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It is well known that correlations predicted by quantum mechanics cannot be explained by any classical
(local-realistic) theory. The relative strength of quantum and classical correlations is usually studied in the context
of Bell inequalities, but this tells us little about the geometry of the quantum set of correlations. In other words, we
do not have a good intuition about what the quantum set actually looks like. In this paper we study the geometry of
the quantum set using standard tools from convex geometry. We find explicit examples of rather counterintuitive
features in the simplest nontrivial Bell scenario (two parties, two inputs, and two outputs) and illustrate them
using two-dimensional slice plots. We also show that even more complex features appear in Bell scenarios with
more inputs or more parties. Finally, we discuss the limitations that the geometry of the quantum set imposes on
the task of self-testing.
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I. INTRODUCTION

Local measurements performed on entangled particles can
give rise to correlations which are stronger than those present in
any classical theory, a phenomenon known as Bell nonlocality.
This seminal result, often referred to as Bell’s theorem, was
proven by Bell more than five decades ago [1] and the existence
of such correlations has recently been confirmed unequivocally
in a couple of technologically demanding experiments [2–5].

In addition to its fundamental significance, Bell nonlocal-
ity has also found real-life applications, notably in secure
communication, generation of certifiably secure randomness,
and more generally device-independent quantum information
processing (see Ref. [6] for a review on Bell nonlocality and
its applications). In the device-independent setting, we do not
have a complete description of our physical setup and draw
conclusions based only on the observed correlations instead.
Thorough understanding of the sets of correlations allowed by
different physical theories is thus essential to comprehend the
power of device-independent quantum information processing.

In this language, Bell’s theorem simply states that the set of
correlations allowed by quantum theory Q is a strict superset
of the set of correlations allowed by classical theories L. The
difference between these two objects is often investigated via
Bell inequalities, i.e., linear constraints that must be satisfied by
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classical correlations but may be violated by quantum mechan-
ics. Usual examples include the inequalities derived by Clauser,
Horne, Shimony, and Holt (CHSH) [7] and Mermin [8].

Although quantum correlations may be stronger than their
classical counterpart, they cannot be arbitrarily strong. In
particular, they obey the no-signaling principle proposed by
Popescu and Rohrlich [9]. Imposing this principle alone gives
the no-signaling set NS , which turns out to be a strict
superset ofQ; i.e., we arrive at the following well-known strict
inclusions:

L � Q � NS. (1)

Bell scenarios are parametrized by the number of inputs and
outputs at each site. In this work, we assume that all these
numbers are finite and then the local and no-signaling sets
are polytopes, while the quantum set is a convex set but not
a polytope. It is known that all of them span the same affine
space, i.e., dim L = dim Q = dim NS [10,11].

In the literature, the relation between the three sets is
sometimes represented by a simple diagram which consists
of a circle sandwiched between two squares similar to Fig. 2;
see, e.g., Refs. [6,12]. While this picture accurately represents a
particular two-dimensional slice (cross section) of the quantum
set, it does not capture all the intricacies related to its geometry;
see, e.g., Refs. [13–23]. The quantum set is arguably the most
important object in the field of quantum correlations and, while
some special subspaces are rather well understood [24–28], in
general surprisingly little is known about its geometry [10]
beyond the fact that it is convex [29]. In this work, we
explore the unusual features of the quantum set and use
standard notions from convex geometry to formalize them.
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Understanding the geometry of the quantum set has immediate
implications for (at least) two distinct lines of research.

The first one is related to the question of whether the
quantum set admits a “physical description,” i.e., whether
there exists a simple, physically motivated principle which
singles out precisely the quantum set without referring to
operators acting on Hilbert spaces. Several such rules have
been proposed [9,17,23,30–32] (the no-signaling principle
being the first), but none of them has been shown to recover
the quantum set. Checking whether these physical principles
correctly reproduce the unusual features of the true quantum
set, as was done in Refs. [16,17,19,30–32], will give us a better
understanding of their strengths and weaknesses and might
help us in the search of the correct physical principle.

The geometry of the quantum set is also related to the
task of self-testing [10,24,33,34] in which we aim to deduce
properties of the quantum system under consideration from the
observed correlations alone. The fact that the geometry of the
quantum set is more complex than that of the circle in Fig. 2
imposes concrete limitations on our ability to make self-testing
statements, which we discuss in the relevant sections.

In Sec. II, we define the three correlation sets and propose
a geometrically motivated classification of Bell functions.
Sections III and IV contain examples of various unusual
geometrical features of the quantum set. In Sec. V, we sum-
marize the most important findings and discuss some open
questions. In the appendixes, one can find (1) a simple proof
that the quantum set in the simplest Bell scenario is closed,
(2) connections between the CHSH Bell-inequality violation
and some distance measures in the same Bell scenario, (3)
further examples of unusual slices of the quantum set, (4) tools
that we have developed to identify unusual quantum faces,
(5) a proof that the optimal quantum distribution realizing the
Hardy paradox [35] is not exposed, and (6) some other technical
details of our results.

II. PRELIMINARIES

While discussing the geometry of the quantum set it is
natural to employ standard tools from convex geometry, e.g.,
the notions of exposed, extremal, and boundary points. Let us
recall that for a compact convex set A we have

Aexp ⊆ Aext ⊆ Abnd ⊆ A (2)

and as shown in Fig. 1 these inclusions are in general strict.
We will also use the notion of an exposed face of a convex set.
A short and self-contained introduction to these notions can be
found in Appendix A.

A. Three important correlation sets

Following the convention of Ref. [36], we denote the
Bell scenario of n parties who (each) have m measurement
settings with � possible outcomes by (n-m-�). In this work,
we focus predominantly on the bipartite case, i.e., n = 2,
and then the entire statistics can be assembled into a real
vector �P := (P (ab|xy)) ∈ Rm2�2

, which we will refer to as the

Convex Set

Non-extremal
boundary point

Exposed
point

Exposed
point

Interior point
Non-exposed
extremal
point

FIG. 1. Different types of points of a compact convex set.

behavior,1 probability point, or simply a point. It is clear that
all conditional probability distributions must be non-negative

P (ab|xy) � 0 ∀a,b,x,y (3)

and normalized ∑
ab

P (ab|xy) = 1 ∀x,y. (4)

1. The no-signaling set NS
A probability point belongs to the no-signaling set if it

satisfies

∀a,x,y,y ′ ∑
b

P (ab|xy) =
∑

b

P (ab|xy ′) and

∀b,x,x ′,y
∑

a

P (ab|xy) =
∑

a

P (ab|x ′y) .

(5)

The term no-signaling [38] refers to the fact that the choice of
local settings of one party does not affect the outcome distri-
bution of the other party. We denote the set of all no-signaling
behaviors by NS and since it is characterized by a finite
number of linear inequalities and equalities, namely (3), (4),
and (5), the no-signaling set is a polytope.

2. The quantum set Q
The quantum set Q is the set of correlations which can

be achieved by performing local measurements on quantum
systems. Following the standard tensor-product paradigm,
each party is assigned a Hilbert space H of finite dimension
d := dim(H) < ∞. A valid quantum state corresponds to a
d2 × d2 matrix which is positive semidefinite and of unit trace.
A local measurement with � outcomes is a decomposition of
the d-dimensional identity into positive semidefinite operators,

1Tsirelson first used the term “behavior” [10] to describe a family
of probability distributions indexed by tuples of setting values. The
term has become widely adopted, e.g., in Refs. [6,37]. The terms
“box” [38,39], “probability model” [40], and “correlation” [41,42]
are also commonly used.
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i.e., {Ea}�a=1 such that Ea � 0 for all a and

�∑
a=1

Ea = 1d , (6)

where 1d denotes the d-dimensional identity matrix.
We define Qfinite to be the set of behaviors which can be

generated when local Hilbert spaces are finite-dimensional,
i.e., �P ∈ Qfinite if there exists a finite-dimensional quantum
state ρ and measurements {Ex

a },{Fy

b } such that

P (ab|xy) = tr
[(

Ex
a ⊗ F

y

b

)
ρ
]

(7)

for all a,b,x,y.
To make the underlying mathematics neater, we define the

quantum set Q as the closure of Qfinite; i.e., we explicitly
include all the limit points, which makes the quantum set
Q compact.2 The fundamental result that Q 	= Qfinite for
some finite Bell scenarios was only recently established by
Slofstra [43] (see also the recent work of Dykema et al. [44]).

3. The local set L
We call a probability point deterministic if the output of

each party is a (deterministic) function of their input and we
denote the set of deterministic points by Ldet. The local set is
defined as the convex hull of the deterministic points

L := Conv [Ldet].

Since Ldet is a finite set, the local set L is a polytope.

B. Bell functions and exposed faces of the correlation sets

A Bell function is a real vector �B ∈ Rm2�2
and the value

of the function on a specific behavior �P is simply the inner
product �B · �P . For a given correlation set S = L,Q,NS we
denote the maximum value of the Bell function by

βS ( �B) := max
�P∈S

�B · �P .

Note that since all these sets are compact, the maximum is
always achieved. To simplify the notation, we will simply write
βS whenever the Bell function is clear from the context.

Bell functions are useful for studying the three correlation
sets, but they suffer from the problem of nonuniqueness; i.e.,
the same function can be written in multiple ways which
are not always easily recognized as equivalent (see, however,
Ref. [45]). To overcome this obstacle, instead of studying the
inequalities we study the (exposed) faces they give rise to. For a
correlation set S = L,Q,NS , every Bell function �B identifies
a face

FS ( �B) := { �P ∈ S : �B · �P = βS}.
All the sets considered here are compact, so the face is always
nonempty; i.e., it contains at least one point. Since the local set
L and the no-signaling set NS are polytopes, all their faces
are also guaranteed to be polytopes, while for the quantum set
Q this is not necessarily the case.

2A detailed treatment of this issue, which is of secondary importance
in the context of this work, can be found in Appendix B.

The dimension of the faceFS ( �B) is simply the dimension of
the affine subspace spanned by the points in FS ( �B). While the
dimensions of local and no-signaling faces are easy to compute
(we simply find which vertices saturate the maximal value and
then check how many of them are affinely independent), there
is no generic way of computing the dimension of a quantum
face. However, if the quantum value coincides with either the
local or the no-signaling value, an appropriate bound follows
directly from the set inclusion relation (1):

βQ( �B) = βL( �B) ⇒ dim(FQ( �B)) � dim(FL( �B)) (8)

and

βQ( �B) = βNS ( �B) ⇒ dim(FQ( �B)) � dim(FNS ( �B)). (9)

A flat boundary region is an exposed face which contains more
than a single point which is strictly smaller than the entire set.3

Focusing on faces, rather than Bell functions, reduces
the undesired ambiguity; the following example shows that
multiple Bell functions may give rise to the same face. Let �P
be a deterministic point and recall that for such a point all the
conditional probabilities are either zero or one. Consider a Bell
function �B whose coefficients satisfy

B(abxy)

{
>0 if P (ab|xy) = 1,

=0 otherwise. (10)

Every Bell function in this (continuous) family has a unique
maximizer, which is precisely the point �P (regardless of the
choice of the correlation set). This simple example illustrates
that (i) multiple Bell functions can have precisely coinciding
sets of maximizers (i.e., they give rise to the same face) and
(ii) all deterministic probability points are exposed in all three
sets L,Q, and NS (see Appendix A for the definition of an
exposed point).

Bell functions can be split into four (disjoint) classes by
comparing the maximal values over the three correlation sets:

(1) βL < βQ < βNS : all three values differ,
(2) βL = βQ < βNS : only local and quantum values

coincide,
(3) βL < βQ = βNS : only quantum and no-signaling

values coincide,
(4) βL = βQ = βNS : all three values coincide.
Whenever two of these values coincide, we can make

the classification finer by asking whether the resulting faces
coincide or not. In the list below, we fine-grain the four
Bell-value classes into nine face-comparison classes, using =
vs � to distinguish exact coincidence from strict containment.
Enumerating all possible cases leads to

(1) βL < βQ < βNS ,
(2a) βL = βQ < βNS and FL � FQ ,
(2b) βL = βQ < βNS and FL = FQ ,
(3a) βL < βQ = βNS and FQ � FNS ,
(*3b) βL < βQ = βNS and FQ = FNS ,
(4a) βL = βQ = βNS and FL � FQ � FNS ,
(4b) βL = βQ = βNS and FL = FQ � FNS ,

3One should take care not to confuse the face FS ( �B) with the
hyperplane �B · �P = βS : The face FS ( �B) is the intersection of S with
the hyperplane.
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(*4c) βL = βQ = βNS and FL � FQ = FNS ,
(4d) βL = βQ = βNS and FL = FQ = FNS .
It turns out that two (those marked with ∗) among these nine

cases are actually not realizable. Indeed, no nonlocal vertex
of the no-signaling polytope can be obtained by measuring
quantum systems [46], which places some restrictions on the
cases satisfying βQ = βNS . The face FNS is the convex hull
of some vertices of the no-signaling polytope. If all these
vertices are local, we must have FL = FNS , which puts us
in the class (4d). On the other hand, if there is at least one
nonlocal vertex, this vertex does not belong to the quantum set.
This immediately implies that FQ � FNS , which eliminates
classes (3b) and (4c). All the remaining classes exist and some
of them we discuss in detail, e.g., class (1) in Sec. III A, (2a) in
Sec. III B 1, (2b) in Sec. III B 2 (see the generic cases considered
therein), (4a) in Sec. G 2, and (4b) in Sec. III C 2. Class (3a)
does not appear in the (2-2-2) scenario (see Appendix D for a
proof), but it is easy to check that the magic square game [47] or
the (tripartite) Mermin inequality [8] belong precisely to that
class. Class (4d) is represented by the family of inequalities
defined in Eq. (10) (although the resulting face is just a single
point; a one-dimensional example of this kind is given in
Appendix G 1).

C. Self-testing of quantum systems

Some probability points in the quantum set have the
surprising property that there is essentially only one way of
realizing them in quantum mechanics, a phenomenon known as
self-testing. In this paper, we do not prove any new self-testing
results, but we provide explicit examples where the usual
self-testing statements cannot be made. Moreover, we prove a
relation between self-testing and extremality (see Appendix C
for details), which we use to deduce that certain points are
extremal in the quantum set.

III. FACES OF THE QUANTUM SET
IN THE (2-2-2) SCENARIO

In this paper, we focus predominantly on the simplest
nontrivial Bell scenario, i.e., the case of m = � = 2. It is well
known [48] that in this scenario the local set is fully described
by the positivity inequalities (3), no-signaling constraints (5),
and eight additional inequalities, which are all equivalent (up to
permutations of inputs and outputs) to the CHSH inequality [7].
The existence of a single type of (facet) Bell inequalities and
the fact that any no-signaling probability point �P ∈ NS can
violate at most one of these inequalities [49] means that we can
interpret the CHSH violation as a measure of distance from
the local set. More specifically, Bierhorst showed that the total
variation distance from the local set and the local content [50]
can be written as linear functions of the violation [51]. In
Appendix E, we show that the same property holds for various
notions of visibility.

The structure of the quantum set turns out to be significantly
more complex. Let us start by introducing convenient notation
for the (2-2-2) scenario. Correlations in the (2-2-2) scenario
are described by vectors �P ∈ R16, but due to the no-signaling
constraints these vectors span only an eight-dimensional sub-
space and it is convenient to use a representation which

takes advantage of this dimension reduction. Following the
convention a,b ∈ {0,1} we define the local marginals as

〈Ax〉 := P (a = 0|x) − P (a = 1|x),

〈By〉 := P (b = 0|y) − P (b = 1|y)

and the correlators as

〈AxBy〉 := P (a = b|xy) − P (a 	= b|xy).

The inverse relation is given by

P (ab|xy) = 1
4 [1 + (−1)a〈Ax〉

+ (−1)b〈By〉 + (−1)a+b〈AxBy〉]. (11)

While this transformation is valid for any no-signaling point,
the notation is inspired by quantum mechanics, since for a
quantum behavior the local marginals and correlators are sim-
ply expectation values [〈X〉 = tr(Xρ)] of the local observables

Ax = Ex
0 − Ex

1 ,

By = F
y

0 − F
y

1

and their products. The expectation values are conveniently
represented in a table

�P =
〈B0〉 〈B1〉

〈A0〉 〈A0B0〉 〈A0B1〉
〈A1〉 〈A1B0〉 〈A1B1〉

(12)

and it is natural to use the same representation when writing
down Bell functions. It is worth pointing out that the coordinate
transformation that takes us from the conditional probabilities
of events P (ab|xy) to the local marginals (〈Ax〉,〈By〉) and
correlators (〈AxBy〉) is a linear transformation, but it is not iso-
metric. In other words, the transformation does not change any
qualitative features of the set, e.g., whether a point is extremal
or exposed, but it might affect measures of distance or volume.
In order to make this transformation isometric, we would need
to define our coordinate system as (c1〈Ax〉,c1〈By〉,c2〈AxBy〉)
for suitably chosen constants c1,c2.

In the remainder of the section, we look at various quantum
faces in the (2-2-2) scenario ordered according to the classifi-
cation introduced in Sec. II B.

A. A quantum face with βL < βQ < βNS

Our first example is the CHSH Bell function [7], which
reads

�B1 :=
0 0

0 1 1
0 1 −1

, �B1 · �P �

⎧⎨
⎩

2 L
2
√

2 Q
4 NS

. (13)

This function is known to have a unique quantum maxi-
mizer [6,52]

�PCHSH :=
0 0

0 1√
2

1√
2

0 1√
2

− 1√
2

, (14)

which implies that �PCHSH is an exposed point of the quan-
tum set. In Fig. 2, we show �PCHSH in the two-dimensional
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− −

−

−

− + + +

+
+

−

FIG. 2. A two-dimensional slice in which the quantum set exhibits
no flat boundaries (first presented as Fig. 1 in Ref. [12]). Points on this
slice can also be conveniently parametrized by two different versions
of the CHSH Bell functions as in Fig. 3 of Ref. [21].

slice spanned by four variants of the Popescu-Rohrlich (PR)
box [6,38,39,46,53]

�PPR :=
0 0

0 1 1
0 1 −1

, �PPR, 2 :=
0 0

0 −1 −1
0 −1 1

,

�PPR, 3 :=
0 0

0 −1 1
0 1 1

, �PPR, 4 :=
0 0

0 1 −1
0 −1 −1

.

(15)

The central point of this plot corresponds to the uniformly
random distribution, which can be written as a uniform mixture
of the four PR boxes, i.e.,

�P0 :=
0 0

0 0 0
0 0 0

. (16)

B. Quantum faces with βL = βQ < βNS

In this section, we consider Bell functions satisfying βL =
βQ, which implies that the corresponding quantum faces will
contain some local points.

1. Quantum faces with FL � FQ containing the CHSH point

Consider the Bell function

�B2 :=
1−√

2 1
1−√

2
√

2
√

2
1

√
2 −√

2
, �B2 · �P �

⎧⎨
⎩

4 L
4 Q
4
√

2 NS
,

(17)

−

−

−

− ( + ) + +
+

+
−

FIG. 3. A slice containing �PCHSH, �P0, and �Pd,1

is singled out by the following six equations:
〈A0〉 = 〈A1〉 = 〈B0〉 = 〈B1〉, 〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉, and
〈A0〉 + 〈A1〉 + 〈B0〉 + 〈B1〉 = 2(〈A0B0〉 + 〈A1B1〉). The point �PL,1

is given by 〈Ax〉 = 〈By〉 = 〈AxBy〉 = −1/3. Apart from the flat
quantum face FQ( �B2) that connects �PCHSH and �Pd,1, our numerical
results suggest a few other flat regions on the boundary of (this slice
of) the quantum set.

where the local and no-signaling bounds have been computed
by enumerating the vertices of the polytopes, while the quan-
tum bound has been computed using the analytic technique
of Wolfe and Yelin [54]. The quantum bound is saturated by
�PCHSH but also by the deterministic point

�Pd,1 :=
1 1

1 1 1
1 1 1

. (18)

This implies that the resulting quantum face is at least one-
dimensional and we conjecture that this lower bound is actually
tight, i.e., that the quantum face is a line. Figure 3 shows this
quantum face in the slice containing �PCHSH, �P0, and �Pd,1 (the
same feature was presented in Fig. 3(c) of Ref. [36]).

The above quantum face is not the only flat face containing
�PCHSH. To see this, we swap the outcomes of all the measure-

ments: This results in flipping the horizontal axis of Fig. 3
while leaving the vertical axis unchanged. This relabelling
transforms the Bell function �B2 to

�B2∗ :=
√

2−1 −1√
2−1

√
2

√
2

−1
√

2 −√
2

, �B2∗ · �P �

⎧⎨
⎩

4 L
4 Q
4
√

2 NS
,

whose quantum value is achieved by �PCHSH and

�Pd,2 :=
−1 −1

−1 1 1
−1 1 1

. (19)
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FIG. 4. Projection illustrating the flat boundary identified by �B1.
While every point in a slice plot corresponds to precisely one behavior,
a point in a projection plot may simultaneously represent multiple
behaviors. In this projection, the behaviors �PCHSH and �Pd,1 are the
only behaviors that lie on the points (0,2

√
2) and (4 − 2

√
2,2),

respectively. We see that all three correlation sets are symmetric with
respect to the reflection about the x = 0 line. This symmetry arises
from the relabelling of the outcomes of all measurements, which flips
the marginals but leaves the correlators unchanged.

This immediately implies that a projection plot of Q using
the same set of axes must look different from the slice plot,
a difference which is clearly seen in Figs. 3 and 4. More
generally, we can apply a suitably chosen relabelling of the
inputs and/or outputs to obtain an equivalent face that connects
�PCHSH with any of the eight deterministic points which saturate

the local value of the CHSH inequality given in Eq. (13).
It is worth pointing out that the nonextremal probability

points lying on these quantum faces cannot be obtained by
performing measurements on two-qubit states. In other words,
only the �PCHSH and the corresponding local deterministic
point are quantumly achievable using local Hilbert spaces
of dimension 2—as can be verified using the technique of
Ref. [36], Appendix D. Aside from this example, there are
many more additional faces of the quantum set which contain
a deterministic point and an extremal nonlocal point. For a
systematic method of finding them, please refer to Appendix F.

2. Higher-dimensional quantum faces with FL � FQ

Interestingly, higher-dimensional quantum faces containing
nonlocal points can also be found in this simplest Bell scenario.
Consider, for example, the following two-parameter family of
Bell functions:

�B3 :=
−a 1

−a c c

1 c −(c + 1 − 2a)
,

�B3 · �P �

⎧⎨
⎩

2c+1 L
2c+1 Q
4c+1−2a NS

, (20)

where a ∈ [0,1] and c ∈ [a,cmax] with cmax being—for any
given value of a—the largest value of c for which the following
inequality holds:

(c − 2a + 1)[2a3 − 3a2 + (3a − 1)c2 − 5(a − 1)ac − c3]

� a2

4c2
[−2a2 + 3(a − 1)c + a + c2]2. (21)

The quantum bound of Eq. (20) is saturated by three determin-
istic points: �Pd,1 given in Eq. (18) and

�Pd,3 :=
−1 1

−1 1 −1
−1 1 −1

, �Pd,4 :=
−1 −1

−1 1 1
1 −1 −1

.

(22)

Note that �Pd,3 and �Pd,4 are related by simply swapping Alice
and Bob, i.e., transposing the matrix given in Eq. (22).

Interestingly, for generic pairs (a,c), the quantum inequality
is saturated exclusively by local points. On the other hand, when
we consider special pairs of (a,c) at the limit of the region
constrained by Eq. (21), we find that the quantum bound is
saturated by an additional extremal nonlocal point. Table I lists
several functions from this one-parameter family together with
some properties of the extremal nonlocal maximizers.

For nonmaximal values of c, we have FL = FQ, whereas
for maximal c the quantum face extends into an additional
dimension beyond the local subspace, i.e., FL � FQ. The
increase in the dimension can be easily seen by noting that
all three local points saturating Eq. (20) give the CHSH value
of 2, which is exceeded by the additional quantum point. As
we further increase a, we reach the values a = c = 1, which
corresponds to a linear combination of positivity facets.

C. Bell functions with βL = βQ = βNS

In Sec. II B, we have already seen a family of Bell functions
with βL = βQ = βNS for which the resulting faces are identi-
cal, FL = FQ = FNS . In this section, we present examples of
the remaining two classes.

1. A Bell function satisfying FL � FQ � FNS containing
an extremal but nonexposed point

Consider the Bell function

�B4 :=
0 0

0 0 0
0 0 −1

, �B4 · �P �

⎧⎨
⎩

1 L
1 Q
1 NS

.

We do not have an analytic characterization of the corre-
sponding quantum face, but we can show that it is not a
polytope. More specifically, we show that already in the slice
of unbiased marginals 〈A0〉 = 〈A1〉 = 〈B0〉 = 〈B1〉 = 0 the
quantum face has an infinite number of extremal points. The
analytic characterization of the quantum set in the correlator
space due to Tsirelson, Landau, and Masanes [10,25,55] states
that correlators 〈AxBy〉 belong to the quantum set if and only
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TABLE I. Each row corresponds to a Bell function from the
family defined in Eq. (20). The parameters a and c, chosen to
saturate Eq. (21), determine the quantum bound βQ of the function.
The quantum face identified by each function consists of (at least)
four extremal points: three deterministic points and one nonlocal
point. The remaining three columns contain information about the
nonlocal maximizer: the CHSH violation βCHSH, the entanglement
of the optimal two-qubit state λ (quantified by the square of the
larger Schmidt coefficient, e.g., λ = 1/2 corresponds to the max-
imally entangled state), and the optimal angle φ between the two
local observables (φ = 90◦ corresponds to maximally incompatible
observables). The optimal angle is always the same for both parties,
which reflects the symmetry of the Bell function. The final row
corresponds to a Bell function saturated exclusively by local points;
i.e., there is no nonlocal maximizer. It is interesting to examine the
trends in the properties of the nonlocal maximizer. The maximally
entangled state appears only for a =

√
17−3
4 ≈ 0.280776, with the

entanglement of the state dropping monotonically as a varies away
from that special value in either direction. The angle between the
observables decreases monotonically as a increases while maximal
incompatibility is observed for a = 1

3 (14
√

13 sin z − 23), where

z := 1
6 [π − 2 tan−1 (87

√
3/4591)]; i.e., a ≈ 0.586417. Finally, the

CHSH violation initially increases and then goes down, peaking at
βCHSH ≈ 2.810 for a ≈ 0.45.

a c βQ βCHSH λ φ

0.1 0.325 1.649 2.719 0.558 106.945◦

0.2 0.592 2.185 2.769 0.525 103.131◦

0.280776 0.781 2.562 2.792 0.5 100.358◦

0.5 1.193 3.386 2.808 0.564 93.091◦

0.586417 1.318 3.635 2.798 0.591 90◦

0.6 1.335 3.670 2.795 0.596 89.486◦

0.7 1.444 3.889 2.766 0.631 85.336◦

0.8 1.510 4.020 2.711 0.674 80.075◦

0.846074 1.519 4.038 2.671 0.699 76.924◦

0.9 1.502 4.004 2.599 0.737 72.036◦

0.99 1.272 3.543 2.249 0.878 50.291◦

1 1 3 n/a n/a n/a

if

1 +
∏
xy

〈AxBy〉 +
∏
xy

√
1 − 〈AxBy〉2 − 1

2

∑
xy

〈AxBy〉2 � 0,

(23)
where the sums and products go over x,y ∈ {0,1}.4
The quantum set in the correlator space is a pro-
jection of the (full) quantum set onto the coordinates
(〈A0B0〉,〈A0B1〉,〈A1B0〉,〈A1B1〉). However, since all such
correlations can be achieved with unbiased marginals [56], the
possible values of correlators in the slice of unbiased marginals
are described precisely by constraint (23). The quantum face
is characterized by 〈A1B1〉 = −1, which leads to a cubic
inequality

2〈A0B0〉〈A0B1〉〈A1B0〉 + 〈A0B0〉2

+〈A0B1〉2 + 〈A1B0〉2 � 1.

4This elegant and symmetric form is obtained by simply squaring
the inequality derived by Landau [25].

− −

−

−

+ + +

+
+

−
FIG. 5. A highly symmetric two-dimensional slice of the quantum

set. Thanks to the analytic characterization of the quantum set given
in Eq. (24), we can rigorously show that �PNE is a nonexposed point
of the quantum set.

Any point which saturates this inequality and additionally
satisfies

max{|〈A0B0〉|,|〈A0B1〉|,|〈A1B0〉|} < 1

is a self-test [57] and, hence, must be an extremal point of the
quantum set (see Appendix C for a proof). It is easy to verify
that there is an infinite number of such points and, therefore,
the quantum face corresponding to the Bell function �B4 must
have an infinite number of extremal points.

The strict inclusions FL � FQ � FNS are intuitively clear
and neatly presented in a particular slice. In Fig. 5, we present
a two-dimensional slice containing the PR box �PPR and two
local behaviors

�PL,2 =
0 0

0 1/3 1/3

0 1/3 −1
and �PL,3 =

0 0
0 1 1
0 1 1

.

This slice is singled out by unbiased marginals and three of the
correlators being equal 〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉. Points in
this slice are conveniently parametrized by 〈A1B1〉 and

α = 〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉.
The constraint given in Eq. (23) implies the following tight
upper bound on (−〈A1B1〉) as a function of α:

−〈A1B1〉 �
{

1 −1 � α < 1/2

3α − 4α3 1/2 � α � 1
. (24)

Let us consider the point at the boundary which corresponds
to α = 1/2, i.e.,

�PNE =
0 0

0 1/2 1/2

0 1/2 −1
. (25)
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This is precisely where the flat and curved parts of the boundary
meet and it is easy to check that the gradients on both sides are
equal, which implies that the point �PNE is not exposed in this
slice. Since an exposed point must remain exposed in every
slice, we conclude that �PNE is not exposed in the entire set.
However, we know that �PNE is an extremal point, because it is a
self-test [57]. We conjecture that any probability point which (i)
saturates the constraint (23) and (ii) has precisely one correlator
of unit modulus is of this type, i.e., extremal but not exposed.

It turns out that similar geometric features are exhibited
by the so-called Hardy point, i.e., the (unique) point that
maximally violates the Hardy paradox [35]. The Hardy point is
a self-test [58] and therefore extremal, but it is not exposed (see
Appendix H for a proof). This explains why previous attempts
to find a Bell function that fully captures the nonlocal nature of
the Hardy paradox failed. The authors of Ref. [59] proposed a
sequence of Bell functions, whose maximizer approaches the
Hardy point, but when one tries to take the limit, the coefficients
of the functions diverge. This is precisely the behavior one
would expect when dealing with an extremal but not exposed
point. A family of quantum faces that the Hardy point lies on
is discussed in Appendix G 2.

2. A quantum face with FL = FQ � FNS

Let us finish the discussion of the (2-2-2) scenario with
an example of a quantum face which completely coincides
with its local counterpart but is strictly contained within the
no-signaling face. Consider the Bell function

�B5 :=
0 0

0 1 1
0 0 0

, �B5 · �P �

⎧⎨
⎩

2 L
2 Q
2 NS

. (26)

We start by determining the quantum face FQ. The maximal
quantum value is achieved if and only if (iff) 〈A0B0〉 =
〈A0B1〉 = 1, which by constraint (23) implies that 〈A1B0〉 =
〈A1B1〉. It is, however, straightforward to verify that such
correlations are local (they cannot violate any variant of the
CHSH inequality) and thus FL = FQ. On the other hand, the
PR box also saturates the bound given in Eq. (26), thus showing
that FL = FQ � FNS .

IV. NONLOCAL FACES OF POSITIVE DIMENSION

Our numerical studies of the quantum set in the (2-2-2) sce-
nario suggest that every Bell function for which βQ > βL has
a unique maximizer in the quantum set. While we conjecture
that this is indeed true in the (2-2-2) scenario, it is easy to
see that it does not hold in general; e.g., if we take the CHSH
inequality and “embed” it in a Bell scenario with more inputs,
then the maximal violation does not carry any information
about the statistics corresponding to the additional inputs.
A more natural family of such functions was proposed by
Slofstra [60], but these require a large number of measurement
settings on each side. On the other hand, a simple example was
recently found in the tripartite (3-2-2) scenario by Ramanathan
and Mironowicz [61]. In this section, we give an example in
the bipartite scenario (2-3-2) and two additional examples in
the (3-2-2) scenario. What is particularly appealing about the
tripartite examples is that we were able to fully determine the
corresponding quantum faces.

A. The (2-3-2) scenario

Consider the correlation part of the I3322 Bell func-
tion [62,63]

�B6 · �P := 〈A0B0〉 + 〈A0B1〉 + 〈A0B2〉 + 〈A1B0〉
+ 〈A1B1〉 − 〈A1B2〉 + 〈A2B0〉 − 〈A2B1〉. (27)

The local and no-signaling values of this inequality have been
found by enumerating the vertices of the respective polytopes,
whereas the quantum value has been found using a semidefinite
program [64] (see Appendix I for details):

�B6 · �P �

⎧⎨
⎩

4 L
5 Q
8 NS

. (28)

Below we present a one-parameter family of quantum re-
alizations which saturate the quantum bound of this Bell
function. The shared state is |	−〉 = 1√

2
(|01〉 − |10〉) and the

observables are

A0 = 1

2

(
2 cos

π

6
σx + cos α σy + sin α σz

)
,

A1 = 1

2

(
2 cos

π

6
σx − cos α σy − sin α σz

)
,

A2 = σy,

B0 = − cos
π

6
σx − sin

π

6
σy,

B1 = − cos
π

6
σx + sin

π

6
σy,

B2 = − cos α σy − sin α σz,

where α ∈ [0,2π ] is a free parameter. It is clear that all the
marginals vanish, 〈Ax〉 = 〈By〉 = 0, while the correlators are
given by

〈A0B0〉 = 〈A1B1〉 = 3 + cos α

4
,

〈A0B1〉 = 〈A1B0〉 = 3 − cos α

4
,

〈A0B2〉 = 〈A2B0〉 = 1

2
,

〈A1B2〉 = 〈A2B1〉 = −1

2
,

〈A2B2〉 = cos α.

This family of probability points is simply a line whose
extremal points correspond to α = 0 and α = π . Moreover,
it is easy to check that the two extremal points are related by
swapping A0 with A1 and flipping the sign of B2 (since the
Bell function is symmetric we could alternatively swap B0 and
B1 and flip the sign of A2).

We do not know whether the quantum face corresponding
to �B6 is strictly larger than the line, but the existence of such
a one-dimensional region already has interesting implications
for self-testing. More concretely, it means that saturating the
quantum bound βQ = 5 does not imply the usual self-testing
statement, simply because the maximal value can be achieved
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by multiple inequivalent arrangements of observables.5 It is,
however, still possible that saturating the quantum bound
certifies the maximally entangled state of two qubits. If so, this
would be an example where the maximal violation certifies the
state but not the measurements.

B. The tripartite scenarios

Finally, we discuss two tripartite examples which demon-
strate that the geometry of the quantum set becomes even more
complex in the multipartite scenarios.

The quantum set for multiple parties has been extensively
studied, but mainly in the context of Bell inequalities. From
the study of multipartite self-testing, we know that certain
Bell functions have unique maximizers, e.g., the Bell function
proposed by Mermin [68] (and its generalization due to Mer-
min, Ardehali, Belinskii and Klyshko [67]), but also the Bell
functions constructed to self-test the W state [69]. However,
we conjecture that this behavior is not generic and present
two Bell functions in the tripartite scenario which give rise
to more complex quantum faces. In contrast to the bipartite
scenario discussed before, in these cases we can explicitly map
out the entire quantum face. The multiple inequivalent ways
of saturating the quantum bound immediately imply specific
limitations on the self-testing statements we can hope for.

In both examples, Alice, Bob, and Charlie perform binary
measurements. In the first example, Alice and Bob have two
measurements, whereas Charlie only has one. Consider the
Bell function

�B7 · �P := 〈A0B0C0〉 + 〈A0B1C0〉 + 〈A1B0C0〉 − 〈A1B1C0〉,
which first appeared as Eq. (15) in Ref. [26]. Note that this is
nothing else than the CHSH function between Alice and Bob
“modulated” by the outcome of Charlie, which immediately
implies that βL = 2,βQ = 2

√
2 and βNS = 4. The quantum

bound is saturated when Alice and Bob perform the optimal
CHSH strategy while Charlie deterministically outputs 0,
which leads to6

〈Ax〉 = 〈By〉 = 0, 〈C0〉 = 1,

〈AxBy〉 = 〈AxByC0〉 = (−1)xy/
√

2, (29)

〈AxC0〉 = 〈ByC0〉 = 0.

Alternatively, the quantum bound may be saturated if Alice
and Bob achieve the CHSH value of −2

√
2, while Charlie

5In most cases of self-testing, it is sufficient to allow for extra
degrees of freedom and local isometries (see Appendix C for details),
but sometimes one must also consider the transposition (complex
conjugation) equivalence [65,66]. The transposition equivalence is
automatically taken care of if one looks at commutation relations
between the local observables [67], which immediately implies that
the quantum realizations presented in the main text are inequivalent
even if we allow for this additional equivalence.

6It is well known that in a tripartite scenario with two outcomes per
site the probability point is uniquely determined by the local marginals
and the two- and three-body expectation values; see, e.g., Ref. [70].

deterministically outputs 1, which leads to

〈Ax〉 = 〈By〉 = 0, 〈C0〉 = −1,

−〈AxBy〉 = 〈AxByC0〉 = (−1)xy/
√

2, (30)

〈AxC0〉 = 〈ByC0〉 = 0.

Since Charlie always performs the same measurement, for the
purpose of computing the resulting statistics we can assume
that he is only classically correlated with Alice and Bob.
Conditioned on a particular output of Charlie, the statistics
on Alice and Bob are unique, as they must achieve the CHSH
value of +2

√
2 or −2

√
2. This implies that we always end

up with a convex combinations of statistics given in Eqs. (29)
and (30), i.e., that the resulting quantum face is simply a line.

Any point on this line can be realized using a three-qubit
state shared among Alice, Bob, and Charlie. In fact, it suffices
to look at a single arrangement of qubit observables

A0 = σx, A1 = σz,

B0 = (σx + σz)/
√

2, B1 = (σx − σz)/
√

2,

C0 = σz.

(31)

The largest eigenvalue of the resulting Bell operator equals λ =
2
√

2 and the corresponding eigenspace is two-dimensional
and spanned by vectors {|�+〉AB |0〉C,|	−〉AB |1〉C}, where
|�+〉 = (|00〉 + |11〉)/√2 and |	−〉 = (|01〉 − |10〉)/√2.
Therefore, the quantum bound is saturated by any state of the
form

|η〉ABC := cos θ |�+〉AB |0〉C + sin θ |	−〉AB |1〉C
for θ ∈ [0,π/2]. In fact, since Charlie always measures in the
computational basis, the same statistics could be obtained from
the mixed state7

ρABC = cos2 θ |�+〉〈�+|AB ⊗ |0〉〈0|C
+ sin2 θ |	−〉〈	−|AB ⊗ |1〉〈1|C,

which clearly results in a convex combination of the two
extremal points.

It is instructive to consider what kind of self-testing state-
ments we can hope for in this case. Grouping Bob and Charlie
brings us back to the CHSH scenario (in the sense that Bob
and Charlie together have only two distinct measurement
settings), so there must be a maximally entangled two-qubit
state in the bipartition Alice vs Bob and Charlie, but we
do not know exactly how the entanglement is split between
Bob and Charlie. At the extremal points given by Eqs. (29)
and (30), the reduced statistics on Alice and Bob saturate the
quantum bound of some CHSH function, which ensures that
the relevant entanglement is shared between Alice and Bob
only. In the interior of the line, however, we cannot make
such precise statements. In particular, while all the interior
points can be realized using genuinely tripartite entanglement,
such entanglement can never be certified in this setup, simply
because the entire line can be written as a convex combination

7The same mixed state was recently used by Krisnanda et al. to
demonstrate that quantum systems can become entangled even if they
interact only through a mediator which remains classical (diagonal in
a fixed basis) at all times [71].

022104-9



KOON TONG GOH et al. PHYSICAL REVIEW A 97, 022104 (2018)

of the extremal points (which can be achieved using bipartite
entanglement between Alice and Bob).

In the second example, there are two measurements on each
site; i.e., we are in the (3-2-2) scenario. Consider the Bell
function

�B8 · �P := 〈A0B0C0〉 + 〈A0B1C1〉 + 〈A1B0C0〉 − 〈A1B1C1〉
for which βL = 2,βQ = 2

√
2 and βNS = 4. This Bell function

was found by Werner and Wolf while characterizing the facets
of the correlation polytope in the (3-2-2) scenario [26], but as
shown in Ref. [72] it is also a facet Bell inequality of the full
local polytope. We show in Appendix J that the corresponding
quantum face is the convex hull of eight discrete points and
a one-parameter family of quantum points arising from the
tripartite Greenberger-Horne-Zeilinger (GHZ) state [73].

The eight points, denoted by { �Pj }8
j=1, are achieved when

Alice saturates some variant of the CHSH function with
either Bob or Charlie, while the remaining party adopts a
deterministic strategy. The one-parameter family corresponds
to Bob and Charlie nontrivially “sharing” the maximal CHSH
violation.

The first two points correspond to Charlie always producing
the same outcome regardless of his input. The resulting
statistics are analogous to those in Eqs. (29) and (30):

〈Ax〉 = 〈By〉 = 0, 〈Cz〉 = 1,

�P1 : 〈AxBy〉 = 〈AxByCz〉 = (−1)xy/
√

2,

〈AxCz〉 = 〈ByCz〉 = 0,

and

〈Ax〉 = 〈By〉 = 0, 〈Cz〉 = −1,

�P2 : −〈AxBy〉 = 〈AxByCz〉 = (−1)xy/
√

2,

〈AxCz〉 = 〈ByCz〉 = 0.

Points �P3 and �P4 arise if Charlie’s outcome depends on his
input, which implies that Alice and Bob must saturate another
variant of the CHSH inequality. The resulting statistics are

〈Ax〉 = 〈By〉 = 0,

〈C0〉 = 1, 〈C1〉 = −1,

�P3 : 〈AxBy〉 = (−1)(x+1)y/
√

2,

〈AxByCz〉 = (−1)(x+1)y+z/
√

2,

〈AxCz〉 = 〈ByCz〉 = 0,

and

〈Ax〉 = 〈By〉 = 0,

〈C0〉 = −1, 〈C1〉 = 1,

�P4 : 〈AxBy〉 = (−1)(x+1)y+1/
√

2,

〈AxByCz〉 = (−1)(x+1)y+z/
√

2,

〈AxCz〉 = 〈ByCz〉 = 0.

Points {Pj }8
j=5 are constructed from {Pj }4

j=1 by exchanging
the roles of Bob and Charlie.

The one-parameter family of facial points has vanishing
one- and two-body expectation values

〈Ax〉 = 〈By〉 = 〈Cz〉 = 〈AxBy〉 = 〈AxCz〉 = 〈ByCz〉 = 0,

while the three-body correlations are given by

〈A0B0C0〉 = 〈A0B1C1〉 = 1√
2
,

〈A0B0C1〉 = 〈A0B1C0〉 = cos α,

〈A1B0C0〉 = −〈A1B1C1〉 = 1√
2
,

〈A1B0C1〉 = −〈A1B1C0〉 = sin α

(32)

for α ∈ [0,2π ].
This example is important because we can explicitly com-

pute the corresponding quantum face and we see that it is a
highly nontrivial object. We conjecture that in multipartite
scenarios such high-dimensional and nonpolytopic quantum
faces are a common phenomenon.

V. CONCLUSIONS AND OPEN QUESTIONS

In this work, we have studied the geometry of the quantum
set. In particular, we have identified several flat regions lying on
the boundary of the quantum set and we have found extremal
points which are not exposed. We have also introduced a
classification of Bell functions in terms of the facial structure
they give rise to and provided an explicit example for each
existing class. Finally, we have presented a simple example of
a bipartite Bell function whose quantum and classical values
differ for which the quantum maximizer is not unique.

Despite the progress we have made on understanding the
geometry of the quantum set in the (2-2-2) scenario, several
questions remain open. For instance, having found a one-
dimensional flat boundary region containing the CHSH point,
one could ask whether it is possible to find a higher dimensional
region of that kind or, more generally, what is the highest
dimension of a flat region containing the CHSH point. Let us
also put forward the following conjecture about the uniqueness
of the maximizer: From our numerics it seems that all Bell
functions in the (2-2-2) scenario have at most one extremal
nonlocal maximizer. Can one find an analytical proof of this
statement?

Another interesting task would be to study the extremal
points of the quantum set in the (2-2-2) scenario. We know
that all of them can be achieved by projective measurements
on a two-qubit state, but we know that the latter is a strict
superset of the former. This is particularly interesting from the
self-testing point of view: We know that if the marginals are
uniform, then all the extremal nonlocal points are self-tests. Is
this also true for correlation points with arbitrary marginals?
In other words, are all extremal nonlocal points of the quantum
set in the (2-2-2) scenario self-tests?

Another natural question arising from our results concerns
the “generic” geometry of the quantum set. In this work, we
provide several examples of unexpected geometric features
of the quantum set, but in order to see them one has to go
beyond the standard, well-studied Bell functions. Therefore,
the question is whether such features are indeed “unusual”
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or our intuition has simply been skewed by looking only at
“regular” Bell functions for which these behaviors do not
appear. We suspect that such features are indeed unusual, but
we currently have no rigorous evidence to support this claim.
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APPENDIX A: CONVEX SETS

In this appendix, we introduce standard notions and defini-
tions used in convex geometry. For more details, we refer the
reader to Chapters 1 and 8 of Ref. [74].

Let A be a convex subset of Rd and, moreover, suppose
that A is compact (i.e., closed and bounded). For an arbitrary
vector �g ∈ Rd let

c(�g) := max
�u∈A

�g · �u

and note that the hyperplane {�u ∈ Rd : �u · �g = c(�g)} is a
supporting hyperplane; i.e., it has a nonempty intersection with
A and it divides the space into two half-spaces such that A is
fully contained in one of them. The vector �g represents a linear
functional acting on Rd . It is well known that every convex set
can be described as an intersection of half-spaces (possibly
infinite). Supporting hyperplanes help us to understand the
boundary of the convex set. For an arbitrary functional �g, the
set of points which maximize �g

F(�g) := {�u ∈ A : �g · �u = c(�g)}
is called an exposed face of A and since A is compact, the
face is always nonempty. An exposed face is called proper if
F(�g) � A.

A point �u ∈ A is called a boundary point if it belongs to
some proper exposed face and we denote the set of boundary
points by Abnd. The set of interior points of A is simply the
complement of Abnd (in A).

Some boundary points have the property that they cannot be
written as a nontrivial convex combination of other points in
the set. Such points are called extremal and we denote the set of
extremal points byAext. The Krein-Milman theorem states that
any convex compact set (in a finite-dimensional vector space)
is equal to the convex hull of its extremal points

A = Conv(Aext).

Therefore, when maximizing a linear functional over the set,
it suffices to perform the optimization over its extremal points.
In other words, for all �g we have

max
�g∈A

�g · �u = max
�g∈Aext

�g · �u.

Knowing the extremal points of A is also sufficient to deter-
mine its faces. Since a face is a convex compact set, it is equal to
the convex hull of its extremal points and the extremal points
of the face must also be extremal points of A. For exposed
faces, we have

F(�g) = Conv({�u ∈ Aext : �g · �u = c(�g)}).
Among extremal points, there are points which can be

identified as unique maximizers of some linear functional. We
say that �u is exposed if there exists a linear functional �g such
that

F(�g) = {�u}
and we denote the set of exposed points by Aexp. From the
definitions alone, we immediately establish the inclusions

Aexp ⊆ Aext ⊆ Abnd ⊆ A

and it is well known that all of them are in general strict.
However, it is worth pointing out that by Straszewicz’s theorem
in a finite-dimensional vector space the set of exposed points
is dense in the set of extremal points (Ref. [75], Theorem 3).
In other words, extremal but nonexposed points should be
regarded as exceptional. For a polytope, the set of extremal
and exposed points coincide, as they are simply the vertices of
the polytope.

APPENDIX B: PRECISE DEFINITION
OF THE QUANTUM SET

Here we give a precise definition of the quantum set using
the notions introduced in Sec. II A 2 (quantum state and local
quantum measurements). We also show why the description
becomes significantly simpler in any (n-2-2) scenario.

Let Qd be the set of all probability points which can be
realized using systems of local dimension d. Since both the set
of states and the set of measurements of fixed (local) dimension
are compact and the trace is a continuous map, all these sets
are closed; i.e., for all d ∈ N we have

Clos(Qd ) = Qd .
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We then define the set Qfinite as the infinite union

Qfinite :=
⋃
d∈N

Qd

and the quantum set Q as the closure

Q := Clos(Qfinite).

While Qd is not necessarily convex, the union Qfinite is and so
is the quantum set Q. Since Q is bounded (all the components
of the probability vector must belong to the interval [0,1]) and
closed (by definition), it is a compact set.

While in general we might have to consider quantum sys-
tems of arbitrary large dimensions, Jordan’s lemma simplifies
the problem in the (n-2-2) scenario. Jordan’s lemma states that
any two (Hermitian) projectors P and Q can be simultaneously
block diagonalized such that the blocks are of size at most
2 × 2 [27]. This implies that in any scenario with two binary
measurements on each site for any d ∈ N we have

Qd ⊆ Conv(Q2),

which immediately implies

Qfinite ⊆ Conv(Q2).

If we start with the inclusion relation

Q2 ⊆ Qfinite ⊆ Conv(Q2)

and take convex hulls recalling that Conv(Qfinite) = Qfinite, we
arrive at

Qfinite = Conv(Q2).

Since Q2 is closed and the convex hull of a closed set is still
closed, we finally obtain

Q = Conv(Q2).

Let us mention that this observation (for the special case of
n = 2) was already made by Tsirelson in 1980 [56].

APPENDIX C: SELF-TESTING OF QUANTUM SYSTEMS

In this appendix, we give a formal definition of self-testing
and prove a relation between self-testing and extremality.

Let �P ∈ Qfinite be a quantum probability point. A quantum
realization of �P consists of Hilbert spaces HA and HB , a state
ρAB acting on HA ⊗ HB and local measurements {Ex

a } and
{Fy

b } acting on HA and HB , respectively, such that

P (ab|xy) = tr
[(

Ex
a ⊗ F

y

b

)
ρAB

]
for all a,b,x,y. We denote this quantum realization by
(HA,HB,ρAB,{Ex

a },{Fy

b }).
It turns out that for certain quantum probability points all

quantum realizations are closely related. This is conveniently
formulated by finding a single realization from which all other
realizations can be generated and we will call such a realization
canonical. In the standard formulation of self-testing, one can
never certify that the state is mixed or that the measurements
are nonprojective (every point in the quantum set can be
obtained by performing projective measurements on a pure
state). Therefore, the canonical realization always consists of
projective measurements acting on a pure state. Moreover,
we embed it in local Hilbert spaces whose dimension is

equal to the rank of the reduced state, which ensures that
the reduced density matrices are full rank. We denote the
canonical realization by (HA′ ,HB ′ ,	A′B ′ ,{P x

a },{Qy

b}). We use
the standard definition of self-testing (see, e.g., Ref. [52]), but
we formulate it at the level of density matrices.

Definition C.1. A quantum probability point �P ∈
Qfinite self-tests the canonical quantum realization
(HA′ ,HB ′ ,	A′B ′ ,{P x

a },{Qy

b}) if for every realization of
�P , denoted by (HA,HB,ρAB,{Ex

a },{Fy

b }), we can find
(1) Hilbert spaces HA′′ and HB ′′ ,
(2) local isometries

VA : HA → HA′ ⊗ HA′′ ,

VB : HB → HB ′ ⊗ HB ′′ ,

(3) an auxiliary quantum state σA′′B ′′ acting on HA′′ ⊗ HB ′′

such that for V := VA ⊗ VB we have

V
[(

Ex
a ⊗ F

y

b

)
ρAB

]
V † = [(

P x
a ⊗ Q

y

b

)
	A′B ′

] ⊗ σA′′B ′′ (C1)

for all a,b,x,y.
This equality ensures that applying the real measurement

operators to the real state is equivalent to applying the ideal
measurements to the ideal state. Moreover, summing over a

and b (for any fixed x and y) immediately gives

VρABV † = 	A′B ′ ⊗ σA′′B ′′ , (C2)

which means that by applying local isometries one can find the
ideal state 	A′B ′ inside the real state ρAB .

Let us start with the following simple observation.
Observation C.1. Let R0

GH ,R1
GH be positive semidefinite

operators acting on HG ⊗ HH such that

R0
GH + R1

GH = SG ⊗ TH , (C3)

where SG and TH are positive semidefinite operators acting on
HG and HH , respectively. If rank(SG) = 1, then the operators
R0

GH and R1
GH must be of the form

R
j

GH = SG ⊗ T
j

H

for some positive semidefinite T
j

H acting on HH .
Proof. If tr(TH ) = 0, we must have TH = 0, which immedi-

ately implies R
j

GH = 0; i.e., we can set T
j

H = 0. If tr(TH ) > 0,
tracing out H in Eq. (C3) implies that R

j

G = αjSG for some
αj � 0. It is easy to check that a bipartite positive semidefinite
operator whose marginal is proportional to a rank-1 projector
must be a product operator. �

Now, we are ready to state and prove the main result of this
appendix.

Proposition C.1. If a quantum probability point
�P ∈ Qfinite self-tests the canonical realization

(HA′ ,HB ′ ,	A′B ′ ,{P x
a },{Qy

b}), then it must be an extremal
point of Qfinite.

Proof. We show that �P cannot be written as a nontrivial
convex combination of points in Qfinite. More specifically, we
show that if �P is a self-test and can be written as

�P = q0 �P0 + q1 �P1 (C4)

for q0,q1 ∈ (0,1),q0 + q1 = 1 and �P0, �P1 ∈ Qfinite, then we
must necessarily have �P0 = �P1 = �P .
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Since �Pj ∈ Qfinite, it has a finite-dimensional realization on
HAj

and HBj
given by
(
HAj

,HBj
,ρ

j

Aj Bj
,
{
Ex,j

a

}
,
{
F

y,j

b

})
and we choose a realization in which the reduced states
are full rank, i.e., rank(ρAj

) = dim(HAj
) and rank(ρBj

) =
dim(HBj

). Clearly, the convex combination given in Eq. (C4)
can be realized onHA := HA0 ⊕ HA1 andHB := HB0 ⊕ HB1 .
Writing out HA ⊗ HB as a direct sum gives

HA ⊗ HB = (HA0 ⊕ HA1 ) ⊗ (HB0 ⊕ HB1 )

= HA0B0 ⊕ HA0B1 ⊕ HA1B0 ⊕ HA1B1 .

We embed ρ0
A0B0

and ρ1
A1B1

as

ρ0
AB := ρ0

A0B0
⊕ 0A0B1 ⊕ 0A1B0 ⊕ 0A1B1 ,

ρ1
AB := 0A0B0 ⊕ 0A0B1 ⊕ 0A1B0 ⊕ ρ1

A1B1

and the overall state is given by

ρAB := q0ρ
0
AB + q1ρ

1
AB.

The measurement operators are given by

Ex
a := (

Ex,0
a

)
A0

⊕ (
Ex,1

a

)
A1

,

F
y

b := (
F

y,0
b

)
B0

⊕ (
F

y,1
b

)
B1

.

Since (HA,HB,ρAB,{Ex
a },{Fy

b }) is a quantum realiza-
tion of �P and �P self-tests the canonical realization
(HA′ ,HB ′ ,	A′B ′ ,{P x

a },{Qy

b}), there exist Hilbert spaces
HA′′ ,HB ′′ , local isometries

VA : HA → HA′ ⊗ HA′′ ,

VB : HB → HB ′ ⊗ HB ′′ ,

and an auxiliary state σA′′B ′′ such that

VρABV † = 	A′B ′ ⊗ σA′′B ′′ ,

where V = VA ⊗ VB is the combined isometry. If we write out
the sum

q0Vρ0
ABV † + q1Vρ1

ABV † = 	A′B ′ ⊗ σA′′B ′′ , (C5)

we obtain an equality to which Observation C.1 can be applied.
To see that all the conditions are satisfied, we identify

HA′ ⊗ HB ′ ↔ HG,

HA′′ ⊗ HB ′′ ↔ HH ,

qjVρ
j

ABV † ↔ R
j

GH ,

	A′B ′ ↔ SG,

σA′′B ′′ ↔ TH ,

which allows us to conclude that

qjVρ
j

ABV † = 	A′B ′ ⊗ qjσ
j

A′′B ′′ (C6)

for some normalized states σ
j

A′′B ′′ . Tracing out Bob’s part of
the state and dividing through by qj (recall that qj > 0) leads
to

VAρ
j

AV
†
A = 	A′ ⊗ σ

j

A′′ . (C7)

Since the quantum realizations of �P1 and �P2 and the canonical
realization are locally full rank, the projectors on the supports
of the reduced states are given by

ρ0
A → 1A0 ⊕ 0A1 ,

ρ1
A → 0A0 ⊕ 1A1 ,

	A′ → 1A′ .

Equation (C7) implies that the supports of both sides coincide,
i.e.,

�0
A := VA

(
1A0 ⊕ 0A1

)
V

†
A = 1A′ ⊗ �0

A′′ ,

�1
A := VA

(
0A0 ⊕ 1A1

)
V

†
A = 1A′ ⊗ �1

A′′ ,

where �
j

A′′ is the projector on the support of σ
j

A′′ . Similarly, for
Bob we obtain

�0
B := VB

(
1B0 ⊕ 0B1

)
V

†
B = 1B ′ ⊗ �0

B ′′ ,

�1
B := VB

(
0B0 ⊕ 1B1

)
V

†
B = 1B ′ ⊗ �1

B ′′ .

By applying the projector �
j

A ⊗ �
j

B to both sides of Eq. (C5)
and taking the trace, we obtain

qj = tr
[(

�
j

A′′ ⊗ �
j

B ′′
)
σA′′B ′′

]
.

The self-testing condition (C1) states that

V
[(

Ex
a ⊗ F

y

b

)
ρAB

]
V † = [(

P x
a ⊗ Q

y

b

)
	A′B ′

] ⊗ σA′′B ′′ .

Applying the projector �
j

A ⊗ �
j

B to both sides and tracing out
gives

qj tr
[(

Ex
a ⊗ F

y

b

)
ρ

j

AB

]
= tr

[(
P x

a ⊗ Q
y

b

)
	A′B ′

]
tr

[(
�

j

A′′ ⊗ �
j

B ′′
)
σA′′B ′′

]
= qj tr

[(
P x

a ⊗ Q
y

b

)
	A′B ′

]
,

which immediately implies that �Pj = �P . �
Since in the (2-2-2) scenario we haveQ = Qfinite, this result

is sufficient for our purposes. To prove a stronger result in
which extremality in Qfinite is replaced by extremality in Q,
one needs a slightly stronger promise, namely that the self-
testing property is robust (i.e., that all probability points lying
sufficiently close to �P “approximately” self-test the canonical
realization). We leave this more general statement as an open
problem for future work.

APPENDIX D: CLASS (3A) DOES NOT APPEAR
IN THE (2-2-2) SCENARIO

We show here that in the (2-2-2) scenario the equality βQ =
βNS implies βL = βQ = βNS . Note that a similar result has
been proven in a more general scenario (binary outcomes but
an arbitrary number of settings), but for a special family of Bell
functions (see Theorem 5.12 of Ref. [47]).

For an arbitrary Bell function, consider the vertices of the
no-signaling polytope which saturate the no-signaling bound
βNS . If any one of them is local, we immediately have βL =
βNS , so we can without loss of generality assume that they
are all nonlocal. If the bound is saturated by a single nonlocal
vertex, then the quantum bound must be strictly smaller βQ <

βNS , because the PR box lies outside of the quantum set. On
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the other hand, if the bound is saturated by two (or more)
nonlocal vertices, we must have βL = βNS . This is because
in the (2-2-2) scenario the convex hull of any two nonlocal
vertices of the no-signaling set always contains a local point
(in fact, it suffices to mix the two vertices with equal weights).

APPENDIX E: THE CHSH VIOLATION VS
DISTANCE MEASURES

In this appendix, we show that in the CHSH scenario various
visibilities are simple functions of the CHSH violation β. It is
known that any no-signaling point in the CHSH scenario can
violate at most one CHSH inequality (see the last paragraph
of the supplementary material of Ref. [49]), so the violation is
well defined.

Since the local set is invariant under the relabelling of inputs
and outputs, we can without loss of generality assume that it
is the standard CHSH inequality, cf. Eq. (13), that is violated.
Our results rely crucially on the following result proved by
Bierhorst [51].

Proposition E.1. Let �P ∈ NS be a no-signaling point
which violates the CHSH inequality, i.e., β > 2. Then �P can
be written as

�P = v0 �PPR +
8∑

j=1

vj
�Pj , (E1)

where vj � 0,
∑

j vj = 1, and �Pj correspond to the eight de-
terministic points which give the CHSH value of 2. Moreover,
v0 = (β − 2)/2.

For a no-signaling behavior, we define the visibility against
noise coming from the set S as

vS ( �P ) := inf{λ ∈ [0,1] : (1 − λ) �P + λ �Pnoise ∈ L},
where �Pnoise ∈ S . The three cases of interest are (i) visibility
against white noise S = { �P0}, (ii) visibility against local noise
S = L, and (iii) visibility against no-signaling noise S = NS
and the results are

v{ �P0}( �P ) = β − 2

β
,

vL( �P ) = β − 2

β + 2
,

vNS ( �P ) = β − 2

β + 4
.

(E2)

These relations follow almost immediately from Proposi-
tion E.1. Writing �P in the convex decomposition (E1) and
adding noise leads to

(1 − λ)v0 �PPR + (1 − λ)
8∑

j=1

vj
�Pj + λ �Pnoise.

Requiring that the CHSH value of the resulting point does not
exceed the classical value of 2 is equivalent to

λ(β − ζ ) � β − 2,

where ζ is the CHSH value of �Pnoise. As the right-hand side is
strictly positive, we must have β − ζ > 0, which allows us to

rewrite this lower bound as

λ � β − 2

β − ζ
.

For white, local, and no-signaling noise, we have ζ = 0,
ζ � −2 and ζ � −4, respectively, thereby showing that the
right-hand side of Eq. (E2) is a legitimate lower bound on
the visibilities. To see that this amount of noise is also
sufficient, choose �Pnoise = �P0, �Pnoise = ( �P0 + �PPR, 2)/2, and
�Pnoise = �PPR, 2, respectively.

The fact that the CHSH violation can be interpreted as
a measure of distance from the local set might be useful in
guiding us toward finding new robust self-tests. Suppose we
would like to find a Bell inequality which self-tests a specific
partially entangled state of two-qubits in the (2-2-2) scenario.
Intuitively, we would like the probability point saturating
this inequality to lie as far as possible from the local set.
This reduces the problem to finding the maximal CHSH
violation achievable using the fixed two-qubit state. It is worth
pointing out that the self-tests for partially entangled two-qubit
states based on the tilted CHSH inequality [76,77] satisfy this
property.

APPENDIX F: IDENTIFYING AND CERTIFYING FLAT
BOUNDARY REGIONS

To the best of our knowledge, the only rigorous method to
certify the presence of a flat region on the boundary of the
quantum set is to find a Bell function whose quantum value
is saturated by distinct probability points. Since finding the
quantum value of a Bell function is a well-studied problem, let
us focus solely on the problem of identifying the relevant Bell
function.

We are not aware of any systematic method of finding flat
boundary regions of the quantum set. Instead, one has to start
with some guesses and in our case they are predominantly of
two types:

(i) Two Bell functions: we are given two Bell functions and
we suspect that their maximal quantum values saturate some
linear tradeoff.

(ii) A set of points: we are given a set of points and we
suspect that they all lie on the same quantum face.

In the next two sections, we discuss how to handle cases (i)
and (ii), respectively.

1. Making a projection plot

We are given two Bell functions �B1 and �B2 and we
suspect that they saturate a linear tradeoff. To confirm this,
we should produce a projection plot (similar to Fig. 4) and
check for flat boundary regions. There is no exact method of
performing such a projection, but we can compute an outer
approximation using the Navascués-Pironio-Acín hierarchy
and an inner approximation by providing explicit quantum
realizations. Finding good inner approximations is particularly
feasible in any (n-2-2) scenario, since we know that all extremal
points of the quantum set can be achieved by performing
projective measurements on an n-qubit state. We use the fact
that projecting a convex compact set is equivalent to projecting
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its extremal points and then taking the convex hull.8 For
instance, in the (2-2-2) scenario, we can fix the Schmidt basis
to be the computational basis, i.e., assume that the bipartite
state is of the form |ψ〉 = cos θ |00〉 + sin θ |11〉 for some
θ ∈ [0,π/4]. A rank-1 projective observable corresponds to
a unit vector on the Bloch sphere, which is specified by two
independent parameters. For two observables on each side
this, gives nine parameters in total. Therefore, to generate
the inner approximation of the projected quantum set, we
must solve a series of nonlinear optimization problems in
nine real variables. Such optimization problems can be solved
numerically using standard numerical packages, but we are
never guaranteed to converge to the global optimum. However,
we have found that repeating the optimization with random
starting points usually yields the correct answer.

Having identified a projection which contains a flat line
on the boundary, we should look at its extremal points and
find probability distributions that project down to these points.
These need not be unique, but it suffices to find one for each of
the endpoints. It is easy to see that a line connecting these two
probability distributions lies on the boundary of the quantum
set.

2. Finding the Bell function

Let { �Pj }j be the points which we suspect belong to the same
quantum face. We are looking for a Bell function �B whose
quantum value is saturated by the points { �Pj }j ; i.e., we require
that for all j

�B · �Pj = 1 (F1)

and βQ( �B) = 1.
The most primitive approach is to generate candidate

Bell functions satisfying constraints (F1) and compute their
quantum value. The tool used for computing the quantum
value should ideally yield an analytic expression, as one can
never distinguish between flat and almost-flat regions using
numerical values. If all probability points exhibit a certain
symmetry, we might also impose that symmetry on �B.

This method can be refined by looking at the neighborhood
of the given probability points. Given a quantum realization
of �P1 it is easy to find some neighboring quantum points
(e.g., applying rotations to the observables and/or the state).
In the limit of infinitesimal change, this will give us a family
of tangent vectors Vk such that �P1 + δVk ∈ Q for sufficiently
small δ. Clearly, we must have

�B · �Vk = 0, (F2)

which can significantly reduce the search space.

APPENDIX G: ADDITIONAL EXAMPLES
OF QUANTUM FACES

1. A Bell function with FL = FQ = FNS

We give here another example of a Bell function whose
local, quantum, and no-signaling faces coincide, but in contrast

8Note that this is not true for slices: It is in general not sufficient to
take the convex hull of the extremal points in the slice.

to the examples given in Eq. (10) the maximizer is not unique.
Consider the Bell function

�B7 :=
0 0

0 1 1
0 1 1

, �B7 · �P �

⎧⎨
⎩

4 L
4 Q
4 NS

.

It is straightforward to verify that the only extremal no-
signaling points which saturate this inequality are �Pd,1 and
�Pd,2 [specified in Eqs. (18) and (19), respectively], i.e., that

the resulting face is a line. Since both of these points are local,
we immediately deduce that FL = FQ = FNS .

2. Quantum faces containing the Hardy point

Let us start by presenting a quantum face of maximal
dimension. Writing the non-negativity of P (11|11) as a Bell
inequality gives

�B8 :=
0 1

0 0 0
1 0 −1

, �B8 · �P �

⎧⎨
⎩

1 L
1 Q
1 NS

. (G1)

It is easy to verify that the corresponding face of the local
set is a (positivity) facet, i.e., a face of maximal dimension.
This immediately implies [by inequalities (8) and (9)] that the
resulting quantum and no-signaling faces are also of maximal
dimension.

While the three faces have the same dimension, they are all
different; i.e., the inclusions FL � FQ � FNS are strict. To
see this, observe that the function is saturated by the Hardy
point

�PHardy :=
5 − 2

√
5

√
5 − 2

5 − 2
√

5 6
√

5 − 13 3
√

5 − 6√
5 − 2 3

√
5 − 6 2

√
5 − 5

, (G2)

which is quantum (but nonlocal) and also by the (nonquantum)
PR box �PPR.

As shown in Ref. [58], the Hardy point �PHardy is a self-test
and, hence, an extremal point of the quantum set. However, as
seen in Fig. 6 and proved in Appendix H, it is not exposed.

It is easy to check that �PHardy saturates two other positivity
facets: P (01|10) � 0 and P (10|01) � 0. Thus, �PHardy must
also saturate

a1P (10|01) + a2P (01|10) + a3P (11|11) � 0 (G3)

for arbitrary a1,a2,a3 � 0, which can be written in terms of
expectation values as

�B9 :=
a2 a3 − a1

a1 0 a1

a3 − a2 a2 −a3

,

�B9 · �P �

⎧⎨
⎩

a1 + a2 + a3 L
a1 + a2 + a3 Q
a1 + a2 + a3 NS

.

For a1,a2,a3 > 0, the Bell function �B9 is saturated only by
points which simultaneously saturate three positivity facets,
corresponding to the three terms in Eq. (G3). Each of the
faces identified by Eq. (G3) is thus at most five-dimensional,
corresponding to the intersection of three seven-dimensional
(positivity) faces.
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FIG. 6. A slice of the quantum set containing the maximally
mixed point �P0, the PR box �PPR, and the Hardy point �PHardy. The
dashed line corresponds to saturating the Bell function �B9. The
point �PL,4 is defined as the intersection of the line going through
the PR box and the Hardy point and the hyperplane of the CHSH
value of 2. This local point is not deterministic, but it has a unique
decomposition in terms of the five deterministic strategies, namely
�PL,4 = 1+2

√
5

19
�Pd,1 + 9−√

5
38 ( �Pd,5 + �Pd,6 + �Pd,7 + �Pd,8).

It is easy to check that �B9 is saturated by five local points,
namely �Pd,1 of Eq. (18) and

�Pd,5 :=
1 −1

1 1 −1
1 1 −1

, �Pd,6 :=
1 1

1 1 1
−1 −1 −1

,

�Pd,7 :=
1 −1

−1 −1 1
1 1 −1

, �Pd,8 :=
−1 1

1 −1 1
−1 1 −1

.

The local face is the convex hull of these five points and, since
they are affinely independent, we obtain a four-dimensional
polytope. The Bell function �B9 is also saturated by the PR box,
which implies that the no-signaling face is a five-dimensional
polytope. The quantum face corresponding to the Bell function
�B9 contains the five deterministic points and the Hardy point
�PHardy, so it must be of dimension 5. We do not know, however,

whether it is a polytope or not.

APPENDIX H: THE HARDY POINT IS NOT EXPOSED

To prove that the Hardy point �PHardy defined in Eq. (G2) is
not exposed in the quantum set, we show that any Bell function
�B maximized by the Hardy point satisfies βL( �B) = βQ( �B),
which implies that the Hardy point is not the unique maximizer.

Rabelo et al. showed that the maximal violation of the
Hardy paradox self-tests the following two-qubit state and

measurements [58]:

|ψH〉 =
√

1 − a2

2

(|01〉 + |10〉) + a|11〉,

A0 = B0 = 2aσx +
√

1 − 4a2σz,

A1 = B1 = −σz

for a :=
√√

5 − 2. Define operators

G1 = A0 ⊗ 1, G5 = A0 ⊗ B0,

G2 = A1 ⊗ 1, G6 = A0 ⊗ B1,

G3 = 1 ⊗ B0, G7 = A1 ⊗ B0,

G4 = 1 ⊗ B1, G8 = A1 ⊗ B1.

Let �B be an arbitrary Bell function

�B :=
b3 b4

b1 b5 b6

b2 b7 b8

and the corresponding Bell operator equals

W =
8∑

j=1

bjGj .

If the Bell function �B is maximized by the Hardy point,
then in particular the state |ψH〉 must be an eigenstate of
the Bell operator W ; i.e., it must satisfy the linear constraint
W |ψH〉 = λ|ψH〉. This forces the Bell function to be tangent
to the boundary of the quantum set at the Hardy point. In the
proof, we show that every such Bell function is maximized by
at least two points: �PHardy and a local point.

The eigenvalue equation W |ψH〉 = λ|ψH〉 implies
〈00|W |ψH〉 = 0, because 〈00|ψH〉 = 0. This can be written
as a linear constraint �B · �T = 0, where the entries of �T are
proportional to 〈00|Gj |ψH〉. More specifically, we set

�T :=
1 0

1
√

5 − 1 −1
0 −1 0

.

Our goal is to find the largest value of �B · �PHardy for a Bell
function maximized by the Hardy point. To write this as a linear
program, it is convenient to impose some normalization, e.g.,
that the local bound does not exceed 1 (this is simply a matter
of scaling the coefficients). The resulting linear program reads

max �B · �PHardy

over �B ∈ R8

subject to �B · �T = 0
�B · �Pd,j � 1 for j = 1,2, . . . ,16,

where �Pd,j are the deterministic behaviors.9 The maximum
value of the linear program is found to be identically 1; the
optimal Bell function returned by the program is �B8 as specified

9The deterministic behaviors for j = {1,2, . . . ,8} were defined in
Secs. III B 1, III B 2, and Appendix G 2. The remaining ones turn out
to be irrelevant and the corresponding constraints could be removed
without affecting the value of the problem.
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in Eq. (G1), which achieves no smaller a value at �PL,4 than it
does at �PHardy, proving that the Hardy point is not exposed.

The optimality of �B8 can be shown analytically as follows.
First, note that �B8 satisfies the constraints defining the linear
program. To further show that �B · �PHardy = 1 is the optimal
max-value, we write the dual program

min
∑16

k=1 yk

over yk � 0, z ∈ R

subject to
∑16

k=1 yk
�Pd,j + z �T = �PHardy.

The assignment

yk =

⎧⎪⎨
⎪⎩

√
5 − 2 if k = 1,

(3 − √
5)/2 if k ∈ {5,6},

0 otherwise,

z = 4 − 2
√

5,

is a valid solution to the dual and the resulting value is 1. This
completes the proof that any Bell function maximized by the
Hardy point must satisfy βL( �B) = βQ( �B).

APPENDIX I: THE QUANTUM VALUE
OF THE B6 FUNCTION

Let Ax and By denote the observables of Alice and Bob,
respectively. The maximal quantum value of the Bell function
�B6 can be determined by finding the maximum eigenvalue of
the Bell operator

W = A0(B0 + B1 + B2) + A1(B0 + B1 − B2)

+A2(B0 − B1),

where for ease of presentation we assume that Ax and By

act on the same composite Hilbert space while satisfying the
commutation relations [Ax,By] = 0 for all x,y.

By solving the semidefinite program proposed in Ref. [64],
as illustrated in Ref. [78], one essentially obtains a sum-of-
squares decomposition for the operator γ 1 − W for the small-
est possible γ , thereby showing that the maximal quantum
violation of B6 is upper bounded by γ . In particular, it is easy
to verify that whenever A2

x = B2
y = 1 and the above-mentioned

commutation relations hold true, the following holds

5 × 1 − W = 1

2

3∑
j=1

V
†
j Vj , (I1)

where V1 = A0 + A1 − B0 − B1, V2 = A0 − A1 − B2, and
V3 = A2 − B0 + B1. Since the right-hand side of Eq. (I1) is
a non-negative operator, we see that 5 must be an upper bound
on the maximal quantum value of B6. Indeed, this upper bound
is saturated by the family of quantum realizations presented in
the main text.

APPENDIX J: QUANTUM FACES
IN THE TRIPARTITE SCENARIOS

In this appendix, we derive the quantum face corresponding
to the Bell function �B8 discussed in Sec. IV B.

As explained in Appendix A to determine an exposed
quantum face, it suffices to find its extremal points. Since these
must also be extremal in the entire quantum set, we simply need
to find the extremal points of the quantum set which saturate the
quantum bound. In a scenario with two binary observables on
each site, every extremal point can be obtained by performing
projective rank-1 measurements on an n-qubit state [27]. For
Alice, we parametrize the observables as

A0 = σx, A1 = cos a · σx + sin a · σy

for some angle a ∈ [0,π ], while for Bob and Charlie we write

B0 = cos b · σx + sin b · σy, B1 = cos b · σx − sin b · σy,

C0 = cos c · σx + sin c · σy, C1 = cos c · σx − sin c · σy.

for some angles b,c ∈ [0,π/2]. This parametrization ensures
that the resulting Bell operator is easy to diagonalize.

The Bell operator corresponding to the Bell function �B8 can
be seen as the CHSH operator

W = A0 ⊗ (T0 + T1) + A1 ⊗ (T0 − T1),

where Tj := Bj ⊗ Cj . This implies that the eigenvalue of 2
√

2
is possible only for a = π/2. Having established the form of
Alice’s observables, we are ready to find the eigenvectors of
W . It is easy to check that

T0 + T1 = 2(cos b cos c · σx ⊗ σx + sin b sin c · σy ⊗ σy),

T0 − T1 = 2(cos b sin c · σx ⊗ σy + sin b cos c · σy ⊗ σx),

which implies that

W |000〉 = −2
√

2 sin(b + c − π/4) |111〉,
W |001〉 = −2

√
2 sin(b − c − π/4) |110〉,

W |010〉 = 2
√

2 sin(b − c + π/4) |101〉,
W |011〉 = 2

√
2 sin(b + c + π/4) |100〉,

W |100〉 = 2
√

2 sin(b + c + π/4) |011〉,
W |101〉 = 2

√
2 sin(b − c + π/4) |010〉,

W |110〉 = −2
√

2 sin(b − c − π/4) |001〉,
W |111〉 = −2

√
2 sin(b + c − π/4) |000〉.

The eigenvectors of W are simply the following GHZ states:

|�±1〉 = 1√
2

(|000〉 ± |111〉),
|�±2〉 = 1√

2

(|001〉 ± |110〉),
|�±3〉 = 1√

2

(|010〉 ± |101〉),
|�±4〉 = 1√

2

(|011〉 ± |100〉),
and the corresponding eigenvalues are

λ±1 = ∓2
√

2 sin(b + c − π/4),

λ±2 = ∓2
√

2 sin(b − c − π/4),
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λ±3 = ±2
√

2 sin(b − c + π/4),

λ±4 = ±2
√

2 sin(b + c + π/4).

Since we are restricted to the square b,c ∈ [0,π/2], the max-
imum eigenvalue of 2

√
2 appears if and only if (at least) one

of the following equations is satisfied:

b + c = 3π/4,

b − c = −π/4,

b − c = π/4,

b + c = π/4.

Inside the square, i.e., for b,c ∈ (0,π ), the maximum eigen-
value is nondegenerate and the corresponding eigenvector is
unique. The one- and two-body marginals of a GHZ state
are fully mixed, which implies that the one- and two-body
expectation values must vanish:

〈Ax〉 = 〈By〉 = 〈Cz〉 = 〈AxBy〉 = 〈AxCz〉 = 〈ByCz〉 = 0.

Determining the three-body correlations is a simple exercise.
For the branch b + c = 3π/4, we obtain

〈A0B0C0〉 = 〈A0B1C1〉 = − cos(b + c) = 1√
2
,

〈A0B0C1〉 = 〈A0B1C0〉 = − cos(b − c),

〈A1B0C0〉 = −〈A1B1C1〉 = sin(b + c) = 1√
2
,

〈A1B0C1〉 = −〈A1B1C0〉 = sin(b − c),

which corresponds to Eq. (32) for α ∈ [3π/4,5π/4]. The other
branches give analogous results and cover the rest of the range.

To complete the analysis, we must also look at the four
special points where the maximal eigenvalue is degenerate,
i.e., (b,c) = (π/4,0),(0,π/4),(π/2,0), and (0,π/2). At each
of these points, the subspace corresponding to the maximal
eigenvalue is two-dimensional and the resulting statistics form
a line; i.e., we obtain two extremal points. Computing the
extremal points for each pair (b,c) yields the eight points
{Pj }8

j=1 presented in the main text.
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