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Anomalous diffusion in a dynamical optical lattice
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Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study
theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The
dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice,
leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave
functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion,
which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an
interplay between Anderson localization and quantum fluctuations of the cavity field.
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One of the most interesting directions of research in co-
herent quantum systems concerns the collective dynamics of
coupled atom-photon ensembles. Such situations arise for cold
atomic gases in optical cavities [1] or waveguides [2,3], where
strong coupling between the atomic motion and a photon field
can be achieved. Coupling cold atoms even to a single cavity
mode can dramatically change the steady state of the atomic
gas [4–25] and lead to interesting nonequilibrium dynamics
[26–36].

A transversely pumped Bose-Einstein condensate in a
single-mode cavity can undergo a phase transition into a
self-organized “superradiant” state in which the cavity mode
becomes highly occupied and generates a cavity-induced su-
perlattice potential on the atoms. For current experiments [8,9]
this dynamical cavity-induced superlattice is commensurate
with an underlying static optical lattice, therefore giving rise to
a supersolid phase with extended Bloch waves. However, one
can readily envisage situations in which the cavity-induced
superlattice is incommensurate with the underlying static
lattice. This leads to the interesting possibility that the cavity-
induced superlattice leads to localization of the single-particle
states. Indeed, several theoretical works have studied the steady
state of cold atoms in such settings [37–39] and have found a
self-organized localization-delocalization transition within a
mean-field approximation.

In this Rapid Communication, we show that the motion
of atoms in a cavity-induced incommensurate lattice is qual-
itatively affected by the quantum fluctuations of the cavity
field, leading to long-time behavior that is not captured by
mean-field theories. Specifically, we show that the atomic
motion exhibits anomalous diffusion in which the width of
the wave-packet σ grows with time as σ ∼ tγ with 0 <

γ < 1. Anomalous diffusion exists widely in both classical
and quantum systems. In classical random walks, anomalous
diffusion is mostly associated with the failure of the central
limit theorem and the presence of long-tailed distributions
[40–42]. On the other hand, in closed quantum systems,
anomalous diffusion is typically connected to the multifractal
nature of eigenstates [43,44]. Nonlinearity associated with
many-body interactions can also weakly destroy Anderson

localization and lead to anomalous diffusion [45–51]. In our
model, anomalous diffusion arises in a very distinct way:
via the coupling of a quantum particle to a single quantum
oscillator (the cavity mode) subjected to simple Markovian
damping. We show that the dynamics of the resulting open
quantum system can be viewed as a form of Lévy walk
with rests [52–55]. This explanation relies both on quantum
fluctuations of the cavity field and on Anderson localization in
the incommensurate potential and so is an inherently quantum
phenomenon. Owing to the central role played by the cavity
mode, we predict that evidence of this anomalous transport can
be found in long-tailed distributions of photon correlations in
the cavity field.

Model. We consider spinless atoms trapped by an optical
lattice in a high-Q cavity (Fig. 1), both aligned along the
x direction [56]. Two counterpropagating pump lasers are
shone on the atom cloud from the z direction. Denoting
the cavity field operator by â, the net potential on the
atoms is V = A0 cos2(kox) + B0â

†â cos2(kcx + φ) + C0(â +
â†) cos(kpz) cos(kcx + φ) + V⊥(y,z). Here A0 is proportional
to the optical lattice intensity, B0 is the cavity-atom coupling
strength (φ controls the relative positions of the optical lattice
and the cavity mode), and C0 is the pump-cavity coupling
proportional to the amplitude of the pump laser. We consider
the transverse confinement to be sufficiently large that the
transverse motion is frozen out. For deep enough lattices, we
obtain a one-dimensional tight-binding model as [9,57]

H = �â†â − J

L∑

j=1

(ĉ†j+1ĉj + H.c.) + λ(â + â†)
L∑

j=1

uj ĉ
†
j ĉj

+Uâ†â
L∑

j=1

u2
j ĉ

†
j ĉj , (1)

where ĉ
(†)
j ’s are the atomic field operators on lattice site

j ; � = ωc − ωp is the detuning of the cavity mode; uj =
cos(2πβj + φ), β = kc/2ko; U and λ are the projections of
B0 and C0 onto the Wannier functions. We have ignored
interactions between atoms as can be realized by a Feshbach
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FIG. 1. Schematic of the experimental setup. Atoms in an optical
lattice and a standing-wave cavity are driven by a transverse laser.
The frequency ωp of the pump laser is far detuned from the atomic
transition line but close to the cavity-mode frequency ωc.

resonance for bosons or for spinless fermions with contact
interactions. Due to the leaking of photons from the cavity, the
system should be described by the quantum master equation,

∂tρ = −i[H,ρ] + κ(2âρâ† − â†âρ − ρâ†â), (2)

where 2κ is the loss rate of the cavity photons.
If the cavity was directly driven by another pump laser

such that the cavity field is a coherent state â → α, then the
particles would experience a static effective potential Veff (α) =∑L

j=1[2λ Re(α)uj + U |α|2u2
j ]ĉ†j ĉj . In the case where β is

a irrational number and U = 0, this reproduces the cele-
brated Aubry-André model, which exhibits a delocalization-
localization transition for all the eigenstates [58]. Even when
U �= 0, this transition still survives but now with mobility edges
in the energy spectrum [59]. We are interested in cases without
this direct drive in which the cavity has its own quantum
dynamics and the atoms feel a dynamical potential.

Mean-field steady state. From Eq. (2), one finds that the
mean cavity field α(t) = 〈â(t)〉 evolves as

i ∂tα = (� − iκ + UR)α + λ�, (3)

where � = ∑
j uj 〈ĉ†j ĉj 〉 and R = ∑

j u2
j 〈ĉ†j ĉj 〉. We seek a

steady state in which ∂tα = 0 and find α = − λ�
�−iκ+UR

. The ex-

pectation value of 〈ĉ†j ĉj 〉 can be obtained from the ground state

of the mean-field Hamiltonian HMF(α) = −J
∑L

j=1(ĉ†j+1ĉj +
H.c.) + Veff (α).

We consider one atom in the cavity and numerically obtain
the steady-state phase diagram, see Fig. 2. To describe the
localization of the particle, we calculate the inverse partici-
pation ratio in real space of the atomic wave-function p =∑L

j=1 |〈ĉ†j ĉj 〉|2. One notes that highly localized density gives
p ∼ 1; whereas an extended wave function has p ∼ 1/L.

In the weak pumping regime, the system is in the “normal”
phase, which has no superradiance α = 0, and the effective
potential vanishes Veff (α) = 0. So the atomic states are delo-
calized. When U is large, as the pumping strength increases,
the system undergoes a second-order phase transition from
the normal phase to a “delocalized superradiant” phase, see
Fig. 2(b). As a result the effective potential Veff (α) is nonzero,
and the atomic density is modulated but still delocalized. For
larger pumping strength, the system undergoes a transition into
a “localized superradiant” phase. In this phase, the effective
potential becomes so large that the atomic wave function is lo-
calized. In the small-U regime, these two transitions merge into
one first-order transition where the cavity field and the effective

(a)

FIG. 2. (a) Phase diagram of the mean-field steady state. (b1)
and (b2) Second-order phase transition along line B in (a). (b1)
Mean cavity field α. (b2) Inverse partition ratio in real-space p.
(c1) and (c2) First-order phase transition along line C in (a).
Here L = 201, β = (

√
5 − 1)/2, φ = π/2, �/J = 1, and κ/J =

1.2. The square dots pi (i = 1, . . . ,5) represent the pumping strengths
λ/J = 1.5,2.5,3.5,4.5,5.5, respectively, and U/J = 3.

potential suddenly jump to large values [Fig. 2(c)]. Note that
these conclusions are also valid for the N boson system with
the same phase diagram provided we keep �/J, κ/J invariant
and scale λ/J → λ/(JN ), U/J → U/(JN ). The appearance
of a localized superradiant phase is consistent with a previous
study [39].

Wave-packet spreading. For a single atom, there will be no
sharp superradiant phase transition as the mean photon occu-
pation will grow continuously with pump strength. However,
there will still be a localization-delocalization transition at
the mean-field level. It is natural to ask how this is affected
by cavity fluctuations. To investigate this issue, we have
studied how an atomic wave packet spreads, which would
be completely different for localized and delocalized regimes.
We set the initial state to be the atom located in the center of
the lattice and the cavity empty. We then consider turning on
the pump laser and calculate the time evolution of the wave-
packet width σ (t) =

√
〈X2〉 − 〈X〉2, where X = ∑

j j ĉ
†
j ĉj is

the center of mass of the wave packet. We find, quite generally,
that the width grows as a power-law σ (t) ∼ tγ at long times.
However, the nature of this growth is a surprisingly subtle
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FIG. 3. (a1) and (a2) Time evolution of wave-packet width
σ (t) and phonon number np(t) from the mean-field dynamics. The
dashed line is a guide for a ballistic (γ = 1) or a saturated (γ = 0)
behavior. (b1) and (b2) Dissipationless nonequilibrium dynamics.
(c1) and (c2) Dynamics in the large dissipation limit. The dashed
line is a guide for diffusion γ = 1/2. Here β = (

√
5 − 1)/2, φ =

π/2, �/J = 1, κ/J = 1.2, and U = 0.

issue: Its qualitative form requires an accurate description of
the quantum fluctuations of the driven-damped cavity field. We
illustrate this by first presenting results of mean-field dynamics
and two limiting cases of the cavity damping (for these cases
we set U = 0 for simplicity).

Mean-field dynamics. At the mean-field level, the cavity
field evolves as Eq. (3); whereas the evolution of the atomic
wave function is governed by the mean-field Hamiltonian
HMF(α). We numerically solve these two coupled nonlinear
equations, obtaining the photon number np(t) = |α(t)|2 and
the wave-packet width σ (t), see Figs. 3(a1) and 3(a2). The
photon number first rises from zero to a nonzero value in a
short time and then slowly approaches a steady-state value. For
small pumping strengths, the wave packet spreads ballistically
γ = 1. Whereas for large pumping strength, the width saturates
at long times, indicating localized behavior γ = 0.

Dissipationless limit. We now consider the dissipationless
limit κ = 0. The system is then closed, and the dynamics is
given by unitary evolution under the Hamiltonian (1). We
numerically simulate the unitary evolution process. The results
are shown in Figs. 3(b1) and 3(b2). Note that, except for larger
photon number fluctuations, the behavior of the wave-packet
spreading is similar to the mean-field results. These qualitative
forms of dynamics (both mean field and dissipationless limit)
are consistent with the steady-state’s phase diagram: the delo-
calized phase exhibits ballistic transport, whereas transport is
absent in the localized phase.

Large dissipation limit. We now consider the opposite limit
in which the dissipation κ is so large that the lifetime of

the cavity is negligible. In this case, the cavity field will
adiabatically follow the distribution of the atom density with
â ≈ − λ

�−iκ
K̂ , where K̂ = ∑

j uj ĉ
†
j ĉj . Since the cavity field

is fixed by the atomic density, one can substitute this formula
into the Hamiltonian (1) and the quantum master equation (2)
to obtain the effective master equation for the atoms as ∂tρa =
−i[Heff ,ρa] + κ ′(2K̂ρaK̂ − K̂2ρa − ρaK̂

2). Here ρa is the
reduced density matrix of the atoms, and the effective Hamil-
tonian is Heff = −J

∑L
j=1(ĉ†j+1ĉj + H.c.) + V ′ ∑L

j=1 u2
j ĉ

†
j ĉj

with V ′ = − 2λ2�
�2+κ2 and κ ′ = λ2κ

�2+κ2 . This effective model
describes an atom hopping in a quasiperiodic lattice with a
global noise, which is imposed by the damped cavity field.
We have numerically solved this effective quantum master
equation. The temporal dynamics of the width of the atomic
wave packet is shown in Figs. 3(c1) and 3(c2). We find that,
in this large dissipation limit, the wave packet always spreads
diffusively σ ∼ t1/2, both where the mean-field solution shows
delocalized [Fig. 3(c1)] and localized [Fig. 3(c2)] behaviors.
Thus, this global noise destroys the coherence and makes the
atom diffuse like a classical Brownian particle at long times.

Quantum trajectory method. After considering mean-field
dynamics and these two limiting cases, we now investigate the
generic situation in which the cavity dissipation is finite. We
employ the so-called quantum trajectory method [60], which
is a stochastic way to simulate the quantum master equation
by averaging over many quantum trajectories.

We have used this method to simulate the wave-packet
spreading for different pumping strengths. The results are
plotted in Fig. 4. In Fig. 4(a), one can see a typical dynamics
of the system. Similar to the dissipationless limit, the photon
number rises to a nonzero value on a short time scale. After
that, the cavity field enters into a quasisteady state in which
the photon number has small fluctuations around its mean.
Note that the fluctuation amplitude is much smaller than
that in the dissipationless limit [Fig. 3(b2)] as the existence
of the cavity dissipation suppresses these fluctuations. At
short times, the width of the wave packet grows quickly
from zero since the cavity field has not yet built up a large
effective potential. However, at long times, after the cavity
field has reached its quasisteady state, we find that the wave
packet spreads according to anomalous diffusion σ ∼ tγ with
0 < γ < 1. We find that the exponent γ depends on the
pumping strength and other parameters. As shown in Fig. 4(b),
when the pumping strength is small, γ is relatively large,
corresponding to superdiffusion γ > 1/2. When the pumping
strength is large, γ becomes relatively small, crossing over to
the subdiffusion regime γ < 1/2 [see Fig. 4(c)]. This behavior
is very different from the dissipationless and large dissipation
limits as well as mean-field dynamics. This indicates that the
observed anomalous diffusion is a result of both the dissipation
and the cavity dynamics. At the mean-field level, the atomic
wave function has a delocalization-localization transition in
the steady state with a sharp change from γ = 1 (ballistic)
to γ = 0 (localized), see Fig. 4(c). Our results show that a
full account of cavity fluctuations and dissipation removes
any sharp transition, leaving a crossover characterized by
a continuously varying anomalous diffusion exponent. With
increasing dissipation we find that this exponent approaches
1/2, consistent with the adiabatic elimination result.
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(a) (c)

(b)

FIG. 4. (a) Wave-packet width and photon number evolution from
the exact quantum trajectory method. The parameters are given by
the point p4 in Fig. 2(a). (b) Evolution of the wave-packet width. The
dashed lines are the results of fitting toσ = atγ , and the corresponding
numbers are the exponents. The two solid lines represent the ballistic
γ = 1 and diffusive γ = 1/2 cases. (c) The exponent γ crosses over
from superdiffusion to subdiffusion with increasing pump strength.
[The parameters of pi can be found in Fig. 2(a).] For comparison, the
solid line is the mean-field result showing a transition from ballistic
transport γ = 1 to localization γ = 0, whereas the dashed line marks
the diffusive value γ = 1/2.

How can we understand this anomalous diffusion? We plot
the evolution of the photon number and the wave-packet width
for a single quantum trajectory in Fig. 5. Comparing the photon
number and the width, one finds that when the photon number
is large the width almost does not grow: At these times, the
effective potential induced by the cavity is very strong such
that the wave packet is localized and cannot spread freely.
When the cavity field fluctuates to a small value, it reduces the
effective potential: At these times, the wave packet can spread
ballistically until the revival of the photon number. With the
help of this picture, we can map the particle hopping into a
Lévy walk with rests [52,53]. When the cavity field is lower

FIG. 5. Individual quantum trajectories of the stochastic evolution
in: (a) the superdiffusive regime and (b) the subdiffusive regime.
The solid line is the wave-packet width, and the dashed line is the
photon number [multiplied by 20 in (a)]. Here β = (

√
5 − 1)/2, φ =

π/2, �/J = 1, κ/J = 1.2, and U = 0.

than a threshold, the particle moves ballistically at a certain
maximal velocity set by the bandwidth. When the cavity field
exceeds the threshold due to the Anderson localization the
motion is switched off, and the particle is at rest. The time
intervals of the “on” and “off,” i.e., moving time and waiting
time are random variables since the cavity is affected by the
noise from the environment. Crucially, we find that, in the large
pumping regime, the distribution of waiting times has a broad
tail, leading to subdiffusive behavior. Whereas in the small
pumping regime, the broad tail of the moving time distribution
dominates and gives superdiffusion. By increasing the pump
strength, one increases the mean cavity field and decreases
the switching threshold. This gradually tunes the distribution
of waiting time and the moving time, resulting in a crossover
from subdiffusion to superdiffusion.

Final remarks. Anomalous diffusion is predicted in other
quantum systems with specific forms of colored noise
[61–65]. In our model anomalous diffusion arises naturally
in a very simple experimental setting with a generic form of
damping. The wave-packet spreading could be detected by
in situ imaging. In addition, the anomalous properties could
also be detected from the photons leaking from the cavity [28]
for which we predict long-tailed distributions of lower and
higher cavity occupations. It will be interesting to consider
situations in higher dimensions or for larger particle densities
in which cavity-mediated interactions will also play a role.
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