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We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic
networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial
conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these
singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time
(PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly
with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our
results apply to other physical systems as well.
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I. INTRODUCTION

One of the intriguing features of non-Hermitian Hamilto-
nians is the breakdown of eigenstate orthogonality (as defined
by the Hermitian inner product) [1]. In the most extreme case,
two or more distinct eigenstates can even become identical
(share the same eigenvalue and eigenvector), giving rise to an
eigenspace dimensionality collapse at the so-called exceptional
points [2–7]. An exceptional point of order N (denoted as EPN)
is formed by the coalescence of N eigenvectors to form an
“exceptional vector.” The incompleteness of the eigenbases
at these special points leads to important consequences, such
as the divergence of the Petermann factor [8–12] and ultra-
sensitivity to external perturbations [13,14]. While systems
exhibiting EP2 have been intensively investigated both at the
theoretical and experimental levels, higher-order EPs (mostly
of order three) have so far received little attention [15–21],
partly due to implementation difficulties in the laboratory.
Recently, however, two groundbreaking experimental works
have successfully demonstrated systems operating at a third-
order exceptional point using acoustic [22] and optical [23]
platforms. More complex schemes supporting even higher-
order exceptional points can be constructed by using bosonic
algebra [17].

Even though higher-order EPs are expected to demonstrate
most of the general features of their counterpart second-order
singularities, a quantitative description of the extreme dynam-
ics near EPN is still lacking. In particular, power oscillations
near EP2 in parity-time- (PT -) symmetric systems have been
investigated in Refs. [24–27]. Additionally, transient power
growth in non-Hermitian optical setups has been recently
studied using pseudospectrum techniques [28]. Here, we in-
vestigate the extreme dynamics in a PT -symmetric [29–46]
Hamiltonian having higher-order EPs [17].

*Corresponding author: ganainy@mtu.edu

By employing complementary numerical and analytical
approaches, we are able to quantify the maximum value of
the extreme optical power amplification for any higher-order
EPN when the system approaches it from the PT phase. The
main results of our work are as follows: (1) establishing the link
between the dynamical evolution near EPs and the geometry
of the eigenbases associated with the underlying PT system;
and (2) demonstrating that the maximum power amplification
follows a power-law dependency on the order N of the EP.
Though our results are very general, for illustration purposes,
we concentrate in our discussion on photonic implementations.

In the remainder of this Rapid Communication, for the
sake of generality, we use dimensionless quantities. Physical
parameters can be always calculated depending on the details
of the physical system of interest.

II. POWER OSCILLATIONS NEAR EXCEPTIONAL
POINTS: A GEOMETRIC PERSPECTIVE

Consider a discrete non-Hermitian Hamiltonian H of di-
mensions N × N (we do not treat infinite-dimension cases
here). Within the optical coupled-mode formalism, this Hamil-
tonian can describe, for example, an array of coupled waveg-
uides or resonators, and will obey the equation i da

dz
= H a.

Here, a = (a0,a1, . . . ,aN−1)T is the electric field amplitude
vector and, assuming coupled waveguides, z is the propa-
gation distance (for coupled cavities, z is replaced by the
evolution time t). Suppose ek are the right eigenvectors of
H . Nonorthogonality implies that 〈ek,el〉 = e∗

k · el �= 0, where
〈 〉 is the Hermitian inner product, the symbol “∗” is the
complex conjugate, and “·” denotes the vector product without
any further conjugation. A non-Hermitian inner product that
restores orthogonality (also called biorthogonality) can be also
defined, 〈ẽk,el〉 = ek · el = 0 (k �= l), where ẽk = e∗

k is the
transpose of the left eigenvectors of H .

The general solution for the equation of motion for H

is a(z) = ∑N
k=1 Ckek exp(−iλkz), where λk are eigenvalues
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FIG. 1. Geometric intuitive illustrations of the origin of extreme
fluctuations in the vicinity of exceptional points in two- and N -
dimensional spaces as described in detail in the text are depicted in
(a) and (b), respectively. In (b), the vectors e′

i and e′′
i are components

of ei in the directions parallel and perpendicular to ve, respectively.
Since the components e′′

i are small and the vector aI is orthogonal to
ve, it follows that the coefficients Ck must have large values.

of H and the coefficients Ck are determined by the initial
condition aI = a(z = 0) = ∑N

k=1 Ckek . In the rest of this
work, we will use the normalization 〈ek,ek〉 = 〈aI ,aI 〉 = 1.
As a direct outcome of the non-Hermiticity, the total power
P (z) ≡ 〈a(z),a(z)〉 is not conserved but rather varies along
the propagation distance. In non-Hermitian systems that do not
exhibit gain, the evolution ofP (z) will be decaying oscillations.
We are interested mainly in the oscillatory part which, in some
cases, can be isolated by a simple gauge transformation that
results in a PT -symmetric Hamiltonian [31]. The oscillatory
behavior of these systems can be quantified either by using
the total power behavior P (z) or its z-averaged value 〈P 〉 ≡
1
L

∫ L

0 P (z)dz, where for perfect periodic variation L is the
period of one cycle and otherwise L → ∞. In this section
we will use the latter to develop the geometric intuition behind
the phenomenon of extreme power oscillation near EPs. An
obvious advantage of using 〈P 〉 is its direct dependence on
the coefficients Ck , 〈P 〉 = ∑N

k=1 |Ck|2. By considering the
geometry of the nonorthogonal eigenbases, we now show
that the quantity 〈P 〉 takes large values in the vicinity of an
exceptional point, which in turn indicates large oscillatory
amplitudes.

Let us first focus on the simple case of a second-order
exceptional point, EP2. As demonstrated in Fig. 1(a), in an
orthogonal coordinate system (left panel) the projections of
any vector cannot exceed the length of the vector itself. On the
other hand, if the two basis vectors are almost parallel, a vector
which is nearly orthogonal to the bases can exhibit very large
projection coefficients, diverging in the limit when the two base
vectors become identical, thus signaling the incompleteness
of the bases. This argument can be generalized to higher
dimensions, as demonstrated schematically in Fig. 1(b). Par-
ticularly, if an N × N Hamiltonian H exhibits an exceptional
point of order N , EPN, all the eigenvectors of H become
nearly “parallel” to the exceptional vector ve (the notion of
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FIG. 2. The minimum Hermitian angle �e between any two
eigenvectors of the PT Hamiltonians HN for different values of
N as a function of the non-Hermitian parameter g̃. Clearly, �e is
smaller for larger N , indicating a faster eigenspace dimensionality
collapse near higher-order exceptional points. This in turn suggests
that more violent dynamics takes place near EPN with higher orders.
Our analysis in the next section confirms and quantifies this prediction.

parallel vectors is defined here in the Hermitian sense). Thus
the projection coefficients of a vector aI which lies in an N − 1
hyperplane orthogonal to ve are large, implying a large value of
〈P 〉. This behavior can be also understood by using the notion
of biorthogonality. Particularly, since Ck = 〈ẽk,aI 〉/〈ẽk,ek〉
and by noting that the “complex length” of the exceptional
vector (i.e., the quantity

√〈ṽe,ve〉) is zero, it is clear that Ck

becomes larger when ek ∼ ve as long as 〈ẽk,aI 〉 > 〈ẽk,ek〉,
which can happen when aI⊥ve (though this is not necessarily
guaranteed for all vectors in the orthogonal subspace).

Having presented this intuitive picture, we next proceed by
considering a concrete example of PT -symmetric Hamiltoni-
ans having higher-order exceptional points [17],

HN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ig0 κ0 · · · 0 0
...

· · · κn−1 ign κn · · ·
...

0 0 · · · κN−2 igN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where the non-Hermitian (gain or loss) and coupling co-
efficients follow the rules gn = g(2n − N + 1) and κn =
κ
√

(n + 1)(N − n − 1) (n = 0,1,2, . . . ,N − 1), with the real-
valued quantities g and κ representing scaling parameters.
The reason for the unusual numbering of the matrix elements
(starting from 0 instead of 1) will be clear in the next section.
As has been shown in Ref. [17], HN generalizes the canonical
PT -symmetric toy model H2. Particularly, when g̃ ≡ g/κ <

1, HN is in the PT phase. The transition to the broken phase
(g̃ > 1) is marked by an N th-order exceptional point at g̃ = 1.
Here, we are interested in the situation where g approaches κ

from below where the system is still in the PT phase.
One possible measure to characterize the relationship be-

tween the eigenvectors of HN is the Hermitian angle [47,48],
which is defined between two complex vectors v and u as
cos �(v,u) ≡ |〈v,u〉|

|v||u| with �(v,u) ∈ [0,π/2]. Figure 2 presents
a comparison between the minimum Hermitian angle �e
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associated with the eigenvectors of HN for different values
of N . Note that �e is smaller for larger values of N , indicating
a faster collapse of the eigenspace dimensionality as g̃ → 1.
Consequently, one expects more “violent” power oscillation
for larger N values. In the following section, we confirm and
quantify this behavior analytically.

III. EXACT RESULTS USING BOSONIC ALGEBRA

In this section, we employ the bosonic algebra method
to study spectrum and propagation dynamics of a system
described by HN . In contrast to the previous section, here we
focus on P (z) rather than its z average.

To do so, we consider the non-Hermitian two-side nonin-
teracting Bose-Hubbard model that was used to construct HN ,

Ĥ = −ig(b̂†1b̂1 − b̂
†
2b̂2) + κ(b̂†1b̂2 + b̂1b̂

†
2), (2)

where b̂
†
1,2 and b̂1,2 are the bosonic creation and annihilation

operators of oscillators 1 and 2, and we assumed h̄ = 1. In the
bases |Np − n,n〉 representing a Fock state with Np − n and n

bosons in sites 1 and 2, respectively (i.e., a total number of Np

bosonic particles), the matrix representation of Ĥ is HN [17],
where N = Np + 1.

Before we proceed, we emphasize that the model in
Eq. (2) does not represent an actual PT -symmetric quan-
tum system [37,49–51] but is rather used as a mathematical
tool to facilitate the analysis. Motivated by the fact that
the Hamiltonian HN is generated from Ĥ in Eq. (2) by
populating the latter with Np particles and by noting that
Ĥ is obtained from quantizing H2 [17], we now focus on
the Ĥ and consider the following normalized input state at

z = 0, |I (q1,q2)〉 = 1√
Np!

(q1b̂
†
1 + q2b̂

†
2)

Np |0,0〉 with |q1|2 +
|q2|2 = 1. This state can be also cast in the form |I (q1,q2)〉 =∑Np

n=0 an |Np − n,n〉 with the expansion coefficients given by

an =
√

Np!
(Np−n)!n!q

Np−n

1 qn
2 . Although this particular construc-

tion of |I (q1,q2)〉 does not span all the vector space when
Np > 1, we will see later that it suffices for our calculations.

The output state at distance z can be written as (see
Appendix A for the derivation)

|O〉 = e−iĤ z |I 〉
= 1√

Np!
[q1(z)b̂†1 + q2(z)b̂†2]Np |0,0〉

=
Np∑
n=0

an(z) |Np − n,n〉 , (3)

where an(z) =
√

Np!
(Np−n)!n! [q1(z)]Np−n[q2(z)]n with the

z-dependent quantities q1(z) = q1U11(z) + q2U21(z)
and q2(z) = q1U12(z) + q2U22(z) and the elements of
U (z) ≡ e−iH2z are

U (z) =
[

cos(λz) − g

λ
sin(λz) −i κ

λ
sin(λz)

−i κ
λ

sin(λz) cos(λz) + g

λ
sin(λz)

]
, (4)

where λ =
√

κ2 − g2.

Note that within the coupled-mode formalism of waveg-
uide (or cavity) arrays, the states |Np − n,n〉 represent the
waveguide number n while the coefficients an(z) describe the
associated field amplitudes (see Ref. [17] for more details).
Therefore, the total power is given by P (z) = ∑N−1

n=0 |an(z)|2.
When the input power is taken to be unity, the expression for
the maximum amplification thus becomes GN = max[PN (z)].

For the case of N = 2, it is easy to show that, apart from a
phase factor, the initial optimal vector leading to the maximum
amplification is aopt

I = (q1,q2)T = 1√
2
(1, − i)T . Under these

conditions, the power oscillation dynamics is given by

P
opt
2 (z) = 1 + 2g̃

1 − g̃
sin2(λz), (5)

and this initial condition lets G2 = 1+g̃

1−g̃
. Note that the Hermi-

tian angle between aopt
I and ve is π/2, i.e., aopt

I is orthogonal to
ve, in agreement with the discussion in the previous section.

The general case for N > 2 is more subtle. In principle,
one has to choose the optimal initial vector that results in
the maximum amplification from the set of all initial condi-

tions |I ′〉 = ∑Np

n=0 qn(b̂†1)
Np−n

(b̂†2)
n |0,0〉. The input state |I 〉,

however, describes only a subset of all initial states. Within
this subspace, it is straightforward to show that even when
N > 2, the optimal vector still corresponds to |I (q1,q2)〉 with
(q1,q2) = 1√

2
(1, − i). In that case, the power dynamics and the

maximum GN are given by (see Appendix B)

P
opt
N (z) =

[
1 + 2g̃

1 − g̃
sin2(λz)

]N−1

, (6)

and

GN (g̃) = max
[
P

opt
N (z)

] =
(

1 + g̃

1 − g̃

)N−1

. (7)

Note that here also aopt
I is perpendicular to the exceptional

vector ve which in higher dimensions can be generated from the
expression for |I (q1,q2)〉 by substituting (q1,q2) = 1√

2
(1,i).

Even though Eq. (7) is derived by using a subset of all
the possible initial conditions, we expect it to hold when all
the possible initial conditions are considered since all the
Hamiltonians HN are generated from Ĥ . To confirm this
intuition, we will now employ a numerical technique based
on singular value decomposition (SVD) to establish that the
value of GN as obtained by Eq. (7) indeed provides the global
maximum [28]. This method is an exact optimization problem
that determines the maximum possible optimal amplification
for any given propagation distance z by considering all possible
initial conditions. Furthermore, it determines the correspond-
ing initial conditions that lead to such maximum power growth.
In particular, it can be shown analytically that the maximum
possible power amplification at a given z is equal to the largest
singular value of the propagator of the problem or equivalently
of the matrix norm of the propagator e−iHN z (where the norm
of a matrix M is generally defined ‖M‖ ≡ supu ‖Mu‖/‖u‖,
where ‖u‖ is the usual Euclidean norm of the vector u). In other
words, we have G

opt
N (z) = ||e−iHN z||2 = (max[σN ])2, where

σN are the singular values associated with e−iHN z. The right
singular eigenvector of the propagator determines the specific
initial conditions that lead to the maximum amplification. The
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FIG. 3. (a) A plot of GN and G′
N against N when (g̃ = 0.9)

given by Eq. (7) on a log scale. Clearly, the expression (7) for
GN provides the global value of the maximum amplification and it
follows a power-law dependency on N . (b) Propagation dynamics in a
waveguide array implementing a fifth-order EP, i.e., described by H5,

under the optimal input excitation, aI = 1
4 (1, − 2i, − √

6,2i,1)
T

. The
top panel presents the intensities in the individual waveguides while
the lower panel plots the total intensity in normalized units. Note that
the dynamics is oscillatory and that the maximum of the intensity in
each waveguide does not necessarily occur at the same distance where
the total intensity assumes its maximum value.

global maximum can be then found by maximizing G
opt
N (z)

with respect to z by scanning z ∈ [0,L], to obtain G′
N (g̃) =

max[Gopt
N (z)]. Figure 3(a) depicts the values of G′

N and GN

versus the order of the exceptional point N on a log scale. A
prefect agreement is found between the value of GN and the
global maximum as obtained by SVD.

Equation (7) is the central result of this Rapid Communica-
tion and demonstrates that maximum amplification is given
by GN and follows a power-law dependency on the order
of the exceptional point, with oscillation dynamics becoming
more pronounced for larger N . An interesting observation is
that, when g̃ ∼ 1, one can recast GN in the form GN (K2) =
(4K2)N−1, where K2 = (1 − g̃2)−1 is the Petermann factor
associated with H2.

Finally, we also study the propagation dynamics of the
optimal initial condition for the case of H5. Figure 3(b) presents
the evolution of the power in the individual waveguides (top
panel) as well as the total power (lower panel). An important
observation here is that the propagation distance at which the
total power attains its maximum value does not necessarily
correspond to the maximum power in the individual channels.

IV. CONCLUDING REMARKS

In this Rapid Communication, we have investigated the
behavior of PT -symmetric systems having higher-order ex-
ceptional points. Our analysis, relying on the bosonic algebra
method, showed that for systems operating near exceptional
points, the maximum possible amplification scales with the
power of N (the order of the EP). These results have been
confirmed by employing an exact numerical optimization
technique based on singular value decomposition. Given the
recent success in implementing third-order exceptional points
in acoustic and photonic systems and the continuing effort
to realize even more complex structures, our results provide

valuable insight into the generic behavior near EPs which may
help direct future research in this field.

In addition, our work opens up a new set of intriguing
questions that merit future investigations. For example, do
systems having higher-order EPs exhibit the same dynamics
locally close to the EPs? In such a case, the power-law
dependency discovered here would be universal. However,
it is also possible that Hamiltonians that do not have the
form of HN behave differently. We note, however, that, to
date, Hamiltonians of the form HN are the only systematic
approach to realize arbitrarily higher-order EPs in discrete
arrangements. Another interesting question is how nonlinear
interactions come into play when the amplification leads to
large intensities that trigger various nonlinear effects. One of
the very important directions with practical consequences is
the problem of the laser linewidth near EPs. Whereas a direct
extrapolation from the original work of Petermann [8] predicts
a divergent linewidth at EPs, a recent analysis by Yoo et al.
[37] demonstrated that the linewidth enhancement is finite. Our
work here provides an intuitive framework for understanding
the amplification of noise near EPs and hints that even larger
enhancement factors should be expected near higher-order
EPs. It would be of interest to fully develop this link either by
using an analysis similar to that of Ref. [37] or other statistical
methods [52].
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APPENDIX A

Here, we present the derivation Eq. (3) in the main text.
First, we note that |O〉 can be written as

|O〉 = e−iĤ z |I 〉
= 1√

Np!
e−iĤ z(q1b̂

†
1 + q2b̂

†
2)NpeiĤ ze−iĤ z |0,0〉

= 1√
Np!

[e−iĤ z(q1b̂
†
1 + q2b̂

†
2)eiĤz]Np |0,0〉 , (A1)

where we used the fact that e−iĤ z |0,0〉 = |0,0〉. Next, we
define b̂

†
1,2(z) ≡ e−iĤ zb̂

†
1,2e

iĤ z, which leads to the equa-

tion of motion i d
dz

(b̂†1(z),b̂†2(z))
T = H2(b̂†1(z),b̂†2(z))

T
, admit-

ting the formal solution (b̂†1(z),b̂†2(z))
T = e−iH2z(b̂†1,b̂

†
2)

T ≡
U (z)(b̂†1,b̂

†
2)

T
. By substituting in (A1), we then obtain

|O〉 = 1√
Np!

[q1b̂
†
1(z) + q2b̂

†
2(z)]Np |0,0〉

= 1√
Np!

[q1(z)b̂†1 + q2(z)b̂†2]Np |0,0〉 , (A2)

where q1,2(z) are defined in the text. This completes the
derivation.
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APPENDIX B

Here, we present the derivation of expression (6) in the main
text for a general N ,

PN (z) =
Np∑
n=0

|an(z)|2

=
Np∑
n=0

Np!

(Np − n)!n!
[|q1(z)|2]Np−n[|q2(z)|2]n

= (|q1(z)|2 + |q2(z)|2)Np

= [P2(z)]N−1. (B1)
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