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We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently
driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajec-
tory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function
of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts non-
linear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices,
while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.
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I. INTRODUCTION

In a closed many-body quantum system at zero temperature,
the pure ground state may undergo a quantum phase transition
when there is a competition between two physical processes
described by noncommuting Hamiltonian terms [1]. In an open
system [2], the competition between unitary Hamiltonian evo-
lution and dissipation can induce a dissipative phase transition
for the steady state in the thermodynamic limit [3], as it has
been discussed theoretically for photonic systems [4–13], lossy
polariton condensates [14–16], and spin models [17–21].

Photonic systems are particularly promising to investigate
dissipative phase transitions described by Bose-Hubbard-like
models [22–25], particularly in platforms based on patterned
semiconductor microcavities [26] and nonlinear superconduct-
ing microwave resonators [27–29]. A few interesting experi-
ments on photonic systems have been reported recently, such
as a spectroscopic and dynamical study of a one-dimensional
array where the first resonator is coherently pumped [28] and
the observation of a dissipative phase transition in a coher-
ently driven semiconductor micropillar [30,31] or in a single
superconducting nonlinear resonator [32]. The field is still in
its infancy, but comprehensive experimental investigations of
controlled one- and two-dimensional [26] nonlinear photonic
lattices are within reach.

In a lattice of coupled resonators with local boson-boson
interaction U a coherent and homogeneous driving of all the
sites can create a macroscopic population of bosons in the
zero-wave-vector mode (k = 0). Being delocalized in space,
the latter experiences a self-interaction of strength U/N , N

being the number of sites. If one retains only the k = 0 mode
operators in the driven-dissipative Bose-Hubbard model, such
crude approximation predicts a first-order phase transition for
a critical driving strength [9]. An interesting and challenging
problem is to understand how the presence of the other modes
with k �= 0 affects the dynamics of the system. In particular, the
emergence of criticality might depend on fluctuations associ-
ated with this multitude of modes and on the dimensionality of
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the lattice. A recent work [10] has reported calculations of the
steady-state population for lattices as a function of the driving
strength, suggesting the presence of a first-order discontinuity
in two-dimensional lattices, but only a smooth crossover in
one-dimensional arrays.

The finite-size scaling of the dynamical properties have
not been systematically explored in driven-dissipative lattice
systems. This is a challenging theoretical problem because it
requires the study of a large number of modes and very long
time scales. In equilibrium systems, a critical slowing down
of transient dynamics is observed at the critical point when
the Hamiltonian energy gap vanishes. Instead, in dissipative
systems a critical slowing down is expected to be related to
the spectrum of the Liouvillian superoperator governing the
time evolution of the density matrix [3]. However, a clear
demonstration of critical slowing down as a function of lattice
size is still missing.

In this paper we explore the dynamical properties of
the driven-dissipative Bose-Hubbard model in both one-
dimensional (1D) and 2D square lattices. Within the trun-
cated Wigner approximation, we solve stochastic Langevin
equations for the lattice fields and determine the dependence
of relaxation time dynamics towards the steady state as a
function of lattice size. We are able to determine the presence of
critical slowing down in 2D lattices due to the emergence of a
first-order phase transition between a collective low-density
and high-density phase. We characterize this paradigm of
dissipative phase transition via a comprehensive study of the
main observables.

II. THEORETICAL FRAMEWORK AND METHODS

The Bose-Hubbard model in the presence of coherent
driving with frequency ωp is described by the Hamiltonian
(in the frame rotating with the drive h̄ = 1)

Ĥ =
∑

j

−�â
†
j âj + U

2
â
†2
j â2

j + F (â†
j + âj ) − J

∑

〈j,j ′〉
â
†
j âj ′ ,

(1)
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FIG. 1. Depicted on top is the considered driven-dissipative Bose-
Hubbard system (only the 1D case is shown): The left panels are for
1D arrays, while the right panels refer to 2D square lattices. (a) and
(b) Steady-state average population per site versus driving amplitude
F (in units of the dissipation rate γ ) for lattices of different size.
The dashed line is the prediction of the Gross-Pitaevskii mean-field
theory. (c) and (d) Time-dependent single-trajectory population nW

j in
the j th site (dark blue) and the same quantity averaged over all
sites n̄W

j (light orange) for F = 1.5695γ . (e) and (f) Contour plot
of the probability distribution p(n) of the site-averaged steady-state
population versus the driving. White diamonds represent the steady-
state average population per site, also shown in (a) and (b). (c) and
(e) are for a 256 × 1 array, while (d) and (f) are for a 14 × 14
lattice. Trajectories have been computed via the truncated Wigner
approximation with the parameters U = 0.1γ , � = 0.1γ , and zJ =
0.9γ (hopping rate times the coordination number z).

where � = ωp − ωc is the detuning between the driving
frequency and mode frequency ωc, U the on-site interaction,
F the homogeneous driving field (the phase is chosen in such
a way that F is real), and J the hopping coupling between two
nearest-neighbor sites (see Fig. 1, top panel). In the following, z
will denote the number of nearest neighbors (z = 2 and z = 4,
respectively, for the 1D and 2D lattices considered in this
work). To describe the dissipative dynamics, we will consider

the following Lindblad master equation for the lattice reduced
density matrix ρ̂, assuming a uniform Markovian single-boson
loss rate γ [2]:

∂ρ̂

∂t
= Lρ̂ = −i[Ĥ ,ρ̂] + γ

2

∑

j

[2âj ρ̂â
†
j − {â†

j âj ,ρ̂}]. (2)

The Liouvillian non-Hermitian superoperator L has a complex
spectrum of eigenvalues {λr} with Re(λr ) � 0, defined by the
eigenvalue equation Lρ̂r = λr ρ̂r . The steady state is usually
unique [33] and corresponds to the zero eigenvalue. The real
part of the nonzero eigenvalues is responsible for the transient
relaxation of the density matrix to the nonequilibrium steady
state ρ̂ss . The slowest relaxation dynamics is due to the eigen-
value with the smallest real part (in absolute value). We call
λ = minr |Re(λr )| the Liouvillian frequency gap, which is the
inverse of the asymptotic decay rate towards the steady state.
A dissipative phase transition is expected to be characterized
by a critical slowing down associated with the closing of the
Liouvillian gap in the thermodynamic limit [3].

In this work we explore lattices in a regime where the so-
called truncated Wigner approximation method can be applied
[22,34,35]. In general, the Lindblad master equation can be
mapped exactly into a third-order differential equation for the
quasiprobability Wigner function, which is a representation
of the density matrix. In the limit of small U , the third-order
derivatives can be neglected so that the differential equation
(2) becomes a Fokker-Planck equation [36] for a well-defined
probability function [22,34]. The latter can be solved via a
stochastic Monte Carlo approach [37] described by a set of
Langevin equations for the complex field αj (t) of the boson
mode in the j th site:

α̇j = {−i[� − U (|αj |2 − 1) − γ /2]}αj

− iJ
∑

j ′ αj ′ + iF + √
γ /2χ (t), (3)

where j ′ runs over the nearest neighbors of j and χ (t)
is a normalized random complex Gaussian noise such that
〈χ (t)χ (t ′)〉 = 0 and 〈χ (t)χ∗(t ′)〉 = δ(t − t ′). Within this for-
malism, expectation values for symmetrized products of
operators [22,34] are obtained by averaging over different
stochastic trajectories through the relation 〈{(â†

i )n, âm
j }s〉 =

1
Ntraj

∑
r (α∗

i,r )nαm
j,r , where the index r runs over the Ntraj random

trajectories.

III. RESULTS

Here we will explore the driven-dissipative Bose-Hubbard
model and investigate a first-order phase transition in a regime
where mean-field theory predicts bistability. Within a Gross-
Pitaevskii-like mean-field approach [38], the master equation
for the lattice density matrix is replaced by a simple equation
for the mean field αj = 〈âj 〉, which is the same as Eq. (3), but
without the noise terms. In the homogenous case (αj = α), the
steady-state equation takes the nonlinear form |α|2[(� + zJ −
U |α|2)2 + γ 2/4] = F 2, which can have three nondegenerate
solutions for a given F , two of which are dynamically stable.
As in all mean-field theories [11,38,39], the effect of hopping
depends only on zJ , with the lattice dimension playing no
role. Hence, in the following, when comparing 1D versus
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2D lattices, we will consider the same value of zJ so that
differences will only be due to effects beyond mean field.

In Fig. 1(a) we present results obtained with the trun-
cated Wigner approximation for the steady-state site-averaged
population nss = 1

N

∑N
i=1 Tr(ρ̂ss â

†
i âi) for 1D arrays of differ-

ent length L (up to L = 512). In Fig. 1(b) the same observable
is reported for 2D L × L lattices (up to 14 × 14). Both 1D and
2D calculations have been performed with periodic boundary
conditions. For the value U = 0.1γ considered in the follow-
ing, we have successfully benchmarked (see the Appendix)
the accuracy of the truncated Wigner approximation for small
lattices by comparison with brute-force numerical integrations
of the master equation and also calculations based on the
corner-space renormalization method [40]. In both Figs. 1(a)
and 1(b) the Gross-Pitaevskii-like mean-field prediction is
depicted by the dashed line. While, in general, mean-field
theories exhibit multistability, the density-matrix solution of
the master equation is, under quite general assumptions, unique
[33,41]: Indeed, quantum fluctuations make the mean-field
solutions metastable so that on a single trajectory the system
switches back and forth from one metastable state to another on
a time scale related to the inverse Liouvillian gap [6,30,34,42]
[see also Fig. 1(c)]. The results in Fig. 1(a) show that the S-
shaped multivalued curve of the mean-field theory is replaced
by a single-valued function, which depends on the array size
L. Remarkably, by increasing the size L of the array nss(F )
eventually converges to a curve with a finite slope. On the
other hand, in two dimensions the slope of nss(F ) does not
saturate when increasing the size L of the lattices, suggesting
the emergence of a discontinuous jump in the thermodynamic
limit compatible with a first-order phase transition.

In Figs. 1(c) and 1(d) we present the dynamics of the boson
population in a single stochastic Wigner trajectory for the
1D and 2D lattices, respectively. In the considered regime of
interactionU , Wigner trajectories have a direct correspondence
to local oscillator measurements [43], such as those carried out
via homodyne detection techniques [44,45]. In one dimension,
switches between the two metastable mean-field solutions are
barely visible in the population of the j th site nW

j (t) (blue
curve) and are absent in the site-averaged population n̄W (t) =
1/N

∑N
j=1 nW

j (t) (orange curve), consistent with the formation
of moving domains with low and high density inside the array
[10]. On the contrary, the 2D lattice exhibits a strikingly differ-
ent behavior, with a clear random switching behavior of nW

i (t)
between two well-defined metastable states. The populations
in all sites switch collectively since nW

j (t) and n̄W (t) strongly
overlap. Furthermore, notice that the 2D time scales are far
longer than in the 1D case, indicating a significantly slower
dynamics. A particularly insightful quantity is the probability
number distribution p(n) defined as follows. We consider a
time ts where the system has reached the steady state and
statistically collect all the values of n = n̄W (t > ts) for all
the considered trajectories. The results for p(n) are presented
in Figs. 1(e) and 1(f) for different values of the driving
amplitude F . We notice that, in the 1D case, this distribution
is monomodal for all values of F and the steady-state mean
value of the population follows the peak of this distribution. In
the 2D lattice p(n) exhibits a completely different behavior:
It has a single peak in the limit of small and large F , while it
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FIG. 2. Transient dynamics of the absolute difference between
the mean occupation number n(t) and its steady-state value nss for (a)
1D arrays and (b) 2D lattices of different sizes, with driving amplitude
F = 1.57γ . Other parameters are as in Fig. 1.

is bimodal in proximity of the critical region. Here, for finite
size the steady-state expectation value nss falls in a region
of negligible probability [p(nss) � 0] in between two peaks
corresponding to the low- and high-population phases. When
the 2D lattice size is increased, the crossover between the two
phases becomes steeper and therefore the bistable region also
becomes narrower, eventually collapsing to a single point when
L → ∞. This explains why in large lattices a fine scan in F is
necessary to observe this feature.

To investigate the emergence of criticality in the dynamical
properties, we calculated the time evolution towards the steady-
state value nss of the site-averaged mean occupation number
n(t) = 1

N

∑N
i=1 Tr(ρ̂(t)â†

i âi), taking the vacuum as initial state.
For values of F close to the critical point, n(t) − nss decays
exponentially to zero at large times as reported in Fig. 2. In
this asymptotic regime, the dynamics is dominated by the
Liouvillian gap λ, which can be extracted by fitting the results
with n(t) = nss + Ae−λt . Note that in order to have enough ac-
curacy, calculations have required up to 106 stochastic Wigner
trajectories for each data point. Experimentally, the asymptotic
decay rate can be also measured using the time dependence of
the second-order correlation function [31], dynamical optical
hysteresis [30], and switching statistics [28,30]. The particular
case of F = 1.57γ is analyzed in Fig. 2, where we plot |nss −
n(t)| for 1D arrays [Fig. 2(a)] and 2D lattices [Fig. 2(b)] of dif-
ferent sizes. For this fixed value of F , the dynamics gets slower
as the size of the simulated system is increased. While in the 1D
case the exponential decay rate saturates in the thermodynamic
limit, this is not the case for 2D systems. The emergence of
critical slowing down is quantified in Fig. 3, where we provide
the size dependence of the Liouvillian gap λ versus F . In
Fig. 3(a) we report results for 1D arrays: It is apparent that,
when the size L is large enough, the Liouvillian gap converges
to a finite value for all the values of F , thus proving the absence
of critical slowing down. The behavior is strikingly different
for 2D lattices, as shown in Fig. 3(b): In this case, every curve
λ(F ) presents a minimum, which becomes smaller and smaller
when the size L of the lattice is increased. As shown in the
inset of Fig. 3(b), the minimum of λ follows the power-law
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FIG. 3. Liouvillian gap λ (logarithmic scale) versus the driving
amplitude for several (a) L × 1 arrays and (b) L × L lattices. Notice
the different scales used for the 1D and 2D cases. The insets show the
minimum of λ as a function of the size L. Error bars are within the
symbol size. Parameters are as in Fig. 1.

decay minλ(L) ∝ L−η, with exponent η = 3.3 ± 0.1. Since the
phase transition is of first order, this exponent is not universal
[9,31]. To verify this, we computed the critical exponent in
lattices with a different nonlinearity (the other parameters
were unchanged), finding η = 5.3 ± 0.1 for U/γ = 0.06 and
η = 1.7 ± 0.2 for U/γ = 0.15 (see the Appendix).

The phase transition observed here in 2D lattices is remi-
niscent of what predicted analytically in the driven-dissipative
Bose-Hubbard model through an approximation where only
the k = 0 mode is retained [9]. Therefore, one may expect that
a macroscopic population in the k = 0 mode would always
give rise to a critical behavior. In this regard, we studied the
fraction f0 = nk=0/ntot of bosons in the k = 0 mode, where
nk=0 is the steady-state population of the driven k = 0 mode
and ntot is the total lattice population. In Figs. 4(a) and 4(b)
we report the finite-size analysis of f0 as a function of F . In
the region of mean-field bistability, f0 presents a minimum in
both one and two dimensions. In one dimension this minimum
saturates to a finite value as one approaches the thermodynamic
limit, while in 2D f0 exhibits a behavior consistent with a finite
jump at the critical point. For the considered interaction, in both
cases the population of the driven mode is dominant (f0 close
to 1), showing that the fluctuations induced by the coupling
to nonzero-momentum modes destroy the critical behavior in
one dimension.

Finally, we present the local equal-time second-order corre-
lation function g

(2)
0 = 〈â†

j â
†
j âj âj 〉/〈â†

j âj 〉2 as a function of F .
This quantity describes the amplitude of the fluctuations in the
field and has been employed extensively to investigate critical
behavior in optical systems. In one dimension this quantity
has a broad peak whose shape is shown to converge for large
enough L [Fig. 4(c)], while in two dimensions [Fig. 4(d)] the
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FIG. 4. (a) and (b) Population fraction f0 = nk=0/ntot in the zero-
momentum mode as a function of the driving amplitude. (c) and (d)
Zero-delay local second-order correlation g

(2)
0 versus F . Left panels

are for 1D arrays, right panels for 2D lattices. The parameters are the
same as in Fig. 1.

finite-size results show an emerging singular behavior in its
derivative at the critical point. The same qualitative behavior
is also observed in the large population limit of a single-mode
nonlinear resonator [7,9], which is equivalent to the k = 0
approximation described above.

IV. CONCLUSIONS

In conclusion, we have theoretically predicted the critical
slowing down associated with a dissipative transition
in the driven-dissipative Bose-Hubbard model. We have
revealed the emergence of critical dynamics in 2D lattices
via a finite-size analysis, which is instead absent in 1D
arrays, indicating that the lower critical dimension for this
nonequilibrium model is d < 2. We have shown that in 1D
arrays fluctuations destroy criticality of the dynamics even if
the driven mode is macroscopically occupied. The asymptotic
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Truncated Wigner
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FIG. 5. Steady-state average boson occupation per site as a func-
tion of the driving F/γ in a 4 × 1 array. Different symbols correspond
to different numerical methods. The statistical error is of the order of
the symbol size. The parameters are U/γ = 0.1, zJ/γ = 0.9, and
�/γ = 0.1.
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FIG. 6. Ratio between the steady-state average occupation ob-
tained through the truncated Wigner approximation nTW and the exact
Runge-Kutta integration of the Lindblad master equation nex in a
2 × 1 array. The error bars refer to the statistical noise of the results
associated with the stochastic Langevin simulations. Here F/γ has
been varied so that UF 2/γ 3 = 2.465 is kept constant; zJ/γ = 0.9
and �/γ = 0.1 are fixed. Note that the results for U/γ � 0.2 have
been obtained with the corner-space renormalization.

decay rate associated with the Liouvillian frequency gap
has been measured in nonlinear photonic systems with
different techniques [28,30,31], hence the critical slowing
down predicted here as a function of lattice size is within
experimental reach and can unveil fundamental properties of
dissipative phase transitions. Many intriguing studies can be
foreseen on the horizon, including the role of disorder as well
as the critical behavior of exotic open photonic lattices with
geometric frustration [46–49] or quasiperiodicity [25,50].
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APPENDIX: BENCHMARK OF THE TRUNCATED
WIGNER APPROXIMATION

In this appendix we present numerical results showing that
the truncated Wigner approximation is accurate in the regime
of parameters considered in the paper. To do so, we compare its
results to what was obtained with numerically exact methods
for small systems. Moreover, we show how the power-law
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FIG. 7. Minimum of the Liouvillian gap λ as a function of the size
L of 2D lattices, for different values of U/γ . The critical exponent
is η = 1.7 ± 0.2 for U/γ = 0.15, η = 3.3 ± 0.1 for U/γ = 0.1, and
η = 5.3 ± 0.1 for U/γ = 0.06. The parameters are zJ/γ = 0.9 and
�/γ = 0.1.

decay of the Liouvillian gap changes when the normalized
interaction U/γ is varied.

In Fig. 5 we present the steady-state average population in
a 4 × 1 array computed with the truncated Wigner approx-
imation and with the corner-space renormalization method
[40], finding excellent agreement between the two. The values
considered are the same as in the main text. We would like to
point out that for the considered value of U/γ = 0.1, a brute-
force integration of the master equation for a one-site system
requires a cutoff of Nmax = 40 bosons in order to achieve
adequate numerical convergence. In a 4 × 1 lattice the required
dimension of the Hilbert space would be 404 = 2.56 × 106,
which cannot be handled numerically without more advanced
methods. For the parameters considered in the main text, this
lattice can still be tackled by the corner-space renormalization
method (going to larger lattice sizes would require significantly
larger computational resources).

In Fig. 6 we present the ratio nTW/nex between the steady-
state average population obtained via the truncated Wigner
approximation nTW and exact methods nex as a function of the
nonlinearity U/γ . We used this quantity to identify the range of
values in U/γ for which the truncated Wigner approximation
is quantitatively accurate, finding that for U/γ � 0.3 the
truncated Wigner approximation yields results within 1% of
the exact value.

In Fig. 7 we present the minimum of the Liouvillian gap
λ as a function of lattice size L for several 2D lattices with
different nonlinearities. We find that the power-law exponent
increases as U/γ is decreased.
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