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Schrödinger equation for general linear velocity-dependent forces
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Quantization processes generally assume the Hamiltonian formulation of classical mechanics. The notion of
dissipation does not fit easily into the Hamiltonian structure. There appeared in the literature a quantization
process that circumvents the use of the Hamiltonian approach and derives the Schrödinger equation from first
principles. Thus, the usual approach of assuming a dissipative force of the type fd = k(t)v, where k(t) is a
scalar depending only on the time and v is the velocity, can be approached using this quantization process to
mathematically derive a Schrödinger equation. The derivation for this simple case was already performed by the
authors elsewhere. The full generalization of a dissipative force in the context of a linear response theory, as is
usual in classical mechanics, would be to write this force as fi(x,t) = Kij (x,t)vj , where K(x,t) is a tensor giving
the nonhomogeneity and nonisotropy of the process. In this paper, we present this generalization and connect our
results with nonlinear Schrödinger-like equations already known from the literature.
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I. INTRODUCTION

The introduction of dissipative physical systems within the
formal structure of quantum mechanics has attracted attention
since the beginning of the theory [1–9].

To tackle this problem, some [6–14] assumed an isolated
physical system with two subsystems, one of them functioning
as a heat bath and taking energy from the other because of its
much larger number of accessible states. The advantage of
this approach comes from the fact that it can be framed into a
Hamiltonian structure, making quantization easier. One of its
disadvantages is that one has to model the heat bath in some
concrete way, generally in terms of harmonic oscillators.

Others considered [1–5] open physical systems being acted
by a dissipative velocity-dependent force of the type −kv. One
advantage of this approach is that the details of the dissipation
process are put into the phenomenological coefficient k. The
disadvantage of this approach comes from the fact that it cannot
be put into a Hamiltonian structure, making the quantization
process more difficult.

Since the quantization of such open systems cannot depart
from the usual Hamiltonian classical background, one of the
possibilities would be to try to generalize the Hamilton’s
classical formalism to encompass dissipation [15]. Quantiza-
tion could then depart from this generalization in the usual
terms. However, there has been no general agreement on what
extension of the classical formalism one should use. The very
classical problem is quite complex in its own terms, let alone
its extension to cope with quantization.

This paper presents the extension of a method [16] to
perform the direct quantization of open physical systems,
which does not make any recourse to a Hamiltonian support.

Indeed, in a previous article [16], we showed that one can
mathematically derive a Schrödinger equation for a dissipative
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system in which dissipation comes from a velocity-dependent
force of the type

fd (t) = −k(t)v, (1)

where v is the velocity and k(t) is the phenomenological term
that encompasses all the physical intricacies in the context of
a linear response theory.

The derivation was based on a quantization method [17]
which has already proved to be very reliable. This quantiza-
tion method has already been applied to quantize physical
systems directly in generalized curvilinear coordinates, to
quantize physical systems in which the canonical momentum
encompasses the electromagnetic vector potential, and to make
quantization in the realm of the special theory of relativity [18].
The method provided the correct equation in each one of these
cases, the one related to curvilinear orthogonal coordinates
being the most noteworthy, given the complexities of the
intermediary equations [17].

The method uses an axiomatic approach that departs from
the Liouville equation as the equation to be extended so that
one ends up with a Schrödinger equation representing the
quantum mechanical counterpart of the physical problem. It is
noteworthy that being an axiomatic approach, all the eventual
modifications of the theory must be performed only in the
axioms. This can be very restrictive but, on the other side, gives
one a quite good control of the extension of the modifications.

In its original form [17], the quantization method could
deal only with Hamiltonian systems and the only velocity-
dependent forces it could encompass were those derived from
a potential that keeps the Hamiltonian structure of the problem
intact—such as the electromagnetic force.

However, despite the difficulties inherent to formulate a
Hamiltonian approach for dissipative systems [19], the Li-
ouville equation can be easily generalized [20] to refer to
non-Hamiltonian systems of which dissipative systems are but
an example. The original quantization method can then be
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reformulated to take into account this extension of the Liouville
equation to deal with forces of the form (1).

In Sec. II, we present the quantization of velocity-dependent
forces that keep the Hamiltonian structure unaltered. This
derivation is important to show the applicability of the present
derivation method for more involved physical situations and
also because one of its results will become important later on.
The generalization of the Liouville equation is thus presented.

Section III is devoted to very briefly present a previous more
restricted result [16] related to a dissipative force fi = −k(t)vi

with a phenomenological factor k(t) which can be a function
of the time alone.

In Sec. IV, we extend our approach to embrace the most
general dissipative force, in the context of a linear response
theory, given by fi(x,t) = −Kij (x,t)vj , where K(x,t) is a
tensor.

Section V presents the connection of our approach and the
one of Caldeira and Leggett, and in Sec. VI we present our
conclusions.

It should be emphasized that this paper also intends to
present a very general quantization method that extends much
beyond traditional ones, being able to cope with both Hamil-
tonian and non-Hamiltonian systems. To show this generality
once more, we include in the Appendix a derivation showing
that other results obtained in the past in relation to dissipation,
and related to a nonlinear Schrödinger-like equation can be
addressed by the same method adopted here—which is solely
based on first principles.

The application of this quantization method to a dissipative
system is but a good example of the applicability of the method.
The necessity of making an explicit assessment comes from
the fact that non-Hamiltonian systems do not constitute a
universality class, and must be treated in its specificities.

II. HAMILTONIAN VELOCITY-DEPENDENT
POTENTIALS

When one deals with velocity-dependent potentials, there
is one important class of potentials consisting of those that
keep the form of Lagrange’s equations unaltered. This class
of potentials is comprised of all potential functions U (x,ẋ,t),
such that the generalized force is given by [21]

Qj = −∂U (x,ẋ,t)

∂xj

+ d

dt

[
∂U (x,ẋ,t)

∂ẋj

]
. (2)

A very important example is furnished by the electromag-
netic field for which the Lorentz force is given by (c = 1 and
Einstein’s summation convention assumed)

Qi = e(Ei + εijkvjBk),

where e is the electric charge and εijk is the fully antisymmetric
tensor, with the electric and magnetic fields (respectively,
E and B) given by

Ei = −∂iϕ − ∂Ai

∂t
, Bi = εijk∂jAk,

where ϕ is the scalar potential and A is the vector potential.
Indeed, if we write

U = eϕ − eAivi, (3)

we recover the electromagnetic Lorentz force Q showing that
the potential U is a member of our class of velocity-dependent
potentials that leaves the Lagrangian and Hamiltonian structure
of the mathematical problem unaltered [21].

The electromagnetic field is surely the best example of a
field that satisfies condition (2) for a velocity-dependent force.
The fact that physical systems presenting such a velocity-
dependent force can be quantized by the present method
should give the reader the necessary confidence on the same
quantization method applied for other more general forces. We
thus present, in what follows, this quantization.

For a physical system presenting electromagnetic interac-
tions, one has the Liouville equation

dF

dt
= ∂F

∂xj

(
pj − eAj

m

)
− ∂F

∂pj

[
e

m

∂Ak

∂xj

(eAk − pk) + e
∂φ

∂xj

]

+ ∂F

∂t
= 0. (4)

The quantization method comes simply from the application
of the following two axioms:

Axiom 1. The Liouville equation (4) must be extended for
us to arrive at a generalized Schrödinger equation.

Axiom 2. The marginal characteristic function, given by

ζ (x,y; t) =
∫

exp

(
i

h̄
piδxi

)
F (x,p; t)dp, (5)

should be written as

ζ (x,δx; t) = ψ∗(x − δx/2; t)ψ(x + δx/2; t), (6)

and must be expanded only up to second order in δx as a method
to extend (4).

We may now apply the integral transform (5) to (4) to get,
after some straightforward calculations, the equation

ih̄
∂ζ

∂t
= − ih̄

m

∂

∂xj

[
− ih̄

∂ζ

∂(δxj )
− eAjζ

]
+ eδxj

∂φ

∂xj

ζ

+ δxj

e

m

∂Ak

∂xj

[
− ih̄

∂ζ

∂(δxk)
− eAkζ

]
. (7)

Equation (7) will be very important for the results to follow
later on.

We now use (6) of our quantization process and write

ψ(x,t) = R(x,t)eiS(x,t)/h̄, (8)

where R(x,t) and S(x,t) are real functions, since the ampli-
tudes ψ(x,t) are generally complex functions. We thus expand
the characteristic function in second order in δx to get

ζ (x,δx,t) =
(

R2(x,t) + (δxiδxk)

4

{
R(x,t)

∂2R(x,t)

∂xi∂xk

−
[
∂R(x,t)

∂xi

][
∂R(x,t)

∂xk

]})
exp

[
i

h̄

∂S(x,t)

∂xj

δxj

]
.

(9)

If we take ζ into (7) and keep terms up to first order
in δxk , we get an equation with real and imaginary parts.
Separating them, we get, for the imaginary part (which is also

022102-2



SCHRÖDINGER EQUATION FOR GENERAL LINEAR … PHYSICAL REVIEW A 97, 022102 (2018)

the coefficient of δx0),

∂R2(x,t)

∂t
+ ∂i

{
R2(x,t)

[∂iS(x,t) − eAi(x,t)]

m

}
= 0, (10)

while for the real part (which is also the coefficient of δx1), we
get

R2δxi∂i

{
∂S(x,t)

∂t
+ 1

2m
[∇S(x,t) − eA(x,t)]2

+ eφ − h̄2∇2R(x,t)

2mR(x,t)

}
= 0. (11)

These two equations (10) and (11) are equivalent to the
Schrödinger equation (encompassing the electromagnetic po-
tentials) if we write

1

2m
[−ih̄∇ − eA(x,t)]2ψ(x,t) + φ(x,t)ψ(x,t) = ih̄

∂ψ(x,t)

∂t
,

(12)

and use the polar form (8). Indeed, substitution of this polar
form into (12) gives two equations which are exactly (10) and
the term inside curly brackets in (11), when we separate the
real and the imaginary parts.

Equations (10) and (11) in connection to (12) are reminis-
cent of the Bohm-Madelung hydrodynamic approach [22,23].
However, it should be stressed here that the present method
is a quantization process—a way to mathematically de-
rive the Schrödinger equation from more basic postulates—
while the Bohm-Madelung approach is simply a way to
rewrite the Schrödinger equation and this approach already
assumes, rather than derives, this equation.

Thus, the previous derivation shows that we can use our
method to derive the Schrödinger equation for a velocity-
dependent potential of the type (2). However, if we want
to move to non-Hamiltonian forces, we must generalize the
first axiom of the quantization process, which is the Liouville
equation.

We made such a generalization in [16] and showed that one
should depart, in the general case of non-Hamiltonian systems,
from the generalized Liouville equation given by

dF (η,t)

dt
= −F (η,t)∂i η̇i , (13)

where η = (x,p), and ∂i runs over this 6N -dimensional space.
The right-hand term in the last expression is called the compres-
sion factor and is identically zero if the system is Hamiltonian.

III. EXTENSION OF THE QUANTIZATION METHOD

In [16], we generalized our set of axioms to mathemati-
cally derive a time-dependent Schrödinger equation that can
encompass forces of the type

fi(x,ẋ; t) = −∂iϕ(x) + k(t)ẋi ,

where ϕ(x) is the velocity-independent potential, and k(t)
can depend on time only. Since we are now considering
physical situations in which the phase-space volume element
can shrink or expand, and, in quantum mechanics, this volume
is proportional to Planck’s constant, we must assume the

possibility

¯̄h → h̄eσ (t), (14)

so that the new quantum mechanical elementary volume
element becomes �x�p ∼ h̄eσ (t), which can shrink or expand,
depending on the behavior of σ (t).

This implies changing the second axiom to write it as
follows:

Axiom 2′. The marginal characteristic function, given by

ζ (x,δx; t) =
∫

exp

(
i

h̄ef (t)
p · δx

)
F (x,p; t)dp, (15)

should be written as

ζ (x,δx; t) = ψ∗(x − δx/2; t)ψ(x + δx/2; t), (16)

and must be expanded only up to second order in δx.
Now, if we exactly apply the same steps of the derivation

of the previous section, we find the dissipative Schrödinger
equation [16],

− h̄2e2σ (t)

2m
∇2ψ(x,t) + ϕ(x)ψ(x,t) = ih̄eσ (t) ∂ψ(x,t)

∂t
. (17)

Equation (17) is simply the Schrödinger equation for a time-
dependent Planck’s “constant,” where

σ (t) = 1

m

∫ t

k(t ′)dt ′. (18)

From the very derivation process, the dissipative Schrödinger
equation reduces itself to the usual Schrödinger equation when
there is neither dissipation nor absorption [k(t) = 0].

This derivation is important to make it explicit the need to
change Axiom 2. However, it is quite limited since it assumes a
very particular form of the dissipation force. In the next section,
we extend the previous results to a quite general dissipative
force related to a dissipative linear response theory.

IV. EXTENSION OF THE QUANTIZATION
METHOD FOR K(x,t)

We now use our generalized Liouville equation to take into
account non-Hamiltonian systems encompassing dissipation
of the type

fi(x,p; t) = −∂iϕ(x) + Kij (x,t)vj , (19)

where ϕ(x) is the velocity-independent potential and K(x,t)
is a tensorial function of the position and time, in principle—
and thus is a very general linear response phenomenological
dissipation coefficient.

The Liouville equation becomes

∂F

∂t︸︷︷︸
A

+ pn

m

∂F

∂xn︸ ︷︷ ︸
B

+ − ∂F

∂pn

∂ϕ

∂xn︸ ︷︷ ︸
C

+ Knl

m

∂(plF )

∂pn︸ ︷︷ ︸
D

= 0, (20)

whose terms were labeled for future reference. Equation (20)
is the equation we will use to quantize the non-Hamiltonian
velocity-dependent force (19) from first principles.
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Following our previous discussion, we generalize again our
Axiom 2, putting

ζ (x,δx,t) =
∫

F (x,p,t) exp

{
i

h̄eσ (t)
[pk − gk(x,t)]δxk

}
dp

= ψ∗
(

x − δx
2

; t

)
ψ

(
x + δx

2
; t

)
, (21)

where g(x,t) is a yet unknown function (our gauge) that will be
discovered in the process of quantization, in ways analogous
to σ (t) in the previous derivation.

Applying the kernel exp [i(pn + gn)δxn/h̄eσ (t)] to Eq. (20)
and integrating it in p, we get the following:

For A,

A = ∂ζ

∂t
+ iσ̇ δxn

h̄eσ

[
− ih̄eσ ∂ζ

∂(δxn)
+gnζ

]
+ iδxn

h̄eσ
(ġn−σ̇ gn)ζ.

(22)

For B,

B = 1

m

∂

∂xn

[
− ih̄eσ ∂ζ

∂(δxn)
+ gnζ

]

+ iδxn

mh̄eσ

∂gn

∂xl

[
− ih̄eσ ∂ζ

∂(δxl)
+ glζ

]
. (23)

For C,

C = iδxl

h̄eσ

∂ϕ

∂xl

ζ. (24)

For D,

D = − iKnl(x,t)δxn

mh̄eσ

[
− ih̄eσ ∂ζ

∂(δxl)
+ glζ

]
. (25)

After some rearrangements, we end up with Eq. (20)
transformed into

− ih̄eσ ∂ζ

∂t
− ih̄eσ

m

∂

∂xl

[
− ih̄eσ ∂ζ

∂(δxl)
+ glζ

]
+ δxl

∂ϕ

∂xl

ζ

+ δxn

[
σ̇ δnl + 1

m

∂gn

∂xl

− Knl

m

][
− ih̄eσ ∂ζ

∂(δxl)
+ glζ

]

+ δxn(ġn − σ̇ gn)ζ = 0. (26)

We want to find a Schrödinger-like equation such as (17).
If we look at (7) for the electromagnetic field, we know in
advance that it would be sufficient to write

ġn − σ̇ gn = 0 (27)

and

σ̇ δnl + 1

m

∂gn

∂xl

− Knl

m
= 1

m

∂gl

∂xn

. (28)

The first constraint means that

gn(x,t) = hn(x)eσ (t), (29)

which, looking back into the characteristic function ζ , simply
means an adjustment to remove the factor eσ (t) from the second
term in the exponential, while making it just a term depending
on the position.

It is interesting to rewrite (28) in a more intuitive format.
Indeed, we can put it as

σ̇ δnl + 1

m

(
∂gn

∂xl

− ∂gl

∂xn

)
= Knl

m
, (30)

which implies some constraints on the form of K that can
be taken into account. This means that a linear Schrödinger
equation encompassing dissipation can be obtained only for
tensor coefficients of the form (30) (but see the Appendix).

Indeed, if we substitute the characteristic function (9) in
(26), we get two equations: one as the coefficient of (δx)0 and
one as the coefficient of (δx)1. The equation that comes as the
coefficient of (δx)0, which appears multiplied by the imaginary
term ih̄, can be written as

∂R(x,t)2

∂t
+ ∂i

{
R(x,t)2

[
eσ (t) ∂iS(x,t) + hi(x)

m

]}
= 0, (31)

while for (δx)1 we get

R(x,t)2δxi∂i

{
eσ (t) ∂S(x,t)

∂t
− h̄2e2σ (t)

2mR(x,t)
∇2R(x,t)

+ e2σ (t) [∇S(x,t) + h(x)]2

2m
+ ϕ(x,t)

}
= 0, (32)

so that if we write

e2σ (t)

2m
[−ih̄∇+h(x)]2ψ(x,t) + ϕ(x)ψ(x,t) = ih̄eσ (t) ∂ψ(x,t)

∂t
,

(33)

and substitute on it again, ψ(x,t) = R(x,t) exp [iS(x,t)/h̄], we
get exactly (31) and the term within curly brackets in (32).
Thus, Eq. (33) is the dissipative quantum mechanical equation
for a dissipative force of the type shown in (19) with the
form (30) for the multiplicative tensor of the linear response
approach.

The approach of considering a time-dependent “Planck’s”
constant, as the result (14) points to, is closely related to
one presented in [24]. However, in that work, the authors
use heuristic arguments connected to the Bohm-Madelung
equation to introduce, somewhat ad hoc, this time dependence.
In this paper, we have derived all the results from first principles
and presented a direct physical argument for such a time
dependence, which is different from [24]. In any case, we end
with a similar, although quite general, conclusion that can be
found in that work: from a more general nonlinear Schrödinger
equation that can be derived for dissipative systems, in general,
there is a class of solutions that can keep the equation linear,
even in the presence of dissipation. The structure (30) is exactly
the one to allow for such a preservation of the linearity of the
Schrödinger equation.

In the Appendix, we derive, from the same formal structure
presented here, a nonlinear Schrödinger equation close in form
to others already known in the literature [25–28]. We then
make explicit the above-mentioned result and, again, reassure
ourselves of the soundness of the quantization process.
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V. CONNECTION WITH THE
CALDEIRA-LEGGETT APPROACH

One of the main objectives in the field of quantum dissipa-
tion is to explain the way classical dissipation can be described
from a quantum mechanical point of view.

The Caldeira–Leggett model [29] gives us a glimpse of how
this is done within its framework: one takes the average over all
the possible realizations of the bath and looks for the effective
dynamics of the quantum system. Then, the limit h̄ → 0 must
be taken to recover the classical equations of motion as

m
d2

dt2
x(t) = −∂V (x)

∂x
−

∫ T

0
dt ′α(t − t ′)[x(t) − x(t ′)],

(34)

where

α(t − t ′) = 1

2π

∫ ∞

0
J (ω)e−ω|t−t ′ |dω (35)

is a kernel which characterizes the effective force that affects
the motion of the particle in the presence of dissipation,
while J (ω) is the bath spectral function. When this function
has the form J (ω) = ηω, the corresponding classical kind of
dissipation can be shown to be ohmic. One can generalize this
and put J (ω) ∝ ωs . In this case, if s > 1, the dissipation is
called superohmic, while if s < 1, it is called subohmic.

For Markovian baths and ohmic dissipation, the equations
of motion simplify to the classical equations of motion of a
particle with friction,

m
d2

dt2
x(t) = −∂V (x)

∂x
− η

dx(t)

dt
. (36)

This is how the Caldeira–Leggett model represents classical
dissipation within quantum mechanics.

The present work uses an inverse strategy, which seems to
be a more direct approach. It begins with a usual dissipative
classical system and ends with the dissipative Schrödinger
equation (33). One can see from the last equations that the
connection between the two approaches is given by the bath
spectral function J (ω), which is a central quantity in the
Caldeira-Leggett model.

VI. CONCLUSION

In this paper, we derived, from first principles, a gen-
eralized Schrödinger equation that encompasses dissipative
phenomena. The quantization method may be considered to
be very reliable since it delivers all the expected results
for Hamiltonian systems. In fact, the method applies to the
quantization of non-Hamiltonian systems in general, of which
dissipative systems are a particular case. Even a nonlinear
Schrödinger-like equation, close to equations already known in
the literature, could be obtained, as we show in the Appendix.

We have also shown that there is a connection between
the Caldeira-Leggett approach, based on the interaction of the
system with a heat bath, and the present one, meaning that
the latter can be applied to all physical systems to which the
Caldeira-Leggett approach applies.

We think, however, that this more direct approach presents
some advantages from the Caldeira-Leggett one since it gives

a general Schrödinger equation that can be solved by usual
methods, without the need to appeal to renormalization and
other more sophisticated techniques.

We hope the present approach can be useful to the study
of dissipative quantum mechanical systems, such as the meso-
scopic system.

APPENDIX: DERIVATION OF A NONLINEAR
SCHRÖDINGER EQUATION

One can find in the literature a number of results regarding
the expression of dissipation in the quantum realm as a counter-
part of some nonlinear feature of a Schrödinger-like equation.
Thus, Kostin [28] used arguments from Langevin equations
applied to Heisenberg operators to suggest the equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + ϕψ + VRψ

+ h̄f

2im

[
ln

(
ψ

ψ∗

)
− W (t)

]
ψ, (A1)

where f is a friction constant, VR is a random potential—two
terms akin to Langevin equations—and W (t) = 〈ln(ψ/ψ∗)〉.

Another result was obtained from heuristic considerations
about the possibility of a diffusion term in the flux of prob-
ability. This argument is somewhat close to the one we used
in the generalization of the Liouville equation, but was made
on the configuration-space probability density function, while
ours is made on the classical phase space in connection to the
Liouville equation. The authors [25] presented their nonlinear
counterpart of the Schrödinger equation as

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + ϕψ + iDh̄∇2ψ + iDh̄|∇ ln ψ |2ψ,

(A2)

where D is a diffusion constant coming from a term included
from physical arguments in the probability continuity equation
(to make it a Fokker-Planck equation). Result (A2) resembles
(A1), despite being different from it [25]. This leaves us
with different equations for the same physical processes. The
problem here is that those equations were obtained from
heuristic arguments based on (good but different) physical
intuitions, and we all know how elusive quantum mechanics
can be on such matters.

In the derivation made in the main text, we used the kernel
of the Fourier transform that defines the characteristic function
with a term eσ , which introduced the time dependence of
Planck’s constant reflecting the possibility of phase-space
volumes to shrink or expand.

However, if we refrain from changing this kernel, we must
write the second axiom as [one dimension for simplicity and
for a dissipation coefficient k(t)]

ζ (x,δx,t) =
∫

eipδx/h̄F (x,p; t)dp

= ψ∗
(

x − δx

2
; t

)
ψ

(
x + δx

2
; t

)
. (A3)
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If we now use the generalized Liouville equation (13), we get

ih̄
∂ζ

∂t
= − h̄2

m

∂2ζ

∂x∂(δx)
+ δx

dϕ

dx
ζ + ih̄k

m

∂

∂(δx)
[(δx)ζ ].

(A4)

We also use (5) to write ζ , as usual. If we take (5) into (A4),
and keep terms up to δx1, we end up with real and imaginary
equations (or, equivalently, one equation depending on δx1 and
one depending on δx0, respectively). Separating them, we get,
for the real part (or the one depending on δx1),

∂

∂t

(
∂S

∂x

)
= − ∂

∂x

[
1

2m

(
∂S

∂x

)2

− h̄2

2mR

∂2R

∂x2
+ ϕ(x)

]

+ k(t)

m

∂S

∂x
, (A5)

and if we put, as usual, p(x,t) = ∂S/∂x, (A5) becomes simply
Bohm’s equation, with an extra term, given by

∂p(x,t)

∂t
= −∂HB(x,t)

∂x
+ k(t)

m
p(x,t), (A6)

where HB(x,t) is “Bohm’s Hamiltonian” (or Bohmian),

HB(x,t) = p(x,t)2

2m
+ ϕ(x) − h̄2

2mR(x,t)

∂2R(x,t)

∂x2
.

Equation (A6) resembles the classical dissipative Newtonian
equation (as would be expected within Bohm’s approach).

However, (A5) can also be written as

∂

∂x

[
∂S

∂t
+ 1

2m

(
∂S

∂x

)2

− h̄2

2mR

∂2R

∂x2
+ ϕ(x) + k(t)

m
S

]
= 0,

(A7)

and since S(x,t) = (h̄/2i) ln(ψ/ψ∗), we may use all the pre-
vious formal results to get the nonlinear Schrödinger equation,

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + ϕψ +

[
h̄k(t)

2im
ln

(
ψ

ψ∗

)]
ψ. (A8)

This is exactly (A1) with the dissipation coefficient f = k(t)
and VR = W (t) = 0. Had we begun with an equation including
fluctuation (such as the Klein-Kramers equation), we may had
found (A1) or an equation closely related to it.

The fact is that all the results we found in the literature, to the
best of our knowledge, were obtained from heuristic arguments
sometimes based on Langevin equations and sometimes based
on an assumed diffusion of the probability density function.
They give, for each approach, a different Schrödinger-like
equation.

The present derivation uses the same framework from which
it derives the usual Schrödinger equation. It does that using an
axiomatic approach. All the necessary generalizations are then
made on the axioms to encompass non-Hamiltonian forces. In
the main text, we show that for a wide class of dissipation
coefficients K, this nonlinear equation can be linearized by
assuming a time-dependent Planck’s constant.
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