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Variance uncertainty relations without covariances for three and four observables
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Sum and product uncertainty relations, containing variances of three or four observables, but not containing
explicitly their covariances, are derived. Their consequences are, in particular, inequalities, giving nonzero lower
bounds for the products of two variances in the case of zero mean value of the commutator between the related
operators. Explicit examples show that the bounds can be better than the known Robertson-Schrödinger one.
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I. INTRODUCTION

It is impressive that 90 years after the birth of the concept of
uncertainty relations in quantum mechanics [1,2], this subject
is still “alive,” in the sense that one can observe a burst of
publications in this area, devoted to generalizations of the
traditional product inequalities for two observables [3,4]

σAAσBB � 1
4 |〈[Â,B̂]〉|2 (1)

or its stronger version [4,5]

σAAσBB � σ 2
AB + 1

4 |〈[Â,B̂]〉|2. (2)

Here, σAB ≡ 1
2 〈{δÂ,δB̂}〉 and δÂ ≡ Â − 〈Â〉. Although the

mainstream of the current research is connected to the “entropic
uncertainty relations” (see [6–9] for recent reviews and results),
several inequalities containing variances of observables as
measures of “uncertainties” have been discovered recently
[10–23]. The goal of this article is to provide families of
relatively simple inequalities, containing on an equal footing
variances of three and four observables, but not containing
explicitly any covariance (the specific choice of numbers 3
and 4 will become clear soon). Remarkable consequences
are inequalities for the product of two variances, replacing
inequality (1) in the case of zero mean value of the commutator
[Â,B̂].

Indeed, what should or can we do if 〈[Â,B̂]〉 = 0? One of
possible answers arises, if one considers the triple of angular
momentum operators Lx,Ly,Lz. In this case, relation (1)
assumes the form

LxxLyy � (h̄2/4)L2
z . (3)

The following notation is used hereafter for operators labeled
with indices:

zj ≡ 〈ẑj 〉, zjk = zkj = 1
2 〈ẑj ẑk + ẑk ẑj 〉 − 〈ẑj 〉〈ẑk〉. (4)

If Lz = 0 (and this can happen for many quantum states),
then relation (3) gives no information about the variances Lxx

and Lyy . Looking at relation (3), one can suppose that its
insufficient efficiency could be explained, at least partially,
by the fact that three equivalent noncommuting operators
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L̂x , L̂y , and L̂z enter this relation on an unequal footing.
Therefore, a natural way to overcome the difficulty can consist
in generalizing inequalities (1) or (2) to systems of more
than two operators. This problem was considered for the first
time by Robertson [24]. [Another possibility, discovered by
Trifonov [25,26] and Maccone and Pati [12] (see also more
recent papers [14,17,18]), is to use inequalities containing more
than one quantum state. But, I do not follow this way here.]

Robertson’s scheme is as follows. Consider N arbitrary
operators ẑ1, ẑ2, ..., ẑN , and construct the operator f̂ =∑N

j=1 αjδẑj , where αj are arbitrary complex numbers. The
inequalities, which can be interpreted as generalized uncer-
tainty relations, are the consequences of the fundamental
inequality 〈f̂ †f̂ 〉 � 0, that must be satisfied for any pure or
mixed quantum state (the symbol f̂ † means the Hermitian
conjugated operator). In the explicit form, this inequality is
the condition of positive semidefiniteness of the quadratic
form α∗

j Fjmαm (with the summation over repeated indices),

whose coefficients Fjm = 〈δẑ†j δẑm〉 form the Hermitian matrix
F = ‖Fjm‖. One has only to use the known conditions of the
positive semidefiniteness of Hermitian matrices to write the
explicit inequalities for the elements of matrix F . All such
inequalities can be considered as generalizations of inequality
(2) to the case of more than two operators. Many of them
can be found, e.g., in review [27] or Refs. [20,23,26,28–33].
Applications to the problem of entanglement of continuous
variable systems were studied in Refs. [16,20,34–38].

If all operators ẑj are Hermitian, then it is convenient to split
matrix F as F = X + iY , where X and Y are real symmetric
and antisymmetric matrices, consisting of the elements Xmn =
1
2 〈{δẑm,δẑn}〉 and Ymn = 1

2i
〈[ẑm,ẑn]〉. The symbols {. . . , . . .}

and [. . . , . . .] mean the anticommutator and commutator,
respectively. The fundamental inequality ensuring the positive
semidefiniteness of matrix F is

det F = det ‖X + iY‖ � 0. (5)

Other inequalities proven by Robertson have the form

X11X22 . . . XNN � det X � det Y. (6)

Unfortunately, inequalities (5) and (6) are rather complicated
for N > 2 observables because they contain, in addition to N

variances Xkk and N (N − 1)/2 mean values of commutators
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Yjk , numerous sums and products of various combinations of
N (N − 1)/2 covariances Xjk with j �= k.

The presence of covariances in the uncertainty relations is
important, both from the point of view of mathematical beauty
and completeness [the invariance with respect to arbitrary
linear canonical transformations in the case of inequality (2)
for the coordinates and momenta] [39], and from the point
of view of physical effects, such as tunneling of wave packets
through potential barriers [40], quantum optical measurements
[41], or low-energy nuclear reactions [42]. An inclusion
of covariances into the entropic uncertainty relations was
achieved recently in study [9]. Also, the account of covariances
between the selected subsystem and the “external world”
increases the right-hand side of the Robertson-Schrödinger
inequality (2) [43].

However, the analysis of complete inequalities, containing
all covariances, is a difficult task for N > 2 observables. For
example, if N = 4, then det X contains 17 different products
of covariances [27,44], in addition to 6 different products of
mean values of commutators in det Y . The simplest expressions
exist for N = 3, when (5) can be written in the form (see, e.g.,
[19,45])

X11X22X33 � X11
(
X2

23 + Y 2
23

) + X22
(
X2

13 + Y 2
13

)
+X33

(
X2

12 + Y 2
12

) − 2X12X23X31

+ 2(X12Y23Y31 + X23Y31Y12 + X31Y12Y23). (7)

In contradistinction to the case of the Schrödinger inequality
(2), where removing the term σAB from the right-hand side
results in a simplified inequality (1), there is no possibility
to simplify (7) by deleting all terms Xjk with j �= k since
covariances Xjk with j �= k can be positive or negative. If
such a simple trick could be done, then one would obtain the
inequality

X11X22X33 � X11Y
2
23 + X22Y

2
13 + X33Y

2
12. (8)

But, it is not satisfied, e.g., for the triple of dimensionless
(scaled) operators (introduced in [13]) x, p, and ξ = x + p, in
the correlated coherent state [46]

ψα(x; σ,r) = N exp

[
− x2

4σ

(
1 − ir√

1 − r2

)
+ αx√

σ

]
(9)

with σ = h̄/
√

3 and the correlation coefficient r = − 1
2 (here

N is the normalization factor). Indeed, in this case

Y 2
jk = h̄2/4, σxx = σpp = σξξ = h̄/

√
3, (10)

so that the left-hand side of (8) equals L = h̄3/(3
√

3), while the
right-hand side equals R = h̄3

√
3/4 = 9L/4. Consequently,

inequality (8) is wrong.
The correct simplified form of inequality (7) for the product

of three variances is derived in Sec. II together with several
other relations for the sums and products of uncertainties.
Similar inequalities for four variances are derived in Sec. III.

II. INEQUALITIES WITHOUT EXPLICIT COVARIANCES
FOR N = 3

The correct simplified inequality without covariances can
be obtained using the scheme proposed in [47]. The main idea

is to extend the Hilbert space of states |ψ〉, considering the
tensor products |�〉 = |ψ〉 ⊗ |χ〉, where |χ〉 is an auxiliary
spinor. In this extended space we can introduce the operator
F̂ = ∑3

j=1 αjσj δẑj , where αj are arbitrary real numbers and
σj are the standard 2 × 2 Pauli matrices. Then, using the anti-
commutativity property of the Pauli matrices and performing
averaging over the state |ψ〉, one can write 〈�|F̂ †F̂ |�〉 =
〈χ |A|χ〉 with the 2 × 2 Hermitian matrix (here σ0 is the 2 × 2
unit matrix)

A = (
α2

1X11 + α2
2X22 + α2

3X33
)
σ0

− 2σ1α2α3Y23 − 2σ2α3α1Y31 − 2σ3α1α2Y12. (11)

We see that matrix (11) does not contain covariances Xjk with
j �= k. Since 〈�|F̂ †F̂ |�〉 � 0 for any physical state, matrix
(11) must be positive semidefinite for arbitrary real parameters
α1,α2,α3. Unfortunately, the analysis of this condition in
Ref. [47] suffered from some drawbacks because the main
result of that paper was the incorrect inequality (8). The origin
of the mistake is shown in Appendix A.

It is known from the matrix theory that there are three
conditions that guarantee the positive semidefiniteness of
2 × 2 Hermitian matrices: the non-negativity of two diagonal
elements and the matrix determinant. The first two conditions
result in the Robertson inequality (1) X11X22 � Y 2

12, whereas
the condition det A � 0 results in the inequality

α2
1X11 + α2

2X22 + α2
3X33

� 2[(α1α2Y12)2 + (α2α3Y23)2 + (α1α3Y13)2]1/2. (12)

This inequality must hold for arbitrary real numbers α1, α2,
and α3. Each set of these parameters yields some kind of
uncertainty relations for three observables. In the following
subsections, we consider several interesting special cases.

A. Most symmetric inequalities

Looking for the most symmetric relations, let us choose
α1 = α2 = α3. Then, we arrive at the inequality

X11 + X22 + X33 � 2
[
Y 2

12 + Y 2
23 + Y 2

13

]1/2
, (13)

which is stronger than the consequence of the Robertson
inequality (1):

X11 + X22 + X33 � |Y12| + |Y23| + |Y13|. (14)

In the special case of three canonical observables, x, p, and
ξ = x + p, inequality (13) was found in [13]. Its generalization
to the case of N observables, which are linear combinations of
the canonical coordinate and momentum operators, was found
in [23]. Other inequalities for traces of the covariance matrix
for N observables can be found in [15,22,26,27].

The choice α2
k = Xn

kk results in the inequality

Xn+1
11 + Xn+1

22 + Xn+1
33

� 2
[
Y 2

12X
n
11X

n
22 + Y 2

23X
n
33X

n
22 + Y 2

13X
n
11X

n
33

]1/2
. (15)

Of course, to use inequalities (13) or (15) one must preliminar-
ily rescale observables zk in such a way that all of them acquire
the same physical dimensions.

Wishing to find an inequality for the triple product
X11X22X33, let us choose α2

1 = X22X33, α2
2 = X11X33, and
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α2
3 = X22X11. Then, the following correct inequality arises

instead of (8):

X11X22X33 � 4
9

(
X11Y

2
23 + X22Y

2
13 + X33Y

2
12

)
. (16)

It turns into the equality for the state (9) with σ = h̄/
√

3 and
r = − 1

2 . A similar (but weaker) inequality, with coefficient 1
3

instead of correct 4
9 , was derived in [45].

If three commutator mean values coincide, |Y12| = |Y23| =
|Y31| = Y , then combining (16) with (13) one obtains the
inequality

X11X22X33 � (4/3)3/2Y 3. (17)

For the triple (x,p,x + p) inequality (17) yields immediately
the main result of Ref. [13].

Applying the inequality a + b � 2
√

ab to the right-hand
side of (16), we get the inequality ζ 2 − 2Bζ − 4

9Y 2
12 � 0,

where ζ ≡ √
X11X22 and B ≡ 4|Y13Y23|/(9X33). Resolving

this inequality with respect to the non-negative variable ζ , we
arrive at the following inequality for the uncertainty product

z1
z2 ≡ √

X11X22:


z1
z2 �
√

(2Y12/3)2 + B2 + B. (18)

This inequality is especially important if Y12 = 0, when the
standard Robertson uncertainty relation (1) 
z1
z2 � |Y12|
becomes useless. In this case, a better inequality is


z1
z2 � 8|Y13Y23|/(9X33). (19)

But, the coefficient 8/9 in this relation can be improved, as
shown at the end of the next subsection.

B. Partially symmetric inequalities

Maintaining the symmetry with respect to the variables z1

and z2 only, let us choose α1 = α2, but α3 = bα1 in the basic
inequality (12). Then, one gets instead of (13) a more general
inequality

X11 + X22 + b2X33 � 2
[
Y 2

12 + b2
(
Y 2

23 + Y 2
13

)]1/2
. (20)

It seems reasonable to try to find the “best” value of pa-
rameter b, that would result in the strongest inequality. To
do this, let us rewrite (20) in the form f (b) ≡ C + b2X33 −
2[Y 2

12 + b2D]
1/2 � 0, with C = X11 + X22 and D = Y 2

23 +
Y 2

13, and try to find the minimum of function f (b) for fixed non-
negative coefficients C and D. The local extremum at b = 0
yields the inequality X11 + X22 � 2|Y12|, which is the conse-
quence of the Robertson relation X11X22 � Y 2

12. The problem
is that the second extremal point b∗, given by the formula

b2
∗ = Y 2

23 + Y 2
13

X2
33

− Y 2
12

Y 2
23 + Y 2

13

, (21)

exists under the restriction(
Y 2

23 + Y 2
13

)2
> Y 2

12X
2
33, (22)

which cannot be satisfied for arbitrary values of the variance
X33 and mean values of commutators Yjk . If condition (22)
is satisfied, then inequality f (b∗) � 0 can be written as some

kind of the “sum uncertainty relation”

X11 + X22 � Y 2
23 + Y 2

13

X33
+ Y 2

12X33

Y 2
23 + Y 2

13

. (23)

Note that the right-hand side of inequality (23) is bigger than
2|Y12| under condition (22). If condition (22) is not satisfied,
then df/db > 0 for all values of b > 0. In this case, one can
only say that X11 + X22 � 2|Y12|.

In the case of equal mean values of three commutators,
|Y12| = |Y23| = |Y31| = Y , condition (22) reads as X33 < 2|Y |.
Then inequality (23) assumes the form

X11 + X22 � 2Y 2

X33
+ 1

2
X33. (24)

The equality sign is achieved, e.g., for the Kechrimparis-
Weigert triple (x,p,x + p) in the correlated coherent state (9)
with the variances given by Eq. (10).

To generalize inequality (16) for the triple product
X11X22X33, let us choose now α2

1 = X22X33, α2
2 = X11X33,

but α2
3 = b2X22X11 in inequality (12). Then,

X11X22X33 � 4(C + b2D)

(2 + b2)2
, (25)

where C = X33Y
2
12 and D = X11Y

2
23 + X22Y

2
13. Note once

again that inequality (25) must hold for any real value of
parameter b. For b = 0 we have the standard inequality
X11X22 � Y 2

12. The right-hand side of (25) decreases with b,
if D � C. In this case, the standard inequality is the best one.
But, if D � C, i.e.,

X11Y
2
23 + X22Y

2
13 � X33Y

2
12, (26)

then the right-hand side of (25) attains the maximal value at

b2
∗ = 2

(
X11Y

2
23 + X22Y

2
13 − X33Y

2
12

)
X11Y

2
23 + X22Y

2
13

,

and we get a stronger inequality

X11X22X33 �
(
X11Y

2
23 + X22Y

2
13

)2

2
(
X11Y

2
23 + X22Y

2
13

) − X33Y
2
12

. (27)

The equality in this relation is attained again for the triple
(x,p,x + p) in the correlated coherent state (9) with the
variances given by Eq. (10).

In the special case of Y12 = 0 [when condition (26) is
certainly fulfilled] we have

X11X22X33 � 1
2

(
X11Y

2
23 + X22Y

2
13

)
� |Y13Y23|

√
X11X22.

Thus, we arrive at the improved version of inequality (19):


z1
z2 � |Y13Y23|/X33. (28)

C. Examples

1. Three components of the angular momentum

A natural example of three observables is the set of three
components Lx , Ly , and Lz of the angular momentum vector
L. Inequality (13) reads in this case as

〈L2〉 − 〈L〉2 � h̄|〈L〉| ≡ h̄

√
L2

x + L2
y + L2

z, (29)
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where Lj ≡ 〈L̂j 〉. Inequality (16) reads as

LxxLyyLzz � h̄2(LxxL
2
x + LyyL

2
y + LzzL

2
z

)
/9, (30)

where Ljj ≡ 〈L̂2
j 〉 − 〈L̂j 〉2. If Lz = 0, then inequality (28)

assumes the form


Lx
Ly � h̄2|LxLy/(4Lzz)|. (31)

Recently, many new uncertainty relations for the angular mo-
mentum operators were found in [30,48–50] (in addition to the
set of inequalities collected in [27]). But, inequalities (29)–(31)
seem to be new. To illustrate (31), we have considered various
superpositions of the angular momentum p states |1,m〉 with
m = 1,0, − 1, resulting in Lz = 0. It appears that the minimal
ratio of the left- and right-hand sides of (31) is achieved for the
state

|ψ〉 = 1
2 [|1,1〉 + i|1,−1〉 + (1 + i)|1,0〉], (32)

possessing the following mean values and variances:

Lx = Ly = h̄/
√

2, 
Lx = 
Ly = h̄/2, Lzz = h̄2/2.

Then, the right-hand side of (31) equals h̄2/4, and this value
coincides with the value of the left-hand side. The same result
in this special case can be deduced from the Schrödinger
inequality (2) because Lxy = −h̄2/4 for the state (32), so that

Lx
Ly = |Lxy |.

2. Three independent products of canonical operators

Another interesting triple is

ẑ1 = (δp̂)2, ẑ2 = (δx̂)2, ẑ3 = 1
2 (δp̂δx̂ + δx̂δp̂). (33)

The choice of shifted operators δx̂ = x̂ − 〈x̂〉 and δp̂ = p̂ −
〈p̂〉 implies that the non-negative average value 〈�|F̂ †F̂ |�〉 �
0 should be calculated with respect to the same state |ψ〉 that
was used for the calculation of the first-order mean values 〈x̂〉
and 〈p̂〉. But, this restriction does not influence the results.
Now, we have the following expressions for the quantities Ykl

and Xjj :

Y12 = −2h̄σpx, Y23 = h̄σxx, Y13 = −h̄σpp,

X11 = 〈(δp)4〉 − σ 2
pp ≡ σ4p, X22 = 〈(δx)4〉 − σ 2

xx ≡ σ4x,

X33 = 1
4 〈(δp̂δx̂ + δx̂δp̂)2〉 − σ 2

px.

The simple Robertson inequality (1) σ4pσ4x � 4h̄2σ 2
px be-

comes useless for states with σpx = 0 (in particular, for any
real wave function). In this case, it is better to use inequality
(28), which assumes the form

√
σ4pσ4x � 4h̄2σppσxx/〈(δp̂δx̂ + δx̂δp̂)2〉. (34)

The right-hand side of (34) is obviously nonzero. A simple
illustration of the strength of inequality (34) can be done for
arbitrary Gaussian states because all higher-order statistical
moments can be expressed in terms of (co)variances for this
kind of state (see Appendix B for details). In particular,

σ4p = 2σ 2
pp, σ4x = 2σ 2

xx,

〈(δp̂δx̂ + δx̂δp̂)2〉 = 4σppσxx + 8(σxp)2 + h̄2.

Consequently, the left-hand side of (34) equals 2σppσxx . On
the other hand, if σpx = 0, then the right-hand side equals

4h̄2σppσxx/(4σppσxx + h̄2). For pure uncorrelated quantum
Gaussian states we have σppσxx = h̄2/4, so that (34) turns into
an equality. Moreover, inequality (34) turns out better than the
Schrödinger inequality (2) in this special case. Indeed, for any
Gaussian state one has (see Appendix B)

X12 ≡ 1
2 〈(δp̂)2(δx̂)2 + (δx̂)2(δp̂)2〉

= σppσxx + 2σ 2
px − h̄2/2,

so that the value
√

X11X22 = h̄2/2 is twice bigger than |X12| =
h̄2/4 for all pure Gaussian states with σpx = 0. Note that X12 <

0 in this case, due to the noncommutativity of the coordinate
and momentum operators.

3. Symmetric triple of operators in the phase plane

Let us consider, following [16], the triple of operators,
which are obtained by rotations in the phase plane (x-p) by
120◦:

zk = x cos(2kπ/3) + p sin(2kπ/3), k = 0,1,2. (35)

In this case, we have Y01 = Y12 = Y20 = √
3/4 (in the di-

mensionless units with h̄ = 1), so that inequality (17) yields
X00X11X22 � 1/8. This result was obtained in [16] in a more
complicated way.

4. Bounds on the uncertainty product for commuting operators in
specific quantum states

Inequalities (31) and (34) give lower bounds of the uncer-
tainty products for noncommuting operators in the specific
states possessing zero mean values of their commutators. Now,
let us consider an example of commuting operators ẑ1 and
ẑ2. The Robertson inequality (1) tells us that the product

z1
z2 can be made as small as desired, if one has in mind
all admissible quantum states. But, if the family of quantum
states is restricted somehow, then it is better to replace (1)
with inequality (28), which shows explicitly that the product

z1
z2 can be limited from below. For example, let us take
z1 = x, z2 = y (two Cartesian coordinates), but z3 = px ± py .
Then, Y12 ≡ 0, and two inequalities (19) (for two choices of
z3) lead to the inequality


x
y � h̄2/[4(σpxpx
+ σpypy

− 2|σpxpy
|)]. (36)

On the other hand, the standard Heisenberg uncertainty relation
yields


x
y � h̄2/[4
√

σpxpx
σpypy

]. (37)

Consequently, inequality (36) provides a much higher lower
bound for the product 
x
y than inequality (37), for states
with strongly correlated momenta, when σpxpx

≈ σpypy
and

|σpxpy
| ≈ √

σpxpx
σpypy

. The simplest example is the pure
Gaussian quantum state described by the wave function

ψ(x,y) = N exp
(
−a

2
x2 − bxy − a

2
y2

)
, (38)

with real coefficients a and b, satisfying the restrictions a > 0
and D ≡ a2 − b2 > 0. N is the normalization factor. Then,

x = 
y = √

a/(2D), σpxpx
= σpypy

= h̄2a/2, and σpxpy
=

h̄2b/2. The product 
x
y = a/(2D) can be very big, if |b|
is close to a, but the right-hand side of (37) [which is equal
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to (2a)−1] does not feel the presence of parameter b. On the
contrary, the right-hand side of (36) equals [4(a − |b|)]−1, and
this value tends to a/[2(a2 − b2)] when |b| → a.

III. FOUR OBSERVABLES

The scheme used in the preceding section can be generalized
to sets of four arbitrary Hermitian operators, if one replaces
three 2 × 2 Pauli’s matrices σk with four anticommuting
Hermitian 4 × 4 Dirac’s matrices, satisfying the relations

γmγn + γnγm = 2I4δmn, m,n = 1,2,3,4 (39)

where In is the n × n unit matrix. Consider the operator f̂ =∑4
k=1 ξkδẑkγk , where ξk are arbitrary real coefficients and ẑk

arbitrary Hermitian operators. It acts in the extended Hilbert
space of states |�〉 = |ψ〉 ⊗ |χ〉, where |χ〉 is an auxiliary
bispinor. Then, the condition 〈�|f̂ †f̂ |�〉 � 0 can be written
as the condition of positive semidefiniteness of the Hermitian
4 × 4 matrix

F = gI4 + i
∑
j<k

γjγkyjk, (40)

where

g =
4∑

k=1

ξ 2
k Xkk, yjk = 2ξj ξkYjk = −ykj . (41)

The covariances Xjk with j �= k go out due to the anticommu-
tation relations (39).

Choosing matrices γk in the form

γk =
∥∥∥∥ 0 σk

σk 0

∥∥∥∥, γ4 =
∥∥∥∥I2 0

0 −I2

∥∥∥∥, (42)

we have

γjγk = iεjkl

∥∥∥∥σl 0
0 σl

∥∥∥∥, γkγ4 =
∥∥∥∥ 0 −σk

σk 0

∥∥∥∥. (43)

Here, j,k,l = 1,2,3, and εjkl is totally antisymmetric tensor
with ε123 = 1. Then, matrix (40) has the form

F =

∥∥∥∥∥∥∥
g − y12 y32 − iy13 −iy34 y42 − iy14

y32 + iy13 g + y12 y24 − iy14 iy34

iy34 y24 + iy14 g − y12 y32 − iy13

y42 + iy14 −iy34 y32 + iy13 g + y12

∥∥∥∥∥∥∥.

(44)

The non-negativeness of diagonal elements of this matrix, g �
|y12|, is the consequence of the Robertson inequality X11X22 �
|Y12|. The non-negativeness of principal minors of the second
order results in four inequalities, whose typical form is (other
ones are obtained by means of changes of indices)

g2 � 4[(ξ1ξ2Y12)2 + (ξ1ξ3Y13)2 + (ξ2ξ3Y23)2]. (45)

But, all such inequalities are consequences of (12).
The non-negativeness of the third-order principal minors

yields two inequalities:

(g ± y12)(g2 − v) � ∓2uy34, (46)

where

v =
∑
j<k

y2
jk, u = y12y34 + y23y14 + y31y24. (47)

Since g ± y12 > 0, the consequence of (46) is the inequality

g2 � v, (48)

which must hold for arbitrary sets of real parameters ξk . In
particular, taking all ξk = 1 (this means that the dimensions of
operators ẑk should be made equal by means of some scaling
transformations), we get the inequality, generalizing (13) to
the case of four observables,

4∑
k=1

Xkk � 2

⎡
⎣∑

j<k

Y 2
jk

⎤
⎦

1/2

. (49)

The generalization of (13) and (49) to the case of N observables
was found in [23], although under the restriction that these
observables are arbitrary linear combinations of the canonical
coordinate and momentum operators.

Inequalities (13) and (49) can be written in the nice matrix
form

[Tr(X)]2 � 2 Tr(Y Ỹ ), (50)

where Ỹ means the transposed matrix. It would be interesting to
prove (50) for any dimension N > 4 and arbitrary Hermitian
operators.

The inequalities (48) and (49) can be strengthened, if one
considers the most general condition of positive semidefinite-
ness of matrix F , namely, det F � 0. After some algebra, it
can be written in the following compact form:

det F = (g2 − v)2 − 4u2 � 0. (51)

Since g2 � v, the consequences of (51) are the inequalities

g2 � v + 2|u| (52)

and (
4∑

k=1

Xkk

)2

� 4
∑
j<k

Y 2
jk + 8�, (53)

where

� = |Y12Y34 + Y23Y14 + Y31Y24|. (54)

Note that � (as well as a more general coefficient u) is invariant
with respect to the ordering of indices, due to the property
Yjk = −Ykj .

The choice ξ 2
j = XkkXmmXnn (with j �= k �= m �= n) trans-

forms (52) to the following inequality, containing the “uncer-
tainty product” � = √

X11X22X33X44:

4�2 − 2�� − � � 0, (55)

where

� = Y 2
12X33X44 + Y 2

13X22X44 + Y 2
14X33X22

+Y 2
23X11X44 + Y 2

24X33X11 + Y 2
34X11X22.

Resolving inequality (55) with respect to variable �, we arrive
at the inequality

4
√

X11X22X33X44 � � +
√

4� + �2 (56)

(the second solution, giving an upper bound for �, is unphys-
ical). Note that

� � �∗ = 2
(
Y 2

12Y
2
34 + Y 2

23Y
2
14 + Y 2

31Y
2
24

)
(57)
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as a consequence of the standard uncertainty relation (2).
Therefore, one can get rid of variances in the right-hand side
of (56), replacing � with �∗. If Y12 = Y13 = 0, then the
right-hand side of (28) turns into zero, even if Y23 �= 0. In this
case, inequality (56) with �∗ yields a nonzero lower bound for
the product of two uncertainties (provided Y14 �= 0):


z1
z2 � |Y23Y14|/(
z3
z4). (58)

At this point, it is worth comparing (56) with Robertson’s
inequality (6). It is useless for N = 3 (because det Y ≡ 0 for
any antisymmetric 3 × 3 matrix Y ). But, for N = 4 we have

det(Y ) = Y 2
12Y

2
34 + Y 2

23Y
2
14 + Y 2

31Y
2
24 − 2Y12Y13Y24Y34

− 2Y12Y14Y23Y43 − 2Y13Y14Y32Y42 ≡ �2. (59)

Consequently, (56) is not weaker than (6) if � � 2�2. The
sufficient condition �∗ � 2�2 holds provided

Y12Y13Y24Y34 + Y12Y14Y23Y43 + Y13Y14Y32Y42 � 0. (60)

This condition is fulfilled automatically for systems with only
two nonzero mean values of commutators. In particular, two
independent sets of coordinates and momenta belong to this
family. In this case, the right-hand side of (6) coincides with
the right-hand side of (56), provided � is replaced by �∗.
But, if such a replacement is not done, then inequality (56)
is stronger than (6). One can check that the equality sign in
(56) is achieved, e.g., for the coordinates and momenta in
the minimum uncertainty states of two uncoupled harmonic
oscillators.

The concrete choice of γ matrices does not influence the
final results. For example, if one chooses, instead of (42),
matrices

γk =
∥∥∥∥σk 0

0 −σk

∥∥∥∥, γ4 = −
∥∥∥∥ 0 I2

I2 0

∥∥∥∥, (61)

then matrices γjγk have exactly the same form as in (43), so
that matrix F maintains the form (44).

Example

For example, let us consider the set z1 = x, z2 = px , z3 = y,
z4 = py , and the pure quantum state

ψ(x,y) = N exp
(
−a

2
x2 − bxy − c

2
y2

)
, (62)

where N is the normalization factor, and all coefficients a, b,
and c are real numbers, satisfying the restrictions a > 0, c > 0,
and D ≡ ac − b2 > 0. Then,

X11 = c

2D
, X33 = a

2D
, X22 = 1

2
ah̄2, X44 = 1

2
ch̄2,

so that√
X11X22X33X44 = (ac)h̄2

4D
, � = ach̄4

8D
, � = h̄2

4
.

If b = 0, then we have equalities in both relations (56) and (6).
But, if b �= 0, and especially if D � ac, then (6) becomes very
weak because its right-hand side equals always h̄2/4. On the
other hand, inequality (56) shows that the uncertainty product√

X11X22X33X44 must be much bigger than h̄2/4 in this case
[although the right-hand side of (56) appears much smaller

than the left-hand side, so that this inequality is not the best
possible].

IV. CONCLUSION

The main results of this paper are inequalities (12), (13),
and (16) for arbitrary sets of three Hermitian operators, and
inequalities (52), (53), and (56) for arbitrary sets of four
Hermitian operators. These inequalities give lower bounds for
the sums and products of three or four variances in terms of the
mean values of commutators, but they do not contain explicitly
the covariances between the observables. Therefore, the in-
equalities are simpler than the known Robertson’s inequalities
for several observables. (Note, however, that covariances can
enter the inequalities implicitly, through the mean values of
commutators.) The “magic numbers” 3 and 4 arise due to the
existence of three anticommuting 2 × 2 Pauli’s matrices and
four anticommuting 4 × 4 Dirac’s matrices.

Important consequences of relations (12) and (56) are
inequalities (28) and (58), which show that even if the mean
value of the commutator between two operators is zero,
nonetheless, the product of variances of the corresponding
observables must be nonzero, if these observables are parts
of some extended system. Perhaps, it is worth mentioning that
all inequalities derived in this article remain valid, if one uses
unshifted operators ẑj instead of δẑj in the construction of
operator F̂ . Then, simplified versions of the inequalities can
be written, using the definition Xjj = 〈ẑ2

j 〉.
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APPENDIX A: WHY THE TREATMENT OF REF. [47]
RESULTED IN A WRONG INEQUALITY

The 2 × 2 matrix (11) must be positive semidefinite for
arbitrary real parameters α1,α2,α3. This means that func-
tion ϕ(α1,α2,α3,χ1,χ2) = 〈χ |A|χ〉 (which depends on five
variables) must be non-negative for an arbitrary spinor
〈χ | = (χ∗

1 ,χ∗
2 ). Considering 〈χ |A|χ〉 as a bilinear form

with respect to components of six-dimensional vector v =
(α1χ1,α2χ1,α3χ1,α1χ2,α2χ2,α3χ2) (where χ1 and χ2 are the
complex components of the auxiliary spinor |χ〉), one could
write (following [47]) 〈χ |A|χ〉 = v∗�v with the 6 × 6 Her-
mitian matrix

� =

∥∥∥∥∥∥∥∥∥∥∥

X11 Y21 0 0 0 iY31

Y21 X22 0 0 0 Y32

0 0 X33 iY31 Y32 0
0 0 iY13 X11 Y12 0
0 0 Y32 Y12 X22 0

iY13 Y32 0 0 0 X33

∥∥∥∥∥∥∥∥∥∥∥
. (A1)

Then, the main condition of positive semidefiniteness of matrix
�, namely det � � 0, would result in the inequality (8), which
is not correct, as was shown at the end of Sec. I. A possible
origin of mistake based on using matrix (A1) is that condition
det � � 0 guarantees the inequality v∗�v � 0 for all possible
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choices of vector v, whereas not all components of this vector
are independent in the case involved since v4/v1 = v5/v2 =
v6/v3.

APPENDIX B: FOURTH-ORDER MOMENTS IN TERMS OF
THE SECOND-ORDER ONES FOR THE GAUSSIAN STATES

The variances of the triple (33) correspond to the fourth-
order moments of coordinates and momenta. Such moments
can be calculated easily for any Gaussian state because its
Wigner functions (in the single space dimension for simplicity)
W (x,p) is also Gaussian, so that one can use classical formulas
for average values of the Gauss distributions (with some
modifications due to the noncommutativity of the coordinate
and momentum operators). The details can be found, e.g., in
[51].

Consider four operators (not necessarily different) Â, B̂,
Ĉ, and D̂ (with zero mean values), where each of them can
be either δx̂ or δp̂. Then, the mean value of the symmetrical
(or Wigner-Weyl) product of these operators is given by the
formula (see, e.g., [52])

〈ABCD〉W =
∫

W (x,p) ABCD dx dp/(2πh̄). (B1)

The meaning of symbol 〈ABCD〉W is the following: this
is the quantum mechanical mean value of the sum of all
different products of operators Â, B̂, Ĉ, and D̂, taken in all
possible orders, divided by the number of terms. For example, if

〈x̂〉 = 〈p̂〉 = 0, then

〈x2p2〉W = 1
6 〈x̂2p̂2 + p̂2x̂2 + x̂p̂x̂p̂

+ p̂x̂p̂x̂ + x̂p̂2x̂ + p̂x̂2p̂〉.
Mean values of concrete products of operators in predefined
orders can be expressed in terms of symmetrical mean values
with the aid of commutation relations. For example (if 〈x̂〉 =
〈p̂〉 = 0),

〈x2p2〉W = 1
2 〈x̂2p̂2 + p̂2x̂2〉 + h̄2

2
,

〈(x̂ + p̂)2〉 = 2〈x̂2p̂2 + p̂2x̂2〉 + 3h̄2.

Since the Gaussian Wigner function is positive, one can
consider it as a classical probability distribution and apply the
classical formulas for the Gaussian probabilities to the right-
hand side of (B1). The final result is the following formula of
decoupling the fourth-order moments into the sums of products
of the second-order moments:

〈ABCD〉W = AB · CD + AC · BD + AD · BC, (B2)

where AB ≡ 1
2 〈ÂB̂ + B̂Â〉 (remember that we suppose here

that 〈Â〉 = 〈B̂〉 = 0). In particular, taking Â = B̂ = Ĉ = D̂ =
δx̂ we arrive at the known formula

〈(δx̂)4〉 = 3(σxx)2. (B3)

Another formula used in the main text is

〈(δx)2(δp)2〉W = σxxσpp + 2(σxp)2. (B4)
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