
PHYSICAL REVIEW A 97, 020101(R) (2018)
Rapid Communications

Violations of a Leggett-Garg inequality without signaling for a photonic qutrit
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We realize a quantum three-level system with photons distributed among three different spatial and polarization
modes. Ambiguous measurements of the state of the qutrit are realized by blocking one out for the three modes
at any one time. Using these measurements we construct a test of a Leggett-Garg inequality as well as tests of
no-signaling-in-time for the measurements. We observe violations of the Leggett-Garg inequality that cannot
be accounted for in terms of signaling. Moreover, we tailor the qutrit dynamics such that both ambiguous and
unambiguous measurements are simultaneously nonsignaling, which is an essential step for the justification of
the use of ambiguous measurements in Leggett-Garg tests.
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I. INTRODUCTION

Macrorealism, as defined by Leggett and Garg [1], posits
that a macroscopic system will exist in a well-defined state
at all times, and that this state can be measured without
disturbing it (the assumption of noninvasive measurability).
From these assumptions follow the Leggett-Garg inequalities
(LGIs) [1–3], which hold under macrorealism but can be
violated by quantum mechanics [4–11]. The same assumptions
also imply the no-signaling-in-time (NSIT) equalities, which
demonstrate the absence, on the statistical level, of signaling
between measurements [12–15]. Having NSIT hold completes
the formal similarity between the temporal LGI and spatial
Bell tests [16]. Violations of a LGI without NSIT, however,
provides a convenient loophole for a macrorealist to explain the
experiment in terms of the signaling of invasive measurements.

It has been shown theoretically that when unambiguous,
projective measurements are used, violations of LGIs are
always accompanied by violations of NSIT [17,18], and thus
the use of projective measurements is generally problematic
in this context. In Ref. [17], however, George et al. realized
LGI violations without signaling through use of measurements
that were ambiguous, i.e., measurements where the individual
results do not completely reveal the state of the system [19].
Quantum mechanically, such measurements are sometimes
described as “semiweak.” LGI violations with ambiguous
measurements were also discussed in Refs. [5,20,21]. In
Ref. [18], a general framework for LGI tests with ambiguous
measurements was discussed. There it was shown that the
derivation of LGIs that use data from ambiguous measurements
rely on an assumption that equates the invasive influence of
the ambiguous measuring device to that of an unambiguous
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one acting on the same system. While it is perhaps hard to
see how this assumption might hold in general, it has the clear
implication that an LGI test in which ambiguous measurements
are observed to be nonsignaling is only consistent with its
own assumptions if the corresponding set of unambiguous
measurements on the same system is also observed to be
nonsignaling.

In this Rapid Communication, we report on LG experiments
with single photons that implement a three-level quantum
system measured with both ambiguous and unambiguous mea-
surements. We test LGIs and NSIT equalities with both sets of
measurements. In the case of unambiguous measurements, we
confirm that all observed LGI violations can explained in terms
of signaling. In the ambiguous case, however, we show that it
is possible arrange the time evolution of our three-level system
such that the ambiguously measured LGI is violated while at
the same time NSIT is satisfied for both measurement types.
In this case, we obtain an LGI violation that is consistent both
with assumption of noninvasive measurability as well as the
assumptions implicit in the usage of ambiguous measurements
in this type of test.

This Rapid Communication proceeds as follows. In Sec. II
we describe what is meant here by ambiguous measurements
and in Sec. III we describe their experimental realization for
our photonic qutrit. In Sec. IV we consider the nonviolations
of the LGI with unambiguous measurements when signaling is
taken into account. Section V contains our main results where
we employ ambiguous measurements to violate a LGI while
all no-signaling constraints are fulfilled. We conclude with
discussions in Sec. VI.

II. AMBIGUOUS MEASUREMENTS

We begin by discussing the meaning of unambiguous
and ambiguous measurements following Ref. [19], which
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establishes these concepts identically in both quantum and
classical contexts.

In our three-level system, unambiguous measurements
reveal one of three distinct results n ∈ {A,B,C}, and since
these results are repeatable, we associate n with the “realistic”
system state. Let us denote the probability that we measure
result n as P (n).

On the other hand, ambiguous measurements do not reveal
complete information about the state of the system and are
nonrepeatable. The particular scheme we will consider here is
a set of three individual measurements, each of which serves to
exclude one of the three system states. Thus, the measurement
outcomes are α ∈ {B ∪ C,A ∪ C,A ∪ B} and our experiments
record probabilities such as P (B ∪ C), etc.

The probabilities obtained with the two different measure-
ment setups are clearly related. Elementary probability theory
gives P (B ∪ C) = P (B) + P (C), for example, which could
easily be verified experimentally. Given the complete set of
three ambiguous probabilities, a macrorealist would have no
qualms inferring the probabilities that the system “really was
in” such as A, by calculating

P ′(A) = 1
2P (A ∪ B) + 1

2P (A ∪ C) − 1
2P (B ∪ C), (1)

and so on [22]. Here we maintain the notation P ′ for a prob-
ability inferred from ambiguous measurements, as opposed to
one that is measured directly.

Quantum mechanically, unambiguous and ambiguous mea-
surements are realized respectively as a complete set of pro-
jection operators and a more general positive operator-valued
measure (POVM) that implements a semiweak measurement
[23]. In the case of a measurement of the systems state at
a single time, calculating either with quantum mechanics or
classically, P ′(A) and P (A) will clearly agree. However, when
sequential measurements are made on the same system, the
difference in the quantum case between directly measured
probabilities (P ) and those that are inferred (P ′) becomes
critical.

III. EXPERIMENTAL SETUP

Our experiment realizes a quantum three-level system, or
qutrit, with single photons traveling through the apparatus
depicted in Fig. 1. As the general setup is similar to previous
work [10], we refer the reader to these for more details on the
implementation of the various components discussed below.

The basis states of the qutrit, |A〉 = (1,0,0)T, |B〉 =
(0,1,0)T, and |C〉 = (0,0,1)T, are respectively encoded by the
horizontal polarization of the heralded single photons in the
upper mode |HU〉, the vertical polarization of the photons
in the upper mode |V U 〉, and the horizontal polarization of
the photons in the lower mode |HD〉. For this experiment,
the photons are prepared in the initial state |C〉. The unitary
evolution of the qutrit state is realized by a sequence of
half-wave plates (HWPs) and subsequent birefringent calcite
beam displacers (BDs) that realize two unitary operators
U21(θ1,χ1,φ1) and U32(θ2,χ2,φ2) that are nominally identical

and can be decomposed as [24,25]

U (θ,χ,φ) =
⎛
⎝

1 0 0
0 cos θ sin θ

0 − sin θ cos θ

⎞
⎠

⎛
⎝

cos χ 0 sin χ

0 1 0
− sin χ 0 cos χ

⎞
⎠

×
⎛
⎝

cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎞
⎠. (2)

Throughout the experiment, measurement of the photon
state at t3 is always performed projectively. This is accom-
plished by BD9 that maps the basis states of qutrit into three
spatial modes followed by single-photon avalanche photodi-
odes (APDs), in coincidence with the trigger photons. The
probability of the photons being measured in |A〉, |B〉, or |C〉
is obtained by normalizing photon counts in the certain spatial
mode to total photon counts. The count rates are corrected
for differences in detector efficiencies and losses before the
detectors. We assume that the lost photons would have be-
haved the same as the registered ones (fair sampling) [26].
Experimentally this trigger-signal photon pair is registered by
a coincidence count at APD with a 3 ns time window. Total
coincidence counts are about 14 000 over a collection time
of 7 s.

In the forms we consider them here, the Leggett-Garg and
NSIT tests require two different types of measurement of time
t2, i.e., between the two unitary evolution operations. The
unambiguous measurement is realized by placing blocking
elements into the optical paths [10,27]. With, for example, the
channels B and C blocked, the joint probability P (n3,n2 =
A) is obtained without the measurement apparatus having
interacton with the photon. In our experiment, this blocking
is realized by a polarizing beam splitter (PBS) followed by
beam stoppers. The PBS is used to map the basis states of
qutrit to three spatial modes and the beam stoppers are used
to block photons in two of the three spatial modes and let the
photons in the remaining one pass through. By inserting the
HWPs before and after the PBS, we can block any two of the
channels and let the photons in the remaining one pass through
for the next evolution.

The ambiguous measurement is realized in a similar fashion
but this time we block just one mode and let photons propagate
forward from the remaining two. With channel C blocked, for
example, and with projective measurements at t3, we obtain
the joint probability P (n3,n2 = A ∪ B), where the inference
that the photon must have occupied either state A or B at time
t2 is the essential ambiguity in this scheme.

IV. LGI WITH UNAMBIGUOUS MEASUREMENTS

We first consider an LGI test with unambiguous measure-
ments. In the case where the state preparation is elected to
coincide with the first measurement [8,10,10,28,29], the LGI
correlator reads

K = 〈Q2〉 + 〈Q3Q2〉 − 〈Q3〉. (3)

The expectation value 〈Q3〉 is obtained using time-evolution
operators U21 and U32 applied sequentially, followed by a
projective measurement. This yields the probabilities P (n3)
and 〈Qi〉 = ∑

ni
q(ni)P (ni). Here the quantities q(A) =
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FIG. 1. Experimental setup for the test of LGI. The heralded single photons are created via type-I spontaneous parametric down-conversion
in a β-barium-borate (BBO) nonlinear crystal and are injected into the optical network (see figure for acronyms). The first polarizing beam
splitter (PBS), half-wave plates (HWPs) at 45◦ and BD1 are used to generate the initial qutrit state. The evolution operations U21 and U32 are
realized by HWPs and beam displacers (BDs). The projective measurement at time t3 is realized via the last BD which maps the basis states of
the qutrit into three spatial modes. Detecting heralded single photons means in practice registering coincidences between the trigger detector D0

and each of the detectors for measurement D1, D2, and D3. The unambiguous and ambiguous measurements at time t2 are realized by blocking
two channels or one channel at a time.

−q(B) = q(C) = 1 define a mapping from observed state n to
dichotomic variable Q [30]. The remaining correlation func-
tions are obtained as 〈Q3Q2〉 = ∑

n3,n2
q(n3)q(n2)P (n3,n2)

and 〈Q2〉 = ∑
n3,n2

q(n2)P (n3,n2) with the joint probabilities
P (n3,n2) being obtained from experimental runs in which
evolution operators U21 and U32 have projective measurements
situated both between and after them.

Under the standard LG assumptions, this correlator obeys
K � 1. However, we will consider the form of the LGI
given in Ref. [18], which avoids the noninvasive-measurability
assumption. In this case, we obtain the “modified LGI,” which
reads

K � 1 + �, � ≡
∑
n3

|δ(n3)|. (4)

Here

δ(n3) = P (n3) −
∑
n2

P (n3,n2) (5)

describes the amount of signaling from time t2 to t3. Under
assumption of noninvasive measurability, this would be zero
such that we have

δ(n3) = 0; ∀n3. (6)

These are the NSIT equalities [12] and if they are satisfied,
the modified LGI reduces to its original form K � 1. In the
approach we pursue here, however, we take the quantities δ(n3)
to be obtained from experiment, and consider the modified
LGI, Eq. (4), in this light.

Figure 2 shows a comparison of the measured values of
K and 1 + � from our experiment with unambiguous mea-
surements. We have selected a particular choice of evolution
operators such that, for these parameters, we find analytically
that K = (3 − cos 2θ2)/2, with θ2 an adjustable evolution
parameter. As Fig. 2 shows, this result is very closely matched
by experiment. Error bars in this figure include both the
statistical uncertainty and the error due to the inaccuracy of the

wave plates [31]. The statistical errors based on the assumption
of Poissonian statistics are relatively small. However, about
20 wave plates are used and each of them has an angle error
of approximately 0.1◦. These errors accumulate in a cascaded
setup and we have simulated numerically their total effect with

FIG. 2. Experimentally determined values of the LG correlator
K and the corresponding right-hand side 1 + � of the modified
LGI, Eq. (4), with evolution parameters θ1 = 0, χ1 = χ2 − π/2 =
π/4, φ1 = φ2 = 0 and a range of θ2 values. These parameters are
chosen to maxmize the value of the unambiguously measured K .
However, although we have K � 1 for all values of θ2, we have
K � 1 + � throughout the tested range. Thus when the observed
signaling is taken into account, the modified LGI, Eq. (4), is never
violated. For completeness, we also plot the ambiguously measured
KA and 1 + �A for the same parameters. Here, too, we observe KA �
1 � 1 + �A and no violations are recorded. Theoretical predictions
are represented by curves and lines, and the experimental results by
symbols. Error bars include both the statistical uncertainty and the
error due to the inaccuracy of the wave plate alignment.
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a Monte Carlo method. These inaccuracies are sufficient to
explain deviations from theoretical predictions.

The maximum value of K that we observe is 1.988 ± 0.016
at θ2 = π/2, which agrees well with the theoretical prediction
of 2. This value represents an enhanced violation of the LGI,
above the bound set for genuinely dichotomic measurements,
as described in [30] and observed experimentally in [10]. It
is clearly far in excess of the usual LGI macrorealistic bound
of K � 1. For these parameters, we obtain the right-hand side
of the LGI as 1 + � = 2 analytically, which is constant as a
function of θ2. This behavior is recovered by experiment and for
θ2 = π/2 we obtain 1 + � = 1.995 ± 0.011. Thus, while the
observed value of K is clearly in excess of the standard bound,
when the observed degree of signaling is taken into account,
we find that the modified LGI, Eq. (4), still holds. This is in
line with the theoretical results of Refs. [17,18] which forbid
violations of Eq. (4) with projective measurements.

V. LGI WITH AMBIGUOUS MEASUREMENTS

Following Ref. [18], an LGI constructed with the
ambiguous measurements has exactly the same form as before:

KA � 1 + �A, �A =
∑
n3

|δA(n3)|, (7)

where the subscript A denotes quantities obtained from am-
biguous measurements. These quantities have forms identical
to those considered previously but with probabilities P (n3,n2)
replaced with those inferred from the ambiguous measure-
ments. In particular, we obtain the joint probabilities P ′(n3,A)
in the same way as Eq. (1) and write

P ′(n3,A) = 1
2P (n3,A ∪ B) + 1

2P (n3,A ∪ C)

− 1
2P (n3,B ∪ C), (8)

and similarly for the other two probabilities. The ambigu-
ously measured no-signaling quantities are then δA(n3) ≡
P (n3) − ∑

n2
P ′(n3,n2), and the correlation functions in KA

are the same as before with the replacement P → P ′. The
ambiguously measured probabilities P (n3,α) are obtained
experimentally in exactly the same way as before, but with
ambiguous measurements replacing the unambiguous one at
t2. Theoretically, they are obtained with a POVM as outlined
in Ref. [18]. Note that the algebraic bound of K = 3 is never
violated, irrespective of measurement type [5,30].

Results for KA and 1 + �A for the parameter set in Sec. IV
are shown in Fig. 2. In this case KA � 1 � 1 + �A and no
violations of the ambiguously measured LGI are observed.

Figure 3, however, shows these quantities for a different
set of evolution parameters, namely, θ1 = 0.831π, χ1 = χ2 =
0.688π, φ1 = φ2 = 0.423π , and 0 � θ2 � π . For a signifi-
cant range of θ2 values, we obtain KA > 1. Moreover, for
0.677π � θ2 � 0.983π , we find that KA � 1 + �A, and thus
we find violations of the modified ambiguously measured
LGI. The maximum violation is found at θ2 = 0.831π with
values KA = 1.483 ± 0.031, in close agreement with the
theoretical prediction 1.464. Most importantly, at this value of
θ2 the signaling quantities are � = 0.019 ± 0.020 and �A =
0.013 ± 0.018, both of which are, to within experimental

uncertainty, essentially zero in accordance with theory which
gives � = �A = 0 exactly at this point.

While our experiment therefore satisfies no signaling for
both sets of measurements, and therefore also shows equality
of signaling between them, we can understand the origins of
the LGI violations in our scheme by looking at the individual
inferred probabilities P ′(n3,n2). The complete set of these is
plotted in Fig. 4 for the parameters of Fig. 3. Crucially, for
all values of θ2 at least three of the inferred probabilities are
negative. For example, P ′(A,A) = −0.109 for all θ2.

These results make it clear that, in quantum-mechanical
terms, these inferred probabilities are quasiprobabilities. The
role of negative quasiprobabilities in violations of LGIs has
been discussed a number of times [2,16,32–34]. In addition,
anomalous weak values have been directly connected to LGI
violations [5,35], and such values imply the existence of
negative quasiprobabilities [36]. The link between negative
quasiprobabilities and contextuality reported in Refs. [37,38]
also implies a connection between the LGI violations and
contextuality.

VI. DISCUSSION

We have described here the experimental violation of the
LGI using a realization of a three-level system with single pho-
tons. We have shown that it is possible to obtain violations of
the modified LGI, Eq. (7), that takes into account the observed
degree of signaling. Violations of this inequality were observed
for a range of our evolution parameter θ2. Moreover, at the
particular point θ2 = 0.831π , both signaling quantities � and
�A were found to be zero. At this point, then, NSIT is obeyed

FIG. 3. Experimentally determined values of the LG correlator
and upper bound for a second set of parameters: θ1 = 0.831π, χ1 =
χ2 = 0.688π, φ1 = φ2 = 0.423π and a range of values of θ2. In this
case, the focus is on the ambiguously measured correlator KA and
its bound 1 + �A. Results are also shown for the unambiguously
measured K and 1 + �. For θ2 = 0.831π , we observe a value of
KA = 1.483 ± 0.031 while both 1 + �A and 1 + � are close to 1,
within experimental certainty. At this point, then, we observe LGI
violations in the absence of signaling for both measurement types.
Other details as in Fig. 2.
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FIG. 4. Experimentally determined values of the inferred joint
probabilities P ′(n3,n2) (for n2,n3 = A,B,C) as a function of the
parameter θ2 (the other parameters fixed as in Fig. 3). Theoretical
predictions are represented by curves and lines, and the experimental
results by symbols. That P ′ takes on negative values is indicative of
the quantum-mechanical quasiprobabilistic nature of these quantities.

by both the ambiguous and unambiguous measurements. This
is particularly important because, according to Ref. [18], the
derivation of Eq. (8) and hence Eq. (7) relies on the assumption
that both unambiguous and ambiguous measurements are
“equally invasive” and therefore must exhibit the same degree
of signaling, i.e., � = �A [39]. Only at the point θ2 = 0.831π ,
are the dynamics of our three-level system such that we

have � = �A. At this point then the use of the ambiguous
measurements to construct the LGI for “macrorealistic” state
ni is justified.

Due to its use of photons, this is a proof-of-principle
experiment and cannot be viewed as a test of macroscopic
realism, as originally envisaged by Leggett and Garg but rather
of microscopic realism [40,41] as has been famously tested in
Bell-type experiments [42]. Nevertheless, the general principle
used for constructing ambiguous LGI tests without signaling
could potentially be scaled up to larger, massive objects,
perhaps most directly in molecular interference experiments
[43].

Despite the enhanced no-signaling features of our exper-
iment, and in common with all known Leggett-Garg-type
tests, possible loopholes exist for a macrorealist determined
to hold their position. The finding that some of the inferred
probabilities, P ′(n3,n2), are negative would presumably lead
the macrorealist to reject the possibility that it is possible to
learn anything about the unambiguous state of the system from
the ambiguous setup. This position, however, would require a
significant degree of contrivance given that both measurements
are known to be individually nonsignaling.
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