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Two-photon quantum Rabi model with superconducting circuits
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We propose a superconducting circuit to implement a two-photon quantum Rabi model in a solid-state device,
where a qubit and a resonator are coupled by a two-photon interaction. We analyze the input-output relations for
this circuit in the strong-coupling regime and find that fundamental quantum-optical phenomena are qualitatively
modified. For instance, two-photon interactions are shown to yield a single- or two-photon blockade when
a pumping field is either applied to the cavity mode or to the qubit, respectively. In addition, we derive an
effective Hamiltonian for perturbative ultrastrong two-photon couplings in the dispersive regime, where two-
photon interactions introduce a qubit-state-dependent Kerr term. Finally, we analyze the spectral collapse of the
multiqubit two-photon quantum Rabi model and find a scaling of the critical coupling with the number of qubits.
Using realistic parameters with the circuit proposed, three qubits are sufficient to reach the collapse point.
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I. INTRODUCTION

The realm of cavity and circuit quantum electrodynamics
(QED) studies the interaction between localized quantum-
optical modes and atomic systems. The archetypal quantum
description of light-matter interaction is the Jaynes-Cummings
(JC) [1] model, consisting of a two-level quantum emitter
(qubit) interacting with a single bosonic mode. Being analyt-
ically solvable, the JC model has been ubiquitously applied
to describe experiments with different quantum technologies.
The model can be derived by first principles considering a
single-electron atom in an optical cavity, applying both the
dipolar and rotating-wave approximations [2].

When the light-matter interaction strength becomes compa-
rable with the bare frequencies of the system, the ultrastrong-
coupling (USC) regime is reached and the rotating-wave ap-
proximation (RWA) ceases to be applicable. For a qubit-cavity
system in the USC regime, the JC model must be replaced
with the quantum Rabi model (QRM), a nonintegrable model
for which an open-form analytical solution has been derived
only recently [3]. The USC regime has been experimentally
achieved in different platforms, such as circuit-QED systems
[4–9], semiconductor quantum wells [10–14], and terahertz
metamaterials [15]. In particular, circuit-QED systems allow
a high flexibility in the implementation of effective two-level
quantum systems, namely, superconducting qubits, interacting
with bosonic modes supported by microwave transmission-line
and lumped-element resonators [16].

Together with experimental advances, the theoretical inter-
est in the USC regime has been steadily growing, concerning
fundamental properties of ultrastrong light-matter interac-
tions [17–31], potential applications in quantum information

[32–37], and effective implementations [38–46]. Such results
have prompted a number of theoretical studies on generaliza-
tions of the QRM, including multiqubit [47] and multimode
[48,49] cases, as well as anisotropic couplings [50,51] and
two-photon interactions [52–55]. In particular, two-photon-
coupling models stand out for their highly counterintuitive
spectral features. For a critical value of the coupling strength,
the two-photon QRM undergoes a spectral collapse [55], i.e.,
its discrete spectrum collapses into a continuous band. For
higher values of the coupling parameter, the model becomes
unbounded from below. This behavior results in a nontrivial
phase diagram in the many-body limit [56].

The implementation of two-photon couplings requires an
interaction more complex than the usual dipolar case. So
far, light-matter interactions beyond the dipolar approxima-
tion were, for instance, implemented using extremely intense
optical drivings [57]. Two-photon lasing [58–62] and Rabi
oscillations [63–66] have only been observed as resulting
from second- or higher-order processes in resonantly driven
systems. Quantum-simulation protocols have been proposed
to effectively reproduce the two-photon QRM and observe
its spectral collapse using either trapped ions [67,68] or cold
atoms [69]. However, a fundamentally nonlinear interaction is
needed to observe the emergence of two-photon couplings in
an undriven system.

Here, we propose a circuit-QED scheme able to implement
a nondipolar ultrastrong interaction between a flux qubit and
a bosonic mode supported by a superconducting quantum in-
terference device (SQUID). A first-principles derivation shows
that exploiting the SQUID nonlinearity leads to both dipolar as
well as nondipolar interaction terms, which can be selectively
activated. In particular, we focus on the case in which the
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dipolar interaction term is entirely suppressed, with the two-
photon QRM being the main driver of the dynamics. Results of
an input-output analysis show that nondipolar couplings lead to
fundamentally different quantum-optical properties compared
to the usual dipolar case, such as the appearance of distinct
selection rules and a two-photon blockade as a first-order
process. We also present the form of the effective Hamiltonian
when both the perturbative USC and the dispersive regimes
are reached. Finally, we analyze the system spectrum in the
proximity of the spectral collapse. In particular, we analyze the
multiqubit case focusing on the scaling of the critical coupling
with the number of qubits. We show that the critical interaction
strength to yield the spectral collapse can be experimentally
achieved with state-of-the-art circuit-QED technology.

In Sec. II, we present the circuit scheme followed by a
theoretical analysis that indicates the parameter regime for
which the two-photon QRM is expected to be implemented.
In Sec. III, we focus on the strong-coupling (SC) regime of
the two-photon QRM, within the validity of the RWA. We
derive an input-output theory to yield the results of scattering
experiments. Fundamentally different behaviors are found with
respect to dipolar interactions by considering either cavity or
qubit driving fields. In Sec. IV we analyze the system beyond
the RWA. We consider the case in which the two-photon
coupling strength approaches the USC regime. We also obtain
an effective Hamiltonian valid in the dispersive regime, where
the frequencies of cavity and qubit are far from resonance. In
Sec. V, we analyze the parameter regime required to reach
the spectral collapse. We show that in a feasible multiqubit
configuration the collapse point corresponds to an interaction
strength already achievable in state-of-the-art experiments.
Furthermore, we consider higher-order corrections to be added
to the two-photon QRM, in order to obtain a physical model
beyond the spectral collapse point. Finally, in Sec. VI we
summarize our results and discuss the research directions
opened by the present work.

II. CIRCUIT SCHEME

Commonly in quantum optics, dipolar interactions are
studied between few-level atomiclike systems coupled to other
systems of bosonic nature displaying a harmonic spectrum,
such as, for example, a single mode of an electromagnetic
field. The prototypical example is the JC model [1]. The
interaction operator in this case is always linear, both in the
atomic as well as in the harmonic system. In atomic systems,
two-photon absorption can dominate over linear absorption
only in presence of intense driving fields [70]. Multiphoton
processes with linear interactions have been realized with the
application of an external oscillating field acting at the right
frequency [58–66]. However, an undriven system displaying a
spectrum determined by intrinsic nonlinear processes requires
an interaction more complex than dipolar. In superconducting
quantum circuits, the large nonlinearity introduced by Joseph-
son junctions naturally leads to a circuit with intrinsic nonlinear
interactions.

An interesting nonlinear circuit was already studied in
the early days of quantum information with superconducting
circuits when flux qubits were read out using a dc SQUID
[71]. Those experiments were the first to display coherent
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FIG. 1. Circuit implementing the two-photon quantum Rabi
model. A dc-SQUID plays the role of a nonlinear resonator inductively
coupled to a flux qubit. A current bias is added to the SQUID for the
sake of generality, but it is not strictly necessary to implement the
two-photon quantum Rabi model.

qubit-resonator oscillations by driving sideband transitions
of the qubit-SQUID system [72]. In a separate experiment,
qubit-qubit interactions were shown to be mediated by the
shared SQUID detector [73]. An in-depth study of the non-
linear circuit formed by qubit and SQUID using quantum
network theory [74] was carried out [75], yielding optimal
bias conditions to suppress photon-induced dephasing, which
was later experimentally demonstrated [76]. We follow here
an alternative and more intuitive analysis that will aid us in
understanding the physics behind the two-photon process.

The circuit is displayed in Fig. 1 and it consists of a dc
SQUID with two identical junctions inductively coupled to
a superconducting flux qubit. We include the possibility of
current biasing the SQUID with an external current bias line
IB to keep the analysis more general. The SQUID is considered
symmetric for simplicity. Any asymmetry between the SQUID
junctions could always be compensated by the addition of an
external optimal bias current [77]. The Hamiltonian of the
SQUID circuit alone is given by

ĤSQ = EC q̂2
SQ − 2EJ cos

(
π

�tot

�0

)
cos ϕ̂tot, (1)

where EC = e2

CSQ
is the total SQUID capacitance from Fig. 1,

and EJ = IC�0/2π is the Josephson energy of a single junc-
tion with critical current IC . We defined the total SQUID capac-
itance CSQ, which, as in Fig. 1, may include an external shunt-
ing capacitor besides the junction self-capacitance. We denote
by �tot the total magnetic flux threading the SQUID loop. The
SQUID phase ϕ̂tot = ϕ̂SQ + ϕDC is the sum of an externally ap-
plied constant phase ϕDC ≡ arcsin{IB/[2IC cos(π�SQ/�0)]}
induced by the bias current IB , plus the quantum fluctuations
of the SQUID resonant mode ϕ̂SQ = ϕ̂s1 + ϕ̂s2, with ϕ̂sk being
the phase operator across junction k and q̂SQ the corresponding
charge operator. The phase difference ϕ̂s1 − ϕ̂s2 is related to
the external SQUID flux by fluxoid quantization, ϕ̂s1 − ϕ̂s2 =
2π�tot/�0. Here, we neglected the screening flux generated by
the SQUID geometric self-inductance, which is much smaller
than the Josephson term in typical SQUID loop sizes of a few
micrometers in length.
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Let us now consider the influence of the qubit on the SQUID.
The effective magnetic dipole moment of the flux qubit
generates a magnetic flux �̂q that modifies the total SQUID
flux, �tot = �̂q + �DC, where we have already considered
the presence of an externally applied static flux, �DC. The
qubit flux is given by �̂q = MÎ , with M being the qubit-
SQUID mutual inductance and Î the current operator of the
qubit. When we approximate the flux qubit as a two-level
system we can simplify the current operator as Î = Ipσ̂z [75],
written in the basis of the persistent current states of the
qubit, σ̂z = |L〉〈L| − |R〉〈R|, with |L〉 and |R〉 being the left-
and right-circulating persistent current states, respectively. We
will consider that the flux generated by the qubit is small
〈�̂q〉/�0 � 1. If we further assume the SQUID to be in the
phase regime EJ /EC � 1, the values of the SQUID phase
operator near its ground state are small |ϕ̂SQ| � π [78]. This
approximation is justified when we consider realistic SQUID
resonance frequencies in the range of a few gigahertz, in
proximity to the qubit resonance. Under these conditions, the
SQUID Josephson potential can be doubly expanded, leading
to a collection of terms that contain all physics of the qubit-
SQUID interaction to all orders. Up to second order, we have

USQ � −2EJ

[
cos

(
π

�DC

�0

)
− π

�0
sin

(
π

�DC

�0

)
�̂q

]

× [
cos(ϕDC) − sin(ϕDC)ϕ̂SQ − (1/2) cos(ϕDC)ϕ̂2

SQ

]
.

(2)

Here, �DC and ϕDC correspond to the constant flux and current
bias, respectively, and they can be independently tuned. Using
the harmonic oscillator basis for the SQUID mode, we can now
express the SQUID phase operator with annihilation (creation)
operator â (â†),

ϕ̂SQ = 2π

�0

√
h̄ωSQLJ

2
(â + â†), (3)

where we defined the SQUID resonance frequency ωSQ ≡
(LJ CSQ)1/2. The inductance LJ appearing here is the Joseph-
son inductance of the SQUID. Its explicit form can be found
by considering the term proportional to ϕ̂2

SQ from Eq. (2),
EJ cos(π�DC/�0) cos(ϕDC)ϕ̂2

SQ. Converting the phase oper-
ator to flux operator with ϕ̂SQ = (2π/�0)�̂, we obtain an
inductivelike potential energy

UJ = 2πIC

�0
cos(π�DC/�0) cos(ϕDC)�̂2 ≡ �̂2

2LJ (�DC,ϕDC)
,

(4)

where the Josephson inductance of the SQUID has been
defined

LJ (�DC,ϕDC) ≡ �0

2π (2IC) cos(π�DC/�0) cos(ϕDC)
. (5)

The first-order interaction term in Eq. (2) leads to the usual
Jaynes-Cummings model,

UJC = −4EJ

(
π

�0

)2

sin

(
π

�DC

�0

)
sin(ϕDC)

×MIp

√
h̄ωSQL

2
(â + â†)σ̂z. (6)

Notice that this term will vanish when no current biases the
SQUID, ϕDC = 0. This cancellation takes place since the
SQUID was assumed symmetric and therefore to first order
the external current generates no net flux in the qubit loop.
The difference with the usual linear coupling to a resonator is
due to the interaction not being dipolar but mediated by the
cos(π�tot/�0) factor in Eq. (1). The next-order term in the
expansion of Eq. (2) is the one we are really interested in as it
leads to the two-photon Rabi (TPR) physics:

UTPR = −4EJ

(
π

�0

)3

sin

(
π

�DC

�0

)
cos(ϕDC)

×MIp

h̄ωSQL

2
(â + â†)2σ̂z. (7)

Using no bias current ϕDC = 0,

UTPR = −π

4
tan

(
π

�DC

�0

)
MIp

�0
h̄ωSQ(â + â†)2σ̂z. (8)

This interaction term was also derived using other methods
by Bertet et al. [75] in order to analyze the dephasing of
flux qubits due to thermal fluctuations. Notice that, as already
mentioned, the qubit operator is written in the flux basis. When
transforming to the energy basis and biasing the qubit at the
symmetry point, the coupling operator σ̂z transforms into σ̂x . It
is clear from Eq. (8) that the DC flux in the SQUID (�DC) needs
to be different from 0 to switch ON this interaction. In other
words, it is tunable. Note that the “spurious” terms proportional
to â†â + ââ† can be rearranged as ∼ h̄ωQS(2â†â + 1)σ̂z, which
directly add to the frequency of the SQUID resonance mode
and depend on the qubit state. Therefore (if we neglect the
pure two-photon terms ∼ â2 + H.c.) we have the Hamiltonian
equivalent to the usual ac-Stark shift used in conventional
circuit-QED settings, but here we do not require the qubit and
SQUID resonances to be detuned. This process can be regarded
as an additional inductance coming from the qubit, which is
quantized and can change sign. Therefore, the qubit state can
be directly read out by measuring the resonance frequency of
the SQUID. Such a technique was already implemented in the
bifurcation readout method [79,80].

We can now define a two-photon coupling strength as h̄g2 ≡
−(π/4) tan (π�DC/�0)(MIp/�0)h̄ωSQ. The entire circuit
Hamiltonian using the two-level approximation for the flux
qubit reads

Ĥ = h̄ωSQ

(
â†â + 1

2

)
+ h̄ωq

2
σ̂z + h̄g2(â + â†)2σ̂x, (9)

which is the Hamiltonian of the two-photon quantum Rabi
model with full quadratic coupling (see Sec. V).

Using the expansion of the SQUID potential, we can
calculate the next-order interaction term. This will be important
to study the response of the system in the regime where the
potential is unbounded from below (see Sec. V). The next term
in the expansion is fourth order in the SQUID photon operator:

U4P = 2EJ

π

�0
sin

(
π

�DC

�0

)
�̂q

1

4!
cos(ϕDC)ϕ̂4

= EJ

12

π

�0
sin

(
π

�DC

�0

)
cos(ϕDC)

(
2π

�0

)4

×
(

h̄ωSQLJ

2

)2

MIpσ̂z(â + â†)4. (10)
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Notice that this term has the opposite sign compared to the
second-order one. We can rewrite the fourth-order term using
the explicit form of the SQUID inductance in Eq. (5),

U4P = 1

96

(
π

�0

)2 tan(π�DC/�0)

cos(π�DC/�0)

(h̄ωSQ)2

IC cos ϕDC

×MIpσ̂z(â + â†)4. (11)

Relative to the second-order term,

|U4P|
|UTRP| = 1

24

π

�0

h̄ωSQ

IC cos(π�DC/�0)
. (12)

Assuming a typical order of magnitude of the SQUID current of
IC ≈ 1μA, �0IC ≈ 3 THz and a SQUID resonance of 5 GHz,
then |U4P|/|UTPR| ≈ 10−3. Therefore, the circuit in Fig. 1 when
no current is applied to the SQUID, IB = 0, gives us a very
good approximation of a genuine two-photon QRM, under the
approximations assumed throughout this section.

III. STRONG-COUPLING REGIME

Having obtained a circuit scheme that implements a cavity-
QED system with an intrinsic nonlinear coupling, we charac-
terize in this section the quantum-optical properties of such
a model by analyzing the spectral features of the system.
We also derive an input-output theory to understand the re-
sponse the system would have in actual scattering experiments.
A comparison with the standard one-photon QRM shows
that replacing dipolar couplings with two-photon interactions
strongly modifies fundamental features of qubit-cavity sys-
tems, leading to nontrivial selection rules and a multiphoton
blockade. This section focuses on the SC regime, in which
the coupling strength is small compared to both the qubit and
cavity bare frequencies, but it is still larger than all dissipation
rates. Notice that the coupling strength in the proposed circuit
implementation is tunable [Eq. (8)]; therefore a wide region
of parameters could be exploited with a single device. Hence,
the SC represents the most natural regime to begin with in a
practical implementation.

Let us briefly discuss the Hamiltonian spectrum, which will
be needed to understand the dynamical response of the system
to external drivings. In the SC regime, the two-photon QRM
Hamiltonian can be simplified by RWA to the two-photon JC
Hamiltonian (we omit the hat symbol over operators in the rest
of the article),

HRWA = ωca
†a + ωq

2
σz + g2(σ+a2 + σ−a†2

), (13)

where we neglected the counter-rotating terms σ−a2 + H.c.
and σxa

†a, rotating at frequencies 2ωq + ωc and ωq , respec-
tively. Here σ± = 1

2 (σx ± iσy). Figure 2 shows a comparison
between the spectrum of the two-photon QRM and the standard
single-photon QRM, which reduces to the JC model in the SC
regime,

HJC = ωca
†a + ωq

2
σz + g(σ+a + σ−a†). (14)

We consider both models for resonant interactions, so that
in the two-photon case we set ωq = 2ωc, while for the one-
photon coupling the qubit energy spacing is equal to the cavity
frequency. These are the most natural frequency scales to

g/ωc

Qubit & cavity 
drives

Cavity 
drive

Qubit  
drive

g2/ωc

FIG. 2. Comparison of the eigenenergies of the standard one-
photon and the two-photon QRMs in the strong-coupling regime as
a function of the coupling strength g. In both cases, we consider
resonant interactions, so that ωq = ωc for dipolar coupling (left),
while ωq = 2ωc in the two-photon case (right). Lighter and darker
colors in each plot identify parity eigenstates corresponding to the
operators �JC = σze

iπa†a and �2ph = eiπa†a for the one- and two-
photon QRM, respectively. Vertical arrows show selection rules for
cavity and qubit drivings (see Sec. III A).

compare the two models, as in both cases the so-called vacuum
Rabi splitting is maximal.

In the SC regime, both models respect a continuous symme-
try given by the total excitation number for dipolar interactions
CJC = a†a + σz and a weighted excitation number for two-
photon couplings C2ph = 2a†a + σz. This symmetry leads to
an exact solution of the JC model [81] and its two-photon
generalization [82]. For resonant two-photon coupling, the
ground and first excited states are given by |g,0〉 and |g,1〉,
which are separated by ωc. Here, |g〉 (|e〉) denotes the qubit
ground (excited) state while the field state is represented in
the basis of Fock states. Higher excited states are given by the
doublets |ψ±

n 〉 = (|g,n + 2〉 ± |e,n〉)/√2. Setting the ground-
state energy to zero, the energy eigenvalues corresponding to
the doublets are E±

n = ωc(n + 2) ± g2
√

(n + 1)(n + 2).
When the coupling strength is too large to allow the

RWA, the continuous symmetries CJC and C2ph break down
into discrete ones, which we denote by �JC and �2ph for
dipolar and two-photon couplings, respectively. The standard
QRM preserves the parity of the total number of excitations
�JC = σze

iπa†a . On the other hand, the two-photon coupling
Hamiltonian of Eq. (9) commutes with the parity of the photon
number �2ph = eiπa†a . The latter symmetry is unaffected by
spin-flips; hence it is conserved and it introduces selection
rules in the case of qubit driving, as detailed in the following.
Notice that the symmetry is different when considering a pure
two-photon coupling a2 + (a†)2 rather than a full quadratic
coupling (a + a†)2 (see Sec. V).

A. Input-output theory

In this section we analyze the photon statistics of the cavity
output field for the driven two-photon QRM and compare
it to the results of the one-photon QRM. We assume that
the system is coupled to two waveguides that support a
continuum of modes. We consider the cases in which either the
cavity or the qubit is coupled to an input waveguide. In both
configurations we observe the state emitted by the cavity into an
output waveguide. We will focus on the stationary output field
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aout = limt→∞ aout(t), obtained after an evolution time that is
long compared to the relaxation time of the system.

In the following, we present results on the system output
obtained by numerically [83] solving the master equation (see
Appendix A). Input-output relations [84] are obtained under
the RWA on the system-bath coupling, assuming that the
interaction strength with the extracavity mode is weak and
constant over the relevant frequency range. Notice that these
approximations are well justified only when g,g2 � ωc,ωq .
When the USC regime is reached, the input-output relations
must be modified by expressing the electric-field operator in
the cavity-qubit dressed basis [20,26], or by taking into account
the colored nature of the dissipation bath [18,85].

In particular, we consider the normalized transmitted in-
tensity T = nout/nin and the two-photon correlation func-
tion g(2)(0) = 〈(a†

out)
2(aout)2〉/n2

out, with nout = 〈a†
outaout〉. The

transmitted state is analyzed as a function of the frequency ωd

and intensity D of the coherent driving field (see Appendix A).

1. Cavity driving

Let us first consider the case in which the cavity mode is
continuously driven by an input coherent state. In Fig. 3, we
compare the results obtained from the two-photon quantum
Rabi model (red solid line) and from the standard one-
photon interaction (blue dashed line). The introduction of
two-photon interactions in a qubit-cavity system immediately
results in fundamental modifications of the cavity transmission
properties. For a weak input field the one-photon model is
characterized by the vacuum Rabi splitting, visible in the
symmetric transmission peaks at frequencies given by ωc ± g.
On the other hand, the transmitted intensity of the two-photon
QRM presents a single peak at the cavity frequency.

The differences in the response of the two models can be
understood by comparing their energy spectra (see Fig. 2).
For dipolar interaction, the first allowed transitions lead to the
excitation of the lowest JC doublets |g,0〉 ± |e,1〉. The first
excited state of the two-photon QRM in the SC regime is
instead given by |g,1〉, which contains no atomic excitations.
As a result, the weakly driven transmitted intensity is the
same than for an empty cavity. However, the presence of
the nonlinearity in the system is revealed by the dip of the
two-photon correlation function at resonance, as the two- and
higher-order photon components in the transmitted state are
strongly damped (sub-Poissonian statistics). Hence, although
the transmission profile is similar to the empty-cavity case,
the transmitted photons are strongly antibunched such that the
system exhibits a single-photon blockade [86]. This blockade
means that a single-photon absorption event prevents the sys-
tem from absorbing further photons, resulting in an emission of
photons one by one. Therefore, in this regime the two-photon
QRM represents a steady-state source of single-photon states.

When the amplitude of the input field increases, the ratio
of transmitted field in the two-photon QRM substantially
decreases. High transmission is restored in the limit when
the amplitude of the driving field is large compared with
the dissipation rates. In that case, the qubit saturates in both
models and the system asymptotically reaches a harmonic
behavior. The one-photon coupling model has an almost linear
response, i.e., it shows a single high-transmission peak at the
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FIG. 3. System output spectrum for coherent cavity driving. One-
photon (blue dashed line) and two-photon (red solid line) interactions
are compared. The plots show normalized transmitted intensity (left
column) and two-photon correlation function (right column) as a
function of the driving frequency ωd . From the top to the bottom, the
intensity D of the coherent driving is increased. [Notice that (D/γ )2

corresponds to the intracavity photons in an empty resonator driven
by the same field.] The horizontal green line in the plots of the right
column marks the transition from super-Poissonian g(2)(0) > 1 to sub-
Poissonian g(2)(0) < 1 photon statistics. The qubit-cavity coupling is
g = g2 = 0.01ωc, the cavity decay rate is γ = ωc × 10−3, while the
qubit decay and pure dephasing rates are given by γq = ωc × 10−4

and γφ = 5ωc × 10−5, respectively.
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FIG. 4. System transmission spectrum for coherent qubit driving.
The plots show the normalized transmitted intensity T and the two-
photon correlation function g(2)(0) for the standard one-photon QRM
(left column) and the two-photon QRM (right column). Notice that
for two-photon couplings the resonances are centered around 2ωc

and the photon statistics is strongly super-Poissonian. The following
physical parameters have been used: driving intensity D = 0.03γ ,
coupling strength g,g2 = 0.01ωc, cavity and qubit decay rates γ =
γq = ωc × 10−3, and qubit pure dephasing rate γφ = 5ωc × 10−5.

cavity frequency, with g(2)(0) ≈ 1. On the other hand, in the
two-photon QRM the presence of the qubit strongly affects
the transmission spectrum in the strong-driving limit. In this
case, the output spectrum is characterized by two transmission
peaks, detuned from the cavity frequency by ±g2, a frequency
gap not corresponding to the two-photon Rabi splitting

√
2g2.

Also, for these peaks the two-photon correlation function
is almost unitary. In Appendix B we provide an analytical
explanation for this behavior, assuming that for a strong driving
the steady state of the system is characterized by highly excited
eigenstates.

2. Qubit driving

The transmission spectrum when the qubit is driven by a
continuous coherent field is shown in Fig. 4. The spectrum is
characterized by a double-peak structure which corresponds
to the vacuum Rabi splitting, respectively equal to 2g and to
2
√

2g2 for the one- and two-photon QRM. Notice the driving
frequency of the two-photon QRM spectrum being twice the
frequency of the cavity. Indeed, transitions between the ground
and the first excited state are forbidden by selection rules (see
Fig. 2). The two-photon QRM Hamiltonian—in all regimes of
interaction—commutes with the symmetry operator �2ph =
exp{iπa†a}, which corresponds to the parity of the photon
number. Unlike the case of the driven cavity, the qubit driving
does not break this symmetry, so that transitions between states
with opposite parity are strongly damped.

A marked difference between one- and two-photon QRMs
is also found for the photon statistics of the cavity transmitted
field. In the one-photon case we observe sub-Poissonian
statistics [g(2)(0) < 1] at each resonance of the first JC doublet,
indicating a suppression of multiple excitations which is indeed
due to a single-photon blockade [87]. On the other hand, the
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FIG. 5. Two- and three-photon correlation function as a function
of the driving intensity D in the case of qubit driving. For the
dipolar QRM (left), we observe photon antibunching for low driving
intensity due to the spectrum nonlinearity. For the two-photon QRM
(right) there is an easily accessible region of parameters in which
the two-photon correlation function is larger than or close to 1,
while three-photon contributions are strongly dumped. This quantum
nonlinear effect is known as two-photon blockade. The frequency of
the driving frequency is taken to match the high-transmission peaks
(see Fig. 4). Accordingly, ωd = ωc + g in the left panel, while ωd =
2ωc + √

2g2 in the right panel. The following physical parameters
have been considered: coupling strength g,g2 = 0.01ωc, cavity and
qubit decay rates γ = γq = ωc × 10−3, and qubit pure dephasing rate
γφ = 5ωc × 10−5.

g(2)(0) function of the two-photon QRM is always larger than
1 (super-Poissonian statistics), which is an indication of a
higher photon number in the cavity output field. Therefore,
the two-photon QRM does not exhibit single-photon blockade
when a driving field is applied to the qubit. The next step is to
analyze if a two-photon blockade exists.

In order to provide evidence for a two-photon blockade
when nout/γ � 1 (very small average number of photons
in the intracavity field), it is sufficient to simultaneously
fulfill g(2)(0) � 1 and g(3)(0) = 〈(a†

out)
3(aout)3〉/n3

out < 1
(three-photon correlation function) [87]. These conditions
indicate two-photon bunching and three-photon antibunching,
respectively. In Fig. 5 we show the two- and three-photon
correlation functions as the driving intensity D is increased,
fixing the driving frequency ωd to the values that maximize
transmission for one- and two-photon interactions [see
Fig. 4]. Notice that the two-photon QRM exhibits a wide
region of values of D for which simultaneously g(2)(0) � 1
and g(3)(0) < 1, signaling the presence of two-photon
blockade, i.e., the absorption of two photons by the
cavity (via the absorption of a single photon by the qubit)
prevents the system from absorbing further photons. Such a
dynamical quantum-nonlinear effect has been observed in an
atom-cavity system (JC system) driven close to a two-photon
resonance [87]. The circuit scheme here proposed allows the
implementation of this phenomenon as a first-order process on
a platform capable of reaching the USC regime (see Sec. IV).

IV. PERTURBATIVE ULTRASTRONG COUPLING

In this section, we consider the first correction to the RWA
Hamiltonian, Eq. (13), when the coupling strength approaches
the USC regime.

A. Two-photon Bloch-Siegert Hamiltonian

In Sec. III, the counter-rotating terms (σ−a2+ H.c. and
σxa

†a) were neglected to obtain the two-photon QRM in the
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strong-coupling regime [Eq. (9)]. Instead, these terms can be
treated in a perturbative fashion in the perturbative USC regime
[27], i.e., when g2(n̄ + 1) � ωq,2ωc + ωq , with n̄ being the
average photon number in the cavity mode. By applying a
perturbation theory on the counter-rotating terms up to second
order in g2/(2ωc + ωq) and g2/ωq , we obtain the two-photon
Bloch-Siegert (2BS) Hamiltonian (neglecting constant terms),

H2BS = HRWA − ω2BSa
†a + (ω2BS + �q)

σz

2

+
(ω2BS

2
+ 2�q

)
σz[a

†a + (a†a)2], (15)

where ω2BS = 2g2
2/(2ωc + ωq) and �q = 2g2

2/ωq are the two-
photon Bloch-Siegert (BS) shifts due to the counter-rotating
terms.

It is interesting to compare H2BS with the BS Hamiltonian
derived for the standard one-photon QRM [27,81],

HBS = HJC + ωBS
σz

2
+ ωBSσza

†a, (16)

with ωBS = g2/(ωc + ωq) the Bloch-Siegert shift [5]. First, we
observe a natural and expected difference between ω2BS and
ωBS, in the prefactor 2 of the ωc contribution to ω2BS. Then,
aside from the BS shift proportional to �q due to the cross term
σxa

†a, which is exclusive to the two-photon QRM, we note two
additional features in the two-photon BS Hamiltonian that are
not present in the one-photon case Eq. (16), up to the second
order in g, namely, a negative shift in the cavity frequency
(−ω2BSa

†a) and the presence of a nonlinearity in the cavity
mode conditioned on the qubit state [∝ σz(a†a)2].

With H2BS, which is diagonalizable, one could extend the
analysis of the dissipative dynamics performed in Sec. III
into the perturbative USC regime. In that case, it is neces-
sary to replace the phenomenological optical master equation
(Appendix A) by the Bloch-Redfield (or dressed-state) master
equation [88]. Moreover, one has to consider the input-output
relations that express the electric-field operator in the cavity-
qubit dressed basis [20,26] and take into account the colored
nature of the dissipation bath [18,85].

B. Two-photon dispersive regime

In this section, we consider the case in which the frequencies
of cavity and qubit are far from resonance (known as the
dispersive regime). This configuration is widely used for qubit
readout in circuit QED [89], where the qubit-cavity interaction
is given by the standard one-photon QRM.

In this regime, achieved when |�2ph| = |2ωc − ωq | �
g2(n̄ + 1), both rotating and counter-rotating terms perturba-
tively contribute to the dynamics. In this way, by applying
a perturbation theory on the entire interaction Hamiltonian
of Eq. (9) up to second order in g2/(2ωc + ωq), g2/ωq , and
g2/|�2ph|, we obtain the two-photon QRM Hamiltonian in the
dispersive regime (neglecting constant terms),

Hdis = (ωc − ω2BS + χ )a†a

+ (ωq + ω2BS + �q + χ )
σz

2

+
(ω2BS

2
+ 2�q + χ

2

)
σz[a

†a + (a†a)2], (17)

with χ = 2g2
2/�2ph. When the counter-rotating terms are

negligible (ω2BS,�q → 0), we end up with the two-photon JC
model in the dispersive regime:

HRWA
dis = (ωc + χ ) a†a + (ωq + χ )

σz

2

+ χ

2
σz[a

†a + (a†a)2]. (18)

It is interesting to compare HRWA
dis with the dispersive

regime of the standard one-photon Jaynes-Cummings model.
Up to fourth order in g/|ωc − ωq |, the dispersive JC model is
given by

HJC
dis = (ωc + ζ )a†a + (ωq + χ (1))

σz

2

+χ (1)σza
†a + ζσz(a

†a)2, (19)

in which χ (1) = g2/� is the qubit-cavity dispersive coupling,
the ac-Stark shift, with � = ωc − ωq (|�| � g), and ζ =
g4/�3 is a small nonlinearity that is usually neglected [88].

Let us briefly comment on the four terms introduced by the
two-photon dispersive interaction. In the first line of Eq. (18)
we have an identical constant frequency shift χ for both the
qubit and cavity mode. This shift is the equivalent of the Lamb
shift in the dispersive JC model [first line of Eq. (19)]. In the JC
model, the shift in the qubit frequency is due to a perturbation
of second order in g, while the shift in the cavity frequency ζ

comes from a perturbation of fourth order in g. The first term in
the second line of Eq. (18) is analogous to the ac-Stark effect,
i.e., a shift χ of the cavity mode frequency conditioned on the
qubit state. The last term in Eq. (18) is a more interesting one
since it consists in a nonlinear Kerr effect that depends on the
qubit state. However, in the two-photon QRM this nonlinearity
is not due to a small higher-order correction as occurs in the
one-photon QRM [last term in Eq. (19)] but it is of the same
order as the equivalent of the Lamb and the ac-Stark shifts.

The presence of a nonlinear Kerr effect of the same order
as the usual first-order frequency shifts paves the way to
interesting future studies. For instance, two-photon interac-
tions could be used to improve qubit readout protocols in the
dispersive regime. Given that the Kerr effect provides an intra-
cavity squeezing term, external sources of squeezed radiation
would be no longer necessary [90]. The nonlinear Kerr effect
could also be applied in producing nonclassical states (e.g.,
squeezed cat states) and in the enhancement of the multiphoton
blockade [91].

V. APPROACHING THE SPECTRAL COLLAPSE

In this section, we discuss the minimal value of the qubit-
oscillator interaction strength required to approach the spectral
collapse of the two-photon QRM. Then, we consider higher-
order terms derived in Sec. II in order to understand the physical
response of the system when the spectrum of the two-photon
QRM collapses.

So far, the spectral collapse of the two-photon QRM has
been mostly studied considering the interaction term σx(a2 +
a†2

) [52–55,67,68]. In that case, the spectral collapse takes
place for a critical value of the coupling strength gcol = ωc/2.
The circuit design proposed in Sec. II is instead described by a
full quadratic couplingσx(a + a†)2, similar to a recent proposal
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to implement generalized Rabi models in cold atoms [69]. The
full quadratic coupling is the actual physical representation
of the qubit-photon interaction, as the qubit is coupled to the
square of the electric or magnetic field of the cavity mode.
When the full quadratic coupling is taken into account, the
critical value of the coupling strength is given by gcol = ωc/4,
which is a more attainable quantity.

In the following, we provide an intuitive explanation for
the appearance of the spectral collapse. Furthermore, we show
that the addition of more qubits reduces the critical value of
the individual qubit coupling strength needed to reach the
collapse point. When multiple qubits are involved, the system
Hamiltonian can be written as

H = ωca
†a + g2NSx(a† + a)2 + Hspin, (20)

in which N is the number of qubits and Sx = 1
N

∑N
i=1 σ i

x

is the normalized collective spin operator. In the last term
Hspin, we gathered all terms including only spin operators
Hspin = ωq

2

∑N
i=1 σ i

x , where the index i identifies each qubit.
Let us rewrite the system Hamiltonian in terms of the field
quadratures, x = 1√

2ω
(a† + a) and p = i

√
ω
2 (a† − a),

H = ω2

2

[
1 + 4g2N

ωc

Sx

]
x2 + 1

2
p2 + Hspin. (21)

The norm of Sx is bound to be between −1 and 1, so when
g2 � gcol = ωc

4N
there exist spin states for which the optical

field potential in Eq. (21) is flat or even unbounded from
below.Hspin being a finite-norm operator, it cannot compensate
this divergence and so the spectral collapse takes place.
The dependence 1/N of the collapse value gcol relaxes the
experimental constraints on the singlequbit coupling strength,
as including more qubits in the circuit design could result in
being less challenging than increasing the individual coupling
parameters.

Notice that the previous argument is still valid for more
structured spin Hamiltonians. It has been recently shown that
spin-spin interactions inhibit the onset of the phase transition
in the thermodynamic limit of the Dicke model [92]. This
is not the case for the spectral collapse of the two-photon
Dicke model, which takes place for any value of N . In
Fig. 6(a) we show the system spectrum for N = 3, where
we compare the Dicke model of Eq. (21) (solid red line) to
the model obtained adding to Hspin interspin interactions of
the kind J

∑N−1
i=1 σ i

xσ
i+1
x (dashed yellow line). The system

spectrum collapses for values of the individual qubit-oscillator
coupling smaller than 0.09ωc, well within the reach of present
superconducting-circuit technology. The interspin coupling
modifies the spectrum for low coupling strengths, but it does
not qualitatively modify the system spectrum in proximity of
the spectral collapse.

Having theoretically shown that the collapse point can
be achieved in practical implementations, let us analyze the
spectrum of the circuit scheme proposed in Sec. II at and
beyond the collapse point. In order to show that the two-photon
QRM Hamiltonian of Eq. (9) effectively describes the full
circuit model Eq. (1), we expanded the cosinusoidal potential
of the SQUID and kept terms up to quadratic order in the
SQUID internal phase. When no current biases the SQUID,
odd-power contributions vanish, so that the first correction is

(a)

(b)
g2/ωc

g2/ωc

FIG. 6. Numerical solutions for the eigenenergies of two-photon
interaction models, as a function of the coupling strength, in the three-
qubit case [N = 3 in Eq. (20)]. We consider resonant interactions
ωq = 2ωc. For the sake of clarity, only the first ten energy levels
are displayed. A cutoff n = 150 for the maximum allowed number of
photons has been imposed. (a) Eigenenergies of the two-photon QRM
(solid red line) and of the model obtained adding interspin couplings of
strength J = 0.2ωc. The presence of interspin interactions modifies
the spectrum in the SC regime but becomes irrelevant close to the
collapse point. (b) Energy levels of the two-photon QRM (solid red
line) and of the model obtained by adding the quartic coupling term
with g4/g2 = 10−3. The quartic term is negligible in the SC regime,
while around the collapse point it suddenly becomes necessary to
correctly assess the system ground state.

given by the quartic term U4P = g4σx(a + a†)
4
. The prefactor

of the quartic term is much smaller than the two-photon
coupling strength (g4/g2 ∼ 10−3), hence in the SC regime
it can be safely neglected. However, when the two-photon
QRM undergoes a spectral collapse the spectrum becomes
unbounded from below and higher-order terms must be taken
into account in order to obtain a physical model of the system.
In Fig. 6(b) we compare the eigenenergies of the two-photon
QRM (solid red line) with the model obtained by adding the
quartic term (dashed yellow line). The two spectra coincide
up to the spectral collapse (g2 = ωc/12). Beyond the collapse
point, the quartic term suddenly starts to play a relevant
role, providing the model with a physical ground state. If
the coupling strength keeps increasing, the spectrum also
collapses in the presence of the quartic coupling term, implying
that higher orders in the expansion will become increasingly
relevant.
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VI. DISCUSSION AND PERSPECTIVES

Let us now briefly summarize our results before comment-
ing on future perspectives. We proposed a circuit scheme where
dipolar and nondipolar interaction terms can be selectively
activated. The coupling strength of one- and two-photon
interactions can be independently tuned in real time by adding
static current and flux biases to the main SQUID loop, allowing
the exploration of both strong and ultrastrong couplings of
nondipolar interactions. In particular, we focused on the two-
photon quantum Rabi model, which can be implemented with
a full quadratic coupling.

We presented an input-output analysis of two-photon inter-
actions in the SC regime, highlighting fundamental differences
with the Jaynes-Cummings physics. For a weak coherent cavity
driving, the two-photon Rabi splitting is not visible, as the first
excited level of the model is a purely photonic state, unlike the
polaritonic splitting for dipolar interactions. In this regime, the
system represents a single-photon source that is robust toward
qubit decoherence. For strong cavity driving, the two-photon
QRM saturates but the presence of the qubit is still relevant in
the transmission spectrum, which is characterized by a double-
peak structure. We provided an analytical description for this
behavior, which bears the signature of level quantization also
for intense fields. When the external driving is applied to the
qubit, the transmission spectrum is characterized by different
selection rules, established by the conservation of the parity
of the photon number. The output photon statistics shows
a pronounced two-photon blockade effect which takes place
as a first-order phenomenon, which is then visible also for
few-photon drivings.

We analytically derived effective Hamiltonians that include
perturbative corrections when the rotating-wave approxima-
tion is broken. In particular, we considered the Bloch-Siegert
and the dispersive regimes. The perturbative corrections are
given by Lamb, ac-Stark and qubit-state-dependent Kerr shifts.
The latter represents a fundamental difference with respect to
dipolar interactions that could lead to practical advantages in
quantum information tasks.

Finally, we analyzed the system spectrum at the collapse
point of the two-photon QRM in the case of full quadratic
coupling. We show that by adding more qubits to the circuit,
the spectral collapse can be reached with relatively small
coupling strength. When the spectral collapse takes place,
higher-order interaction terms must be included in order to
avoid divergences of the eigenenergies, suggesting that they
could become relevant to the system dynamics.

Our work paves the way to the experimental and theoretical
exploration of nondipolar interactions in microwave quantum
photonics, both in the strong- and in the ultrastrong-coupling
regime. Immediate follow-up studies will focus on the study
of the modification introduced by two-photon interactions on
standard cavity QED phenomena like superradiance, which is
the radiation rate enhancement experienced by multiple qubits
coupled with the same optical mode. In terms of applications,
our work could be relevant for the generation of squeezed cat
states, namely, entanglement generation between qubits and
highly populated cavity squeezed states. Furthermore, these
results could be generalized to obtain nondipolar interactions
in waveguide QED, where atoms interact with a continuum
of modes, resulting in nondipolar spin-boson models. Finally,

nondipolar couplings represent a novel kind of interactions
that could be exploited in quantum-simulation protocols or in
the implementation of many-body phenomena with quantum
fluids of light [93].
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APPENDIX A: INPUT-OUTPUT THEORY

We assume that the cavity is coupled to one-
dimensional waveguides via the standard interaction

Va =
√

γ

2π

∫
dω[bi(ω)a† + b

†
i (ω)a], where γ is the cavity

dissipation rate and bi(ω) are annihilation operators for the
input-output fields [84]. In the same way, the interaction
Hamiltonian of the qubit with the input waveguide is given

by Vσ =
√

γq

2π

∫
dω[c(ω)σ †

+ + c†(ω)σ−], where c(ω) are
annihilation operators of the input fields, and they also model
qubit dissipative decay. These interactions lead to the master
equation

ρ̇(t) = i[ρ(t),H] + Laρ(t) + L↓ρ(t) + Lφρ(t), (A1)

where H = HS + Hd includes the system and driving Hamil-
tonians. In the SC regime, the system Hamiltonian is given
by Eq. (13) for the two-photon case and by the JC model in
the one-photon case. We consider Hd = 2D cos(ωdt)(s† + s),
with s = a (s = σ−) for cavity (qubit) driving. The effective
intensity of the driving D = β

√
γ is given by decay rates

and by the amplitude β of the input coherent field. Notice
that β is normalized in such a way that nin = |β|2 represents
the flux of photons per second of the input field. The cavity
decay due to the interaction with an external waveguide is
described by the Liouvillian operator Laρ(t) = γD[a]ρ(t),
where D[O]ρ = OρO† − 1

2 {ρ,O†O}. The model also in-
cludes qubit decay L↓ρ(t) = γD[σ−]ρ(t) and pure dephasing
Lφρ(t) = γφD[σz]ρ(t). The output fields are obtained by
numerically solving the master equation and by using the
input-output relation aout(t) = ain(t) + √

γ a(t) [84].

APPENDIX B: STRONG-DRIVING LIMIT

In the SC regime, for resonant interaction (ωq = 2ω), the
two-photon QRM Hamiltonian can be written in the interaction
picture as HI = g2(σ+a2 + σ−a†2

). This Hamiltonian pre-
serves a continuous symmetry given by a weighted excitation-
number operator C2ph = σz + 2a†a. Notice that when the USC
regime is reached, this continuous symmetry breaks down
into a discrete one �2ph = exp{iπa†a}, which corresponds
to the parity of the photon number. However, in the SC
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regime the continuous symmetry allows one to diagonalize
the Hamiltonian. Beyond the ground (|g,0〉) and first excited
(|g,1〉) states, the system eigenstates are given by the dou-
blets |ψ±

n 〉 = (|g,n + 2〉 ± |e,n〉)/√2. Setting the ground-state
energy to zero, the energy eigenvalues corresponding to the
doublets are given by E±

n = ωc(n + 2) ± g2
√

(n + 1)(n + 2).
In the case of cavity driving, the driving Hamiltonian is

given by Hd = D(eiωd ta† + e−iωd t a). Let us rewrite the ladder
operators in the basis of the two-photon QRM doublets,〈

ψs
n

∣∣a∣∣ψs ′
n′
〉 = 1

2 [
√

n′ + 2 + ss ′√n′]δ(n + 1,n′), (B1)

where s = ±1. In the limit of large n, we can approximate〈
ψs

n

∣∣a∣∣ψs ′
n′
〉 ≈

√
n′δ(n + 1,n′)δ(s,s ′). (B2)

It follows that for highly populated states the cavity driving
induces transitions between the eigenstates of neighboring

doublets, without mixing the lower with higher states of
each doublet. Furthermore, the

√
n′ factor shows that the

energy ladder becomes harmonic. Indeed, we can calculate the
energy difference �±

n = E±
n − E±

n−1 between lower or higher
eigenstates of neighboring doublets,

�±
n = ωc ± g2[

√
(n + 1)(n + 2) −

√
n(n + 1)]. (B3)

For highly excited states we obtain limn→inf �±
n = ω ± g,

which explains the double-peak structure in the strong-driving
limit of Fig. 3. A similar analysis holds for the JC model, with
the difference that for one-photon coupling the energy splitting
between successive lower or higher eigenstates is degenerate
�±

n = ω, and so the spectrum for highly excited states is well
approximated by an empty cavity.
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