, meaning that their eigenstates constitute
mutually unbiased bases satisfying |〈a|a′〉|2 = 1/dA, where
dA = dimHA. Let ρ[A′] denote a reality state for A′, that is,
ρ[A′] = �A′(ρ) and therefore I(A′|ρ[A′]) = 0. Under monitor-
ing of the incompatible observable A the state transforms to
Mε

A(ρ[A′]) = (1 − ε)�A′(ρ) + 1
dA

⊗ ρB, where ρB = TrA(ρ).
Since this state does not change under �A′ we can check that
I(A′|Mε

A(ρ[A′])) = 0. This result shows that the monitoring of
A does not increase the irreality of the incompatible observable
A′. As such, it is an illustration of the more general result
obtained in the preceding section. Interestingly, now we show
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that this situation changes when revealed measurements are
involved. To this end, let us invoke the map Cε

a|A, which was
introduced in Eq. (8) as an effective descriptor for a measure-
ment of A with generic intensity ε and known outcome a. In
this case, we have Cε

a|A(ρ[A′]) = (1 − ε)�A′(ρ) + εAa ⊗ ρB,

which does change under the map �A′ since �A′(Aa) = 1
dA

. It
then follows that I(A′|Cε

a|Aρ[A′]) > 0, that is, the irreality of
A′ indeed increases under revealed measurements. In addition,
by direct application of Fannes’ inequality [see the inequality
(25) and its derivation] one may show that

I
(
A′|Cε

a|Aρ[A′]
)
� ετ̃ ln (d − 1) + H (ετ̃ ), (31)

where τ̃ ≡ T ( 1
dA

,Aa) = 1 − 1/dA. Again we can take

d
√

ετ̃/e as a simpler estimate for the upper bound given
above. We have thus proved that irreality can be generated for
A′ by means of revealed measurements of the incompatible
observable A. Being controlled by the measurement intensity
ε, it is clear that the generated irreality can be made arbitrarily
small.

We now assess the possibility of generating irreality in
unitary dynamics. Consider a preparation ρ ∈ HA ⊗HB. Let
UB be a unitary transformation acting on HB. Since �A

commutes with UB it follows that I(A|UBρU
†
B) = I(A|ρ).

This shows that a local unitary transformation is not able
to promote an increase of irreality in a remote site. We are
left then with global unitary transformations. In what follows
we will conduct our analysis in terms of a concrete example
involving the frontal scattering of a particle of mass m, initially
prepared in a Gaussian wave packet of mean momentum
p0 = mv0 and width �p = m�v, by a molecule of mass M ,
prepared in a Gaussian wave packet of null mean momentum
and width �P = M�v. Assuming that the probability of the
scattering to occur is 1

2 and that the collision is elastic, then
the nonrelativistic energy and momentum conservation laws
along with a unitary evolution require, up to a normalization
factor, that

|p0〉|0〉 → |p0〉|0〉 + |(1 − α)p0〉|αp0〉, (32)

where α = 2/(1 + ξ ) and ξ = m/M . The notation is such
that |p〉|P 〉 represents a product of wave packets with mean
momentum p and variance (�p)2 for the particle and P and
(�P )2 for the molecule, respectively. Via direct calculations
one computes the overlaps

Opart ≡ |〈p0|(1 − α)p0〉| = exp

[
−1

2

(
1

1 + ξ

v0

�v

)2
]
,

(33a)

Omol ≡ |〈0|αp0〉| = exp

[
−1

2

(
ξ

1 + ξ

v0

�v

)2
]
. (33b)

Now, since a measure of irreality for continuous variables
is not yet available in the literature, here we approximately
treat position and momentum as discrete variables relative to
some (experimental) resolutions δx and δp and then apply the
present formalism. Within this framework, if�p < δp, then the
initial momentum of the particle is effectively real. Let us also
assume that �v  v0 and consider two regimes. First, if the

molecule is not so heavy, so that ξ ≈ 1, then Opart ≈ Omol ≈ 0
and the state (32) is highly entangled. The relation (3) implies,
as a consequence of the quantum correlations generated by the
scattering, that the irreality of the momentum of the particle
has increased. This shows that an entangling unitary dynamics
is an effective mechanism to create irreality. On the other hand,
if we restrict ourselves to the subsystem particle and thus
trace out the molecule degree of freedom, then the resulting
reduced state will be the mixture |p0〉〈p0| + |0〉〈0|, which
means no irreality whatsoever. Hence, as far as the particle is
considered as an individual, there is no increase in the irreality
of its momentum. We then move to the second regime of
interest. Consider now a very heavy molecule, so that ξ → 0.
In this case, Opart ≈ 0, Omol → 1, and therefore |0〉 ≈ |2αp0〉,
meaning that the state of system evolves from |p0〉|0〉 to (|p0〉 +
| − p0〉)|0〉. In other words, while no entanglement is produced
between the subsystems, a significant quantum superposition
is created. In this case, the local irreality noticeably increases.
Notice that because |0〉 ≈ |2αp0〉 the time evolution of the
global state is such that the momentum conservation seems
to have been effectively frustrated.

This mechanism also appears in paradigmatic experiments
where local irreality (coherence) is generated. When a particle
initially moving with a well-defined momentum p x̂ diffracts
through an orifice (a tiny circular slit) it ends up in a superposi-
tion of momentum states associated with directions orthogonal
to x̂. In this case, since we cannot detect any motion of the
orifice, which is rigidly attached to the laboratory (the reference
frame), we have an effective frustration of the momentum
conservation law. The situation is similar when the spin of
a particle is flipped by a magnet which, being fixed in the
laboratory, cannot rotate relatively to this reference frame.
Then the observer perceives an effective violation of the total
angular momentum conservation. These examples suggest that
the frustration of a conservation law within a unitary dynamics
is the crucial mechanism for the generation of local irreality in
interacting dynamics.

D. Information-reality duality

A particularly interesting aspect that emerges in the present
framework is a clear link between information and reality.
Consider an instance in which a systemS initially prepared in a
state ρS ∈ HA ⊗HB ends up in Mε

A(ρS ) after the monitoring
of a generic observable A acting onHA. As mentioned above,
the Stinespring theorem ensures that this mapping can be cast
in terms of an entangling dynamics U (t) between S and some
extra degree of freedom X initially prepared in a state |x0〉〈x0|,
that is,

Mε
A(ρS ) = TrX [U (t)ρS ⊗ |x0〉〈x0|U †(t)] = ρS (t). (34)

The mutual information of the joint system SX at an
arbitrary instant t reads IS:X (t) = S(ρS (t)) + S(ρX (t)) −
S(ρSX(t)). Since the joint evolution is unitary, then
S(ρSX(t)) = S(ρSX(0)). Introducing �SS(X ) = S(ρS(X )(t)) −
S(ρS(X )(0)), the change of the mutual information with
time reads �IS:X = �SS + �SX . Via IS(X ) = ln dS(X ) −
S(ρS(X )) and Eq. (34) we respectively have �SX =
−�IX and �SS = S(Mε

A(ρS )) − S(ρS ), so �IS:X + �IX =
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FIG. 1. (a) Generic stateρS ∈ HA ⊗HB becomesMε
A(ρS ) under

monitoring of an observable A acting on HA. (b) Same process
abstractly pictured in terms of irreality and information. As both local
and global information is generated, the irreality of A decreases [see
Eq. (35)].

S(Mε
A(ρS )) − S(ρS ). Using Eq. (22) we then arrive at

�(IS:X + IX ) + �I(A) = 0. (35)

From the identity (5) and the unitarity of the joint dynamics it
follows that �(IS:X + IX ) = −�IS , which allows us to write

�IS + �R(A) = 0. (36)

The relations (35) and (36) formally state the complementarity
between (ir)reality and information, which is another important
contribution of this work. As is schematically illustrated in
Fig. 1, variations in both the local information IX associated
with the subsystemX and the information IS:X shared byS and
X directly imply variations in A’s irreality. In particular, it is
interesting to note that if ρS is a pure state, then the joint initial
state is pure as well and the entanglement E in the systemSX is
given by E = S(ρS(X)(t)). Since �IS = IS (t) − IS (0) = −E,
it follows that

�R(A) = E, (37)

which explicitly shows that the reality change in A is
determined by the amount of entanglement between S and
X . In other words, because X gets information about A, this
observable becomes real. This is in full agreement with the
results reported in Ref. [22], where entanglement is shown to
prevent the wavelike behavior of a quantum system.

E. Measurement problem

The foundational relevance of the measurement problem
needs no emphasis. Here we hope to shed some light on
this longstanding issue by using the tools introduced above.
We consider the well-known drama proposed by Everett
[24], in which an external observer describes a measurement
conducted within a laboratory by an internal observer. The
conflict emerges as we note that for the internal observer an
irreversible state reduction occurs, whereas for the external
one, who can conceive of the internal observer as part of a
physical system, only a reversible dynamics takes place.

To approach this puzzle we take an informational perspec-
tive and consider, from the viewpoint of the external observer
Oext, three physical systems, namely, the internal observer O,
an apparatusA, and a system of interest S . These systems are
described quantum mechanically by Oext, who naturally does

not include oneself in the description. Let σAS be the joint state
after the apparatus has got correlated with the system. In the
last stage of the measurement process,O looks at the apparatus,
that is, indirectly interacts withA by means of the photons scat-
tered by A. Without interacting with the joint system OAS ,
Oext describes the dynamics in terms of the unitary evolution
ρOAS = UOA(σAS ⊗ |o〉〈o|)U †

OA. According to Eq. (5), the
information is distributed over the system as

I (ρOAS ) = I (ρO) + IO:AS (ρOAS ) + I (ρAS ). (38)

The first two terms on the right-hand side refer to information
that cannot be accessed by O, as they refer to the state of
O and its correlation with the part AS as seen from the
perspective of Oext. This is an irremovable limitation because
O cannot ascribe a quantum state for oneself and therefore
has no way to assess the terms I (ρO) + IO:AS (ρOAS ). Let us
doubly emphasize this point by recalling that no reference
frame can describe its own physical state. By its turn, the
third term on the right-hand side can be written, according
to Eq. (6), as I (ρAS ) = I (ρA) + IS|A(ρAS ), where IS|A is
expected to be the only informational content that O can
obtain about S through the measurement process. To see
that this is indeed the case, let us move to O’s reference
frame, wherein the unitary evolution UOA is not applica-
ble. According to the reduction postulate, upon collection
of scattered photons, O will (somehow) perceive a state
Ca|A(σAS ) = Aa ⊗ σS|a in a particular run of the experiment.
The average entropy associated with many runs will be S̄S|A =∑

a paS(Ca|A(σAS )) = ∑
a paS(σS|a). Using the joint entropy

theorem [34], one shows that this result can be written as
S̄S|A = S(�A(σAS )) − S(�A(σA)) = SS|A(�A(σAS )), which
refers to the remaining ignorance aboutS given thatA has been
accessed and collapsed. The average information acquired by
O about S through the observation of A is, by definition,
ĪS|A := ln dS − S̄S|A. It can be written as

ĪS|A = ln dS −
∑

a

paS(Ca|A(σAS )). (39)

To compute IS|A, the information thatO can access aboutS via
interaction withA, fromOext’s perspective, we apply the Stine-
spring theorem to write ρAS = TrOρOAS = �A(σAS ), which
presumes that a strong monitoring has occurred inside O’s
laboratory. It follows from the definition of conditional infor-
mation that IS|A = ln dS − SS|A(�A(σAS )) = ln dS − S̄S|A,
which implies that IS|A = ĪS|A, as we wanted to prove. This
result can also be written as

IS|A(�A(σAS )) = ln dS −
∑

a

paS(Ca|A(σAS )), (40)

which explicitly states the link between the information related
to an unread measurement, as signalized by �A, with the
information collected through several reductions of the form
Ca|A. The main message here is that the amount of information
acquired by O about S is always the same regardless of the
reference frame we choose to assess it. InO’s frame we use the
notion of state collapse and compute an average information,
whereas in Oext’s frame the same informational content is
obtained by considering a unitary evolution plus the discard
of O. From this point of view, therefore, there is no paradox. It
is clear, however, that because information flows from AS to
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O, this observer can in no way, in one’s reference frame, deal
with an information-preserving dynamics. In other words, in
one’s perspective the entropy ofAS always decreases.

There is another involving aspect of the measurement
problem that needs attention, namely, the occurrence of indi-
vidual outcomesCa|A(σAS ) = Aa ⊗ σS|a fromO’s perspective
in each run of the experiment. This is no doubt a major
difficulty around the issue. To discuss this point we focus
on a concrete example where the z component of spin is
measured for a spin- 1

2 particle in a preparation α|+〉 + β|−〉.
In the first stage of the experiment, the spin degree of freedom
gets correlated, via a Stern-Gerlach field, with the spatial
coordinate z of the particle. The resulting state can be written in
the form |ψS〉 = α|+〉| + z̄〉 + β|−〉| − z̄〉 ∈ HS , where 〈z| ±
z̄〉 ≡ ψ(z ∓ z̄) stands for a probability amplitude centered at
±z̄. For the role of apparatus we imagine a detection array
composed of ideally tiny detectors that get visible marks (via
some ionizing process) upon absorption of a particle. The ith
detector starts in a state |φi,ε〉 = ∫

dz φ(z − zi)|z〉|ε〉, where
|φ(z − zi)|2 is assumed to be a very sharp normalized Gaussian
distribution of width δz centered at zi and |ε〉 is a state of energy
such that ε = e (excited) when a mark appears in the detector
and ε = g (ground) otherwise. In our model, 〈ε|ε′〉 = δε,ε′ and
〈φi |φj 〉 = exp[−(zi − zj )2/(8δz2)] ≈ δzi ,zj

, meaning that any
two detectors and their signs are distinguishable, which is a
desirable feature of any detection system. Given the finite size
of the detectors, one can consistently work with a discretized
space for the particle, where 〈zi |zj 〉 ≈ δi,j /δz so that

|±z̄〉 =
∫

dz ψ(z)|z ± z̄〉 ≈
∑

k

δz ψ(zk)|zk ± z̄〉, (41)

with z̄ = nδz for n ∈ Z. By virtue of the space discretization,
one has zk = kδz and therefore zk ± z̄ = zk±n. Now let |ψA〉 =⊗

i |φi,g〉 be the initial state of the apparatus. Our model
admits that upon physical interactions one has that |zk〉|ψA〉 →
|zk〉|1k〉, where we have introduced the one-excitation state
|1k〉 ≡ |φk,e〉

⊗
i 	=k |φi,g〉 with 〈1k|1k′ 〉 ≈ δk,k′ , which means

that the detector at zk gets excited whereas all the others remain
unexcited. By use of this model, the initial joint state

|ψS〉|ψA〉 =
∑

k

δzψ(zk)(α|+〉|zk+n〉 + β|−〉|zk−n〉)
⊗

i |φi,g〉
is shown to evolve to the correlated one

|ψAS〉 =
∑

k

δzψ(zk)(α|+〉|zk+n〉|1k+n〉

+β|−〉|zk−n〉|1k−n〉). (42)

We are now in position to introduce to the discussion an
element that, although fundamental, is rarely appreciated. It
refers to the fact that in every measurement there is at least one
degree of freedom that is irremediably discarded, and this is
precisely the one about which we want to obtain information.
In our example, the fundamentally inaccessible degrees—in
fact, that is why we couple an apparatus to get information
about them—are the spin and the spatial coordinate of the
particle. These degrees of freedom must be traced out from
our theoretical description. This discard is not optional; it is

mandatory and irreducible. In doing so we get the following
reduced state for the apparatus:

ρA =
∑

k

δz|ψ(zk)|2(|α|2|1k+n〉〈1k+n| + |β|2|1k−n〉〈1k−n|).
(43)

In 〈1i |ρA|1j 〉 = δz(|α|2|ψ(zj−n)|2 + |β|2|ψ(zj+n)|2)δi,j we
see that the apparatus state is diagonal in the {|1i〉} basis.
Then, as far as the observable � = ∑

i λi |1i〉〈1i | is concerned,
we can ensure via definition (2) that I(�|ρA) = 0, that is,
given the available state ρA it follows that � is real. At
the very last stage of the measurement process, information
about the apparatus is transported to the observer by photons.
In fact, many distinct observers can shine the apparatus and
collect their own photons. The point is that the correlations
generated between the photons and the apparatus will nec-
essarily be of a classical nature because the state (43) is an
incoherent mixture. Since no quantum correlation is generated
and the local irreality of the apparatus (and of the photons)
remains null, the relation (3) guarantees that the reality of
the apparatus is preserved during this process. This shows
how many observers can get information and agree about
the same already-established reality, which thus reveals itself
as an objective reality. Also, because the joint state of the
apparatus-photon system is correlated only classically, one
admits, in light of Bell’s theorem, that hidden-variable theories
consistent with the hypothesis of local realism are admissible as
legitimate models to explain these correlations. In particular, a
classical-statistical model such as the Liouvillian theory might
accomplish the task in terms of deterministic Hamiltonian
trajectories in phase space. However, like quantum mechanics,
this model would be unable to predict individual outcomes
because uncertainty (in this case deriving from subjective
ignorance about the initial state of the system) would still be
present. In other words, the inherent statistical character of the
formalism precludes precise predictions for individual runs.
Hence, given the underlying determinism of such a model,
the emerging result of any run of the experiment has to be
interpreted as mere information updating, rather than some
reality collapse. We claim that this should also be the inter-
pretation for the quantum collapse. The quantum formalism is
irreducibly statistical because it was drawn to deal with subtle
scenarios involving quantum probability amplitudes, which are
associated with pure superpositions. In its statistical capacity
it can also describe classical-like behaviors, such as (43). Just
like the Liouvillian formalism, however, quantum mechanics is
not able to predict single outcomes and this should be perfectly
fine, since this is what we expected from a theory that deals
with (both fundamental and subjective) uncertainties. The final
acquisition of information by the observer (who cannot include
himself in the theory) is then formulated as an abrupt collapse,
which should not be viewed as an actual reduction of any
physical element of reality.

Another fundamental point that is not often appreciated
in discussions about the measurement problem concerns the
notion of quantum reference frames (see, e.g., Refs. [36,37] and
references therein). In spite of their complexity [38], detectors
can be minimally modeled in terms of two degrees of freedom:
one related to a visible sign ({excited,ground}, as we used
above, or {click,ready}) and another one related to its location
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in space-time. Actually, the latter defines the very structure of
space-time that plays the role of reference frame. In the discus-
sion above we used the state |φi〉 for the spatial component of
the ith detector. Being very sharp in the configuration space, it
presumably is very wide in the momentum space, a feature that
is not expected for realistic detectors. In fact, because ordinary
detectors are rigidly attached to the laboratory, each one needs
to simultaneously have well-defined values of position and
velocity at every instant of time, for only in this case can we
trust the outcomes we read in each run of the experiment and
then make sense of the whole statistics observed. Formally, the
observer could describe such an essentially classical detector
by admitting that it has an (effective) infinite mass, in which
case the uncertainty principle �z�p � h̄/2 would remain
valid whereas �z and �ż = �p/m vanish simultaneously.
In this sense, simultaneous elements of reality for position
and velocity emerge from such an intrinsic classicality of
the apparatus, which comes from the fact that it is rigidly
attached to and therefore defines the reference frame. To a
certain extent, we can recognize here the Bohr claim about the
irreducibly classical nature of the apparatus. This is not to say,
however, that the apparatus is absolutely classical in any sense.
In fact, an external observer who can detect the motion of the
laboratory would ascribe a finite mass to the apparatus and, as
consequence, could eventually find it in superposition [36,37],
that is, with no positional element of reality.

Finally, it is opportune to further elaborated on how the
notion of a fundamental irreversibility, in an informational
sense, emerges in the present context. The external observer
Oext, before performing any measurement, describes the joint
system OAS in terms of a closed dynamics which, as such,
preserves the total information associated with ρOAS (t), that is,
�IOAS = �SOAS = 0. In this case, if provided with precise
information about ρOAS (t) and about the interactions among
the parts, Oext could theoretically reverse the time evolution of
the system and thus get to know the initial state of OAS .
We propose to take this as a statement of informational
reversibility. If, on the other hand, Oext is given precise
information about the interaction between the internal observer
O and AS but has no access to the resulting state of O after
the interaction (as in an unrevealed measurement protocol),
then the initial ignorance Si = S(σAS ) that Oext has about
AS evolves to Sf = S(�A(σAS )), which means that �S � 0
and �I � 0. Clearly, the lack of information about O’s state
(discard) implies an irreversible decrease of information. In
fact, if provided with precise information about the final state
�A(σAS) and the interactions between A and S , Oext would
not be able to predict the initial state σAS . With regard to
the internal observer O, who does not include oneself in the
physical description, the information is not preserved as well.
The initial ignorance that O has about the system is given
by S̄i ≡ S(σAS ) = SS|A + SA = SA|S + SS . After many runs
of the experiment, the average ignorance about the system
AS is given by S̄f = S̄S|A + S̄A, where S̄S|A = ∑

a paS(σS|a)
and S̄A = ∑

a paS(Aa) = 0. Since we have S̄i � SS = S(σS )
and, via concavity, S(σS ) = S(

∑
a paσS|a) � ∑

a paS(σS|a),
it follows that S̄i � S̄f . Hence, �S̄ � 0 and �Ī � 0. Here
the collapse implies gain of information, but this is also
an irreversible process because O does not describe one’s
interaction with AS and therefore cannot reverse the time

evolution to obtain information about σAS . It is instructive to
note that the information increase for O, in contrast with the
discard-induced information decrease for Oext, derives from
the fact that O has access to the sequence {a} of outcomes for
the apparatus. To see this, note that

�S = S(�A(σAS )) − S(σAS )

= S(�A(σA)) +
∑

a

paS(σS|a) − S(σAS )

= H ({pa}) + �S̄, (44)

where H ({pa}) is the Shannon entropy associated with the
distribution pa . It follows that �Ī = H ({pa}) + �I , which
proves the point. The takeaway message here is as follows: It
is the inevitable discard of degrees of freedom associated with
the internal observer O, which receive part of the information
flow, that yields the fundamental informational irreversibility
perceived by this observer. The external one, who deals with
a closed system and no discard of information, has at hand a
reversible dynamics.

Notice that throughout this paper we have taken the von
Neumann entropy S purely as an ignorance quantifier, as in
any informational framework. However, the Landauer erasure
principle [39,40], which tells us that information has effective
thermodynamical implications, along with recent develop-
ments in the emerging field of quantum thermodynamics
[41,42], provides substantial license for one to conceptually
connect S with the thermodynamical entropy. In this case, the
apparently separated notions of informational (ir)reversibility,
which we have assessed so far, and the usual one of
thermodynamic (ir)reversibility may coalesce into a single
concept.

IV. CONCLUSION

Quantum mechanics teaches us that the classical determin-
istic notion of an objective reality calls for a critical review. In
this work we employ a recently developed measure of reality
[21] and traditional tools of quantum information theory to get
some insight into the issue. Careful experimental inspections
of microscopic systems have pointed out that there are many
instances where the physical reality seems to be in suspension,
that is, physical quantities do not have well-defined values.
As we have shown here, this can be achieved, e.g., by letting
a particle interact with massive structures, for in such cases
the (apparent frustration of) conservation laws prevent the
generation of entanglement and enhance the irreality of a
particle’s degrees of freedom. Irreality can also be created
for a given observable by means of revealed measurements
of an incompatible observable. On the other hand, we also
showed that any attempt to probe nature, even via arbitrarily
tiny monitorings (unrevealed collapse or entanglement plus
discard), leads to the emergence of elements of reality. As
formally stated in the complementarity relation (36), the flow
of quantum information from the system to the apparatus
increases the reality of the monitored observable. In a detailed
account of the measurement process, we find another facet of
this story: Information associated with the apparatus flows to
the degree of freedom that we want to measure, the one that
is invariably discarded. It follows that the degrees of freedom
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of the apparatus, in particular those that define the very space-
time structure of the reference frame, become real. At this
stage, quantum mechanics predicts a fully incoherent mixture
for the apparatus, meaning that only subjective ignorance
persists about an already established reality. The final (irre-
versible) flow of information, which is mediated by photons
that inform the observer about the state of the apparatus,
materialize the information updating of the observer, a step
that is out of reach of any statistical theory. In quantum
mechanics, this dynamically indescribable transition is called
collapse.

To conclude, it is worth emphasizing that the adoption of
BA’s notion of reality allows us to formalize a complementarity
relation between reality and information. We find in this
framework that quantum mechanics predicts no objective
reality for isolated systems. Elements of reality can emerge for

a given observable only through the codification of information
about this quantity. This process, however, does not demand
the existence of a brain-endowed system to collect and interpret
the information. All that is fundamentally necessary is the
presence of physical degrees of freedom that can get correlated
with the observable and thus encode information about it. The
information that flows to these degrees of freedom makes the
reality emerge and become potentially accessible to brain-
endowed observers.
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